CN107430107B - 通过竞争分析的小分子的纳米孔隙检测 - Google Patents

通过竞争分析的小分子的纳米孔隙检测 Download PDF

Info

Publication number
CN107430107B
CN107430107B CN201680014418.5A CN201680014418A CN107430107B CN 107430107 B CN107430107 B CN 107430107B CN 201680014418 A CN201680014418 A CN 201680014418A CN 107430107 B CN107430107 B CN 107430107B
Authority
CN
China
Prior art keywords
molecule
nanoaperture
substitution
target
fusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680014418.5A
Other languages
English (en)
Other versions
CN107430107A (zh
Inventor
T·J·莫林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altela Inc
Original Assignee
Double Man Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Double Man Co filed Critical Double Man Co
Publication of CN107430107A publication Critical patent/CN107430107A/zh
Application granted granted Critical
Publication of CN107430107B publication Critical patent/CN107430107B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48721Investigating individual macromolecules, e.g. by translocation through nanopores
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54306Solid-phase reaction mechanisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cell Biology (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本文公开了用于通过进行目标与替代之间的竞争分析和随后在纳米孔隙中检测复合物类型来检测混合样品中的目标小分子的方法和组合物。本文公开了使用纳米孔隙检测小分子的竞争分析。足够大小(>20kDa)的目标分子在穿过固态纳米孔隙时引起电流阻抗、转位时间或其它可测量参数的变化。在目标分子不足够大且因此不引起明显的变化的情况中,另外的分子/试剂可以用于帮助检测。这一检测试剂将结合小分子或“捕获配体‑分子复合体”(例如,肽检测通过识别肽/适体复合体的单克隆抗体(mAb)帮助)。

Description

通过竞争分析的小分子的纳米孔隙检测
相关申请的交叉引用
本申请要求2016年3月11日提交的U.S.临时专利申请No.62/131,969的权益,其公开内容通过引用全文合并于此。
背景技术
小分子在许多生物功能中发挥重要作用。因为小分子可以例如通过与蛋白质结合和抑制或激活其正常功能来改变蛋白质的功能,它们可以扰乱/破坏该蛋白质在其中起作用的系统。转而,这类破坏可以触发疾病或加速疾病的进展。另一方面,通过控制小分子剂量,可以揭示关于蛋白质在这些系统中发挥的作用的详情(Stockwell,Brent R.“Exploring biology with small organic molecules.”Nature 432.7019(2004):846-854)。检测小分子的存在和浓度也可以用于评估代谢过程如药物代谢的结果,其可能利于和加速临床试验和药物功效研究。在人和动物诊断之外,小分子也可以用于评估环境的状态,包括用于监测农业植物应激和水质。因此检测和准确定量小分子的能力在许多生物技术领域中是有价值的。
存在多种用于测量小分子的可用方法;一些是经济的,但缺乏精确度和灵敏度,而其它方法是非常灵敏的,但是是昂贵和复杂的。比较经济的高通量方法一般涉及将染料与感兴趣的目标分子结合并检测样品的总体荧光或吸光度。这种技术可以受到染料的非特异性或干扰分子的妨碍,这产生高假阳性和/或高假阴性。更复杂的分析方法,包括高效液相和质谱,能够精确地测量目标小分子,但其是复杂和昂贵的且需要专门的实验室空间和熟练的人员。因此,需要的是检测小分子的方法,其是经济的(与染料结合分析类似),提供高特异性、灵敏度和精确度,且可以在便携设备上进行。用于检测和/或定量小分子的优选分析测试不局限于专门的实验室且不需要专门的设备或熟练的人员。另外,优选的分析装置是低成本和高重现性的。因此,需要用于在耐受广泛的纳米孔隙几何形状和/或较大纳米孔隙的低成本装置上提供精确和低成本分析结果的方法。
发明内容
本文公开了用于使用纳米孔隙检测小分子的竞争分析。
足够大小(>20kDa)的目标分子在穿过固态纳米孔隙时引起电流阻抗、转位时间或其它可测量参数的变化。在目标分子不足够大且因此不引起显著的变化的情况中,另外的分子/腐蚀剂可用于帮助检测。这种检测试剂将结合小分子或“捕获配体-分子复合体”(例如,肽检测通过识别肽/适体复合体的单克隆抗体(mAb)帮助)。
但是,仍然可能存在着这一策略不太理想的小分子(例如,药物化合物)。例如,由于用于结合另外的检测分子的可用表面积的减少,在目标小分子捕获时可能难以产生该目标小分子的检测试剂。因此,我们设计了使得能够检测小分子化合物且具有测量结合亲和力和动力学(Kon、Koff、Kd、Km等)的能力的新策略。该方法也适用于研究复杂的集合体(例如,HIV Env蛋白质单体、二聚体或三聚体)。
在一些实施方式中,本文提供了用于检测疑似存在于样品中的目标分子的存在或不存在的方法,该方法包括:提供包含层的装置,其中所述层将所述装置的内部空间分隔成第一体积和第二体积,其中所述层包含连接所述第一体积和所述第二体积的纳米孔隙,且其中所述装置包含配置为识别穿过所述纳米孔隙的物体的传感器;提供替代分子、融合分子和聚合物骨架,所述融合分子包含适应于结合所述聚合物骨架以形成骨架/融合分子复合体的聚合物骨架结合结构域,和所述融合分子包含适应于结合所述替代分子或所述目标分子的目标分子结合结构域;通过将所述替代分子和所述融合分子与所述样品组合进行竞争分析,其中,如果所述目标分子存在于所述样品中,所述目标分子与所述替代分子竞争结合所述目标分子结合结构域;加载所述样品到所述第一体积中;施加跨所述纳米孔隙的电压,其中所述第一体积包含所述聚合物骨架、所述融合分子、所述替代分子和疑似包含所述目标分子的所述样品,其中所述聚合物骨架与所述融合分子杂交,且其中所述融合分子与所述替代分子或所述目标分子杂交。
在一些实施方式中,施加的电压诱导与所述目标分子或所述替代分子结合的所述骨架/融合分子复合体从所述第一体积通过所述纳米孔隙转位以产生通过所述传感器检测的电信号的变化。在一些实施方式中,该方法还包括记录作为时间的函数的所检测的电信号变化。在进一步的实施方式中,该方法还包括分析所检测和记录的作为时间的函数的电信号变化以确定所述样品中所述目标小分子的存在或不存在。
在一些实施方式中,竞争分析在加载所述样品到所述第一体积中之后进行。在一些实施方式中,竞争分析在加载所述样品到所述第一体积中之前进行。
在一些实施方式中,替代分子包含马来酰亚胺聚乙二醇。在一些实施方式中,替代分子包含选自以下的化学反应性基团:酮、醛、异氰酸酯、胺、羧酸、卤化物、酯、马来酰亚胺、硫醇、二环碳酰亚胺(dicyclocarbimide)、吡啶基、吡啶二硫物和乙酰基。在一些实施方式中,替代分子包含强或弱的亲核体或亲电子体。在一些实施方式中,替代分子包含肽、树状分子、核酸、纳米或微米珠或颗粒、量子点、蛋白质、多核苷酸、脂质体、抗体或抗体片段。在一些实施方式中,替代分子包含适应于结合有效负荷分子的有效负荷结合位点。在进一步的实施方式中,有效负荷分子选自:树状分子、双链DNA、单链DNA、DNA适体、荧光团、蛋白质、抗体、多肽、纳米珠、纳米棒、纳米管、纳米颗粒、富勒烯、PEG分子、脂质体或胆固醇-DNA杂合体。在一些实施方式中,有效负荷分子包含电荷。在一些实施方式中,带电的有效负荷分子选自:肽、氨基酸、带电纳米颗粒、合成分子、核苷酸、多核苷酸、金属或离子。在一些实施方式中,替代分子通过选自以下的相互作用与所述有效负荷分子结合:共价键、氢键、离子键、范德华力、疏水相互作用、阳离子-pi相互作用、平面堆叠相互作用、金属键和生物素-抗生物素蛋白相互作用。
在一些实施方式中,目标分子包含大小小于30,000Da、20,000Da、10,000Da、5,000Da、2,000Da、1,000Da、500Da、200Da、100Da、50Da、20Da或10Da的小分子。在一些实施方式中,目标分子包括肽、胰岛素、催产素、氨基酸、蛋白质或蛋白质的结构域、核苷酸、寡聚体、DNA、RNA、PNA、LNA、BNA、激素、脂质、胆固醇类、代谢产物、糖类、聚糖类、肽聚糖、多聚聚糖(polyglycan)、磷脂、类固醇、化学合成的激动剂和拮抗剂、多核酸的合成衍生物、多环芳族烃、碳分解副产物、二噁英、环己酰胺、维生素、三磷酸腺苷和ATP类似物、神经递质、多巴胺、L-多巴、5-羟色胺、金属、电解质、有机金属、麻醉剂和麻醉剂衍生物、透明质酸或视黄醇。
在一些实施方式中,融合分子包含肽核酸。在一些实施方式中,融合分子包含半胱氨酸标记的bis肽核酸。在一些实施方式中,融合分子包含桥连核酸、锁核酸、生物素、链霉亲和素、链霉亲和素衍生物、锌指蛋白、zfp结合结构域、CRISPR结构域、TALEN、DNA、PNA或RNA寡聚体。
在一些实施方式中,聚合物骨架包括适应于在对所述纳米孔隙施加电位时通过所述纳米孔隙从所述第一体积到所述第二体积转位的带负电或带正电的聚合物。在一些实施方式中,聚合物骨架包括选自以下的分子:脱氧核糖核酸(DNA)、核糖核酸(RNA)、肽核酸(PNA)、DNA/RNA杂合体和多肽。
在一些实施方式中,传感器配置为鉴别穿过仅单一纳米孔隙的物体。在一些实施方式中,传感器是电传感器。在一些实施方式中,传感器检测在施加跨所述纳米孔隙的电压时通过所述纳米孔隙的电流。
在一些实施方式中,作为时间的函数的电信号变化的分析包括分离与所述替代分子结合的所述骨架/融合复合体通过纳米孔隙转位导致的事件和与所述目标分子结合的所述骨架/融合复合体通过纳米孔隙转位导致的事件。在一些实施方式中,本文提供的目标小分子检测的方法提供大于90%、95%、98%或99%的所述目标小分子的检测的置信度。在一些实施方式中,样品在加载到所述第一体积中之前未纯化。
在一些实施方式中,纳米孔隙直径为至少5nm、10nm、20nm、30nm、40nm或50nm。在一些实施方式中,所述装置包含至少两个串联的纳米孔隙,且其中与所述有效负荷分子结合的所述扩增子在转位过程中同时处于所述至少两个纳米孔隙中。
本文还提供了试剂盒,其包含含有纳米孔隙的装置,其中该装置包含将所述装置的内部空间分隔成第一体积和第二体积的层,其中所述层包含连接所述第一体积和所述第二体积的穿过所述层的纳米孔隙,且其中所述装置包含配置为识别穿过所述纳米孔隙的物体的传感器;替代分子、融合分子和聚合物骨架,所述融合分子包含适应于结合所述聚合物骨架以形成骨架/融合分子复合体的聚合物骨架结合结构域,和所述融合分子包含适应于结合所述替代分子或所述目标分子的目标分子结合结构域;和用于通过观察所述装置中竞争分析的结果检测所述目标小分子的存在或不存在的说明。
在一些实施方式中,所述试剂盒的替代分子包含马来酰亚胺聚乙二醇。在一些实施方式中,所述试剂盒的替代分子包含选自以下的化学反应性基团:酮、醛、异氰酸酯、胺、羧酸、卤化物、酯、马来酰亚胺、硫醇、二环碳酰亚胺、吡啶基、吡啶二硫物和乙酰基。在一些实施方式中,所述试剂盒的替代分子包含弱或强的亲核体或亲电子体。在一些实施方式中,所述试剂盒的替代分子包含肽、树状分子、核酸、纳米或微米珠或颗粒、量子点、蛋白质、多核苷酸、脂质体或抗体。在一些实施方式中,所述试剂盒的替代分子包含适应于结合有效负荷分子的有效负荷结合位点。
在一些实施方式中,所述试剂盒的有效负荷分子选自:树状分子、双链DNA、单链DNA、DNA适体、荧光团、蛋白质、抗体、多肽、纳米珠、纳米棒、纳米管、纳米颗粒、富勒烯、PEG分子、脂质体或胆固醇-DNA杂合体。在一些实施方式中,所述试剂盒的有效负荷分子包含电荷。在一些实施方式中,所述试剂盒的带电的有效负荷分子选自:肽、氨基酸、带电纳米颗粒、合成分子、核苷酸、多核苷酸、金属或离子。在一些实施方式中,所述试剂盒的替代分子通过选自以下的相互作用与所述有效负荷分子结合:共价键、氢键、离子键、范德华力、疏水相互作用、阳离子-pi相互作用、平面堆叠相互作用、金属键和生物素-抗生物素蛋白相互作用。
在一些实施方式中,目标分子包含大小小于30,000Da、20,000Da、10,000Da、5,000Da、2,000Da、1,000Da、500Da、200Da、100Da、50Da、20Da或10Da的小分子。在一些实施方式中,所述试剂盒的目标分子包括选自以下的分子:N-乙基马来酰亚胺、肽、胰岛素、催产素、氨基酸、蛋白质或蛋白质的结构域、核苷酸、寡聚体、DNA、RNA、激素、脂质、胆固醇类、代谢产物、糖类、聚糖类、肽聚糖、多聚聚糖、磷脂、类固醇、化学合成的激动剂和拮抗剂、合成衍生物(PNA、LNA、BNA)、多环芳族烃(PAH)、碳分解副产物、二噁英、环己酰胺、维生素、三磷酸腺苷和ATP类似物、神经递质、多巴胺、L-多巴、5-羟色胺、金属、电解质、有机金属、麻醉剂和麻醉剂衍生物、透明质酸或视黄醇。
在一些实施方式中,所述试剂盒的融合分子包含肽核酸。在一些实施方式中,所述试剂盒的融合分子包含半胱氨酸标记的bis肽核酸。在一些实施方式中,所述试剂盒的融合分子包含桥连核酸、锁核酸、生物素、链霉亲和素(或链霉亲和素衍生物)、锌指蛋白或zfp结合结构域、CRISPR结构域、TALEN、DNA或RNA寡聚体,其与结合目标小分子的结构域融合。
在一些实施方式中,所述试剂盒的聚合物骨架包括适应于在对所述纳米孔隙施加电位时通过所述纳米孔隙从所述第一体积到所述第二体积转位的带负电或带正电的聚合物。在一些实施方式中,所述试剂盒的聚合物骨架包括选自以下的分子:脱氧核糖核酸(DNA)、核糖核酸(RNA)、肽核酸(PNA)、DNA/RNA杂合体和多肽。
在一些实施方式中,所述试剂盒中的装置的传感器配置为鉴别穿过仅单一纳米孔隙的物体。在一些实施方式中,所述试剂盒中的装置的传感器是电传感器。在一些实施方式中,所述试剂盒中的装置的传感器检测在施加跨所述纳米孔隙的电压时通过所述纳米孔隙的电流。
本文还提供了用于定量样品中存在的目标小分子的量的方法,该方法包括:提供包含层的装置,其中所述层将所述装置的内部空间分隔成第一体积和第二体积,其中所述层包含连接所述第一体积和所述第二体积的纳米孔隙,且其中所述装置包含配置为识别穿过所述纳米孔隙的物体的传感器;提供替代分子、融合分子和聚合物骨架,所述融合分子包含适应于结合所述聚合物骨架以形成骨架/融合分子复合体的聚合物骨架结合结构域,且所述融合分子包含适应于结合所述替代分子或所述目标分子的目标分子结合结构域;通过将所述替代分子和所述融合分子与所述样品组合进行竞争分析,其中,如果所述目标分子存在于所述样品中,所述目标分子与所述替代分子竞争结合所述目标分子结合结构域;加载所述样品到所述第一体积中;施加跨所述纳米孔隙的电压,其中所述第一体积包含所述聚合物骨架、所述融合分子、所述替代分子和疑似包含所述目标分子的所述样品,其中所述聚合物骨架与所述融合分子杂交,且其中所述融合分子与所述替代分子或所述目标分子杂交;比较与所述目标小分子结合的所述骨架/融合分子在纳米孔隙中的捕获速率和与所述替代分子结合的所述骨架/融合分子在纳米孔隙中的捕获速率以定量所述试验样品中目标小分子的量。
在用于定量样品中存在的目标小分子的量的方法的一些实施方式中,所述电压诱导与所述目标分子或所述替代分子结合的所述骨架/融合分子复合体从所述第一体积通过所述纳米孔隙的转位以产生通过所述传感器检测的电信号的变化。在一些实施方式中,用于定量样品中存在的目标小分子的量的方法还包括记录作为时间的函数的所述电信号的变化。在一些实施方式中,用于定量样品中存在的目标小分子的量的方法还包括分析作为时间的函数的所述电信号的变化以确定所述样品中所述目标小分子的存在或不存在。
在用于定量样品中存在的目标小分子的量的方法的一些实施方式中,所述竞争分析在加载所述样品到所述第一体积中之后进行。在用于定量样品中存在的目标小分子的量的方法的一些实施方式中,所述竞争分析在加载所述样品到所述第一体积中之前进行。
附图说明
前述和其它的目的、特征和优势从以下如在附图中所阐明的本发明的特定实施方式的描述是清楚的,该附图中相似的指示特征在不同视图中指示相同的部件。图形不必然是按比例的,相反强调的是阐明本发明各种实施方式的原理。作为本公开的实施方式还提供了仅通过示例而非限制来阐明的数据图形。
图1描绘了竞争分析的示意图,其中目标小分子与具有连接的有效负荷的替代小分子竞争结合骨架/融合复合体的小分子结合结构域。
图2描绘了以上的骨架/融合-目标和骨架/融合-替代分子类型,其一次一个捕获到纳米孔隙中。
图3描绘了骨架//融合-目标和骨架/融合-替代分子类型的理想化纳米孔隙电流事件特征。
图4显示使用纳米孔隙装置的单分子探测。(a)通过在电压V=100mV(1M LiCl)下穿过27nm直径纳米孔隙的3.2kb dsDNA骨架引起的代表性电流偏移事件。事件通过电导偏移深度(δG=δI/V)和持续时间定量。(b)对于在10分钟内记录的744个事件的δG相对持续时间的散点图。
图5显示通过RP-HPLC对用作后续竞争反应的基准对照的单个反应物的表征。
图6显示通过RP-HPLC对半胱氨酸标记的PNA分子与不同浓度的过量PEG-马来酰亚胺和/或NEM孵育的产物进行表征以证实复合体形成和评估竞争结合PNA分子的结果。
图7显示了比较用纳米孔隙测试的骨架/融合-目标(道4)和骨架/融合-替代复合体(道9)的电泳迁移率的凝胶,其中NEM是目标和PEG是替代,各自竞争与DNA骨架结合的PNA上的结合位点。
图8显示所记录的骨架/融合-目标和骨架/融合-替代复合体的代表性事件,其中NEM是目标和PEG是替代。替代的增加的有效负荷大小产生更深和更长的持久事件特征。
图9显示在相同孔隙上记录的所有骨架/融合-目标事件和然后所有骨架/融合-替代事件的平均δG相对持续时间的散点图。
图10显示来自图7的群体中随时间记录的持续时间小于100μs的事件的百分比的演变。误差棒指示测量的百分比中的不确定性。
图11显示比较具有1:1(道3)和4:1(道9)的替代:目标竞争比率的骨架/融合-目标和骨架/融合-替代复合体的电泳迁移率的凝胶,两者都在纳米孔隙上测试。如之前的,NEM是目标和PEG是替代,各自竞争结合与DNA骨架结合的PNA。
图12显示以4:1和1:1的替代:目标(PEG:NEM)竞争比率孵育后100%骨架/融合-目标和100%骨架/融合-替代复合体以及骨架/融合的δG相对持续时间的散点图。
图13显示来自图10的群体中随时间记录的持续时间小于100μs的事件的百分比的演变。误差棒定量测量的百分比中的不确定性。快于100μs的事件的增加是与替代分子相比目标小分子与骨架/融合复合体的分数增大的指示。
图14显示通过RP-HPLC表征半胱氨酸标记的PNA分子与固定浓度的PEG-马来酰亚胺改变浓度的NEM孵育的产物以验证复合体形成和评价竞争结合PNA分子的结果。
图15显示用纳米孔隙测试的骨架/融合-目标((a),道4)和骨架/融合-替代复合体((b),道4)的电泳迁移率的凝胶,其中NEM是目标和PEG是替代,其各自竞争与DNA骨架结合的PNA上的结合位点。
图16显示在相同孔隙上记录的所有骨架/融合-目标事件和然后所有骨架/融合-替代事件的δG相对持续时间的散点图。
图17显示来自图13的群体中随时间记录的持续时间小于70μs的事件的百分比的演变。误差棒定量测量的百分比中的不确定性。
图18显示具有50:1((a),道4)和10:1((b),道4)和2:1((b),道9)的替代:目标竞争比率的骨架/融合-目标和骨架/融合-替代复合体的电泳迁移率的凝胶,所有三者在纳米孔隙上测试。如之前的,NEM是目标和PEG是替代,其各自竞争与DNA骨架结合的PNA上的结合位点。
图19显示来自图18的群体中随时间记录的持续时间小于70μs的事件的百分比的演变。误差棒定量测量的百分比中的不确定性。快于70μs的事件的分数随目标:替代比率提高而增大。
具体实施方式
在整个本申请中,文本涉及本发明的装置、组合物、系统和方法的各种实施方式。所描述的各种实施方式旨在提供多种说明性实例,而不应该被解释为可选种类的描述。相反,应该注意的是,本文提供的各种实施方式的描述在范围上可能有重叠。此处讨论的实施方式仅仅是说明性的,并不是要限制本发明的范围。
还是在本公开的全文中,各种出版物、专利和公开的专利说明书均通过明确的引文被引用。这些出版物、专利和公开专利说明书的公开内容通过引用由此作为整体并入本公开中。
如本文中使用的,术语“包含”意指所述系统、装置和方法包括所列举的成分或步骤,但不排除其它的成分或步骤。“基本上由……组成”在用于定义系统、装置和方法时应当意指排除对于组合有任何实质意义的其它成分或步骤。“由……组成”应当意指排除其它成分或步骤。通过这些过渡术语中各自限定的实施方式在本发明的范围内。
所有包括范围的数值表达,例如距离、大小、温度、时间、电压和浓度,是近似值,其按照0.1的增量变化((+)或(-))。需要明白的是,虽然并不总是明示说明所有数值表达前加术语“大约”。也需要明白,尽管并不总是明确地表述,此处所描述的成分只是示例性的,并且此类成分的等价物是本领域中已知的。
如本文中使用的,“包含分隔内部空间的纳米孔隙的装置”应当指的是具有包含结构内的开口的孔隙的装置,该结构将内部空间分隔成两个体积或腔室。该装置还可以具有多于一个纳米孔隙,并且在每对孔隙之间具有一个共同腔室。
如本文中使用的,术语“融合分子”指的是包含至少两个结构域的分子,其中一个结构域结合骨架和另一个结合或与小分子反应。
如本文中使用的,术语“目标小分子”指的是样品中可能存在或不存在的感兴趣的小分子。在分子生物学和药理学中,小分子是帮助调节生物学过程的低分子量(<1000道尔顿)有机化合物或者是较大分子(人造的(即合成的药物)或天然产物(例如,蛋白质))的裂解产物(代谢产物)。在本专利申请的情况中,我们的小分子的定义是较宽泛的,因为我们将其定义为本身太小而不能在通过固态纳米孔隙穿梭时可靠地产生区别性电信号的任何分子。在一些实施方式中,小分子可以是,但不限于大小小于10,000Da的任何目标分子。但是,大小大于10,000Da的小分子也可能难以在纳米孔隙中检测,使得本文所述的竞争分析也可用于检测这些小分子。
如本文中使用的,术语“替代分子”或“替代小分子”指的是可能与目标小分子相同或不同的分子。替代分子与目标小分子竞争融合分子上的相同结合位点或反应性位点。在一些实施方式中,替代分子足够大以在纳米孔隙中检测。在一些实施方式中,替代分子是能够与有效负荷分子结合或结合于有效负荷分子的小分子。在这一实施方式中,有效负荷分子有助于替代小分子在纳米孔隙中的检测。在一些实施方式中,替代小分子适应于或配置为结合有效负荷分子。在其中说明书提到连接于有效负荷分子的替代小分子的情况中,如果在结合于骨架/融合分子复合体时能够在纳米孔隙中被检测,可以替代地使用不具有有效负荷的小分子。
如本文中使用的,术语“有效负荷”或“有效负荷分子”是指与替代小分子结合以增强竞争小分子在纳米孔隙中的检测的选择性和/或灵敏度的分子或化合物。在一些实施方式中,有效负荷分子以1:1的比率结合于替代小分子。
如本文中使用的,术语“骨架”或“聚合物骨架”是指在施加电压时通过纳米孔隙转位的带负电或带正电的聚合物。在一些实施方式中,能够与融合分子结合或结合于融合分子的聚合物骨架。在一些方面,聚合物骨架包括脱氧核糖核酸(DNA)、核糖核酸(RNA)、肽核酸(PNA)、DNA/RNA杂合体或多肽。骨架也可以是化学合成的聚合物,而不是天然存在的或生物的分子。在优选的实施方式中,聚合物骨架是dsDNA以允许在转位通过纳米孔隙时给出更可预测的信号,并减少存在于ssDNA或RNA中的二级结构。在一些实施方式中,聚合物骨架包含可以位于骨架末端或在骨架的两个末端的融合分子结合位点。骨架和融合分子可以通过共价键、非共价键、氢键、离子键、范德华力、疏水相互作用、阳离子-pi相互作用、平面堆叠相互作用或金属键连接。
如本文中使用的,术语“融合”或“融合分子”是指具有两个结构域的大分子或化合物:1)骨架-结合结构域和2)小分子-结合结构域或反应性位点。实例融合分子是具有连接的适体的PNA(用于结合dsDNA骨架),该适体对于感兴趣的小分子是特异性的。第二融合实例是与化学基团融合的PNA结合结构域,该化学基团用于与感兴趣的小分子中特定化学基团的选择性反应性。小分子结合结构域或反应性化学基团有能力以高特异性和已知或可测量的亲和力结合感兴趣的目标小分子,且也结合具有连接的有效负荷的替代小分子。
如本文中使用的,术语“结合”或“连结”是指形成化学键,例如共价键、离子键或金属键。结合可以包括两个分子之间通过范德华力、疏水相互作用、阳离子-pi相互作用和/或平面堆叠相互作用的稳定缔合。结合可以包括使用传统化学或生物化学偶联技术(有或没有催化剂)在两个(或更多个)化学反应性基团如酮和亲核试剂之间的键形成。在一些实施方式中,两个分子之间的稳定缔合可以通过与结合位点形成稳定相互作用的另一分子的竞争结合来破坏。
如本文中使用的,术语“结合位点”或“结合结构域”是指分子或化合物上特异性地结合另一分子的区域。在一些实施方式中,本文公开了包含对于聚合物骨架特异性的结合结构域且进一步包含对于目标小分子和替代分子特异性的结合结构域的融合分子。融合分子和其它分子在结合结构域处的稳定缔合(例如,对接)可以通过结合结构域与目标分子或配体之间的非共价分子间键合如离子键、氢键和范德华力或通过共价键合(即,通过化学或生物化学反应性)形成。
如本文中使用的,术语“竞争”或“竞争分析”是指替代分子(例如,具有连接的有效负荷的替代小分子)和目标小分子之间的竞争,这两种分子类型试图结合各骨架/融合分子上的目标分子结合结构域。对于结合目标分子结合结构域的竞争可以是竞争的、非竞争的或无竞争的。
如本文中使用的,术语“骨架/融合-目标”或“骨架/融合-目标复合体”是指与骨架/融合分子复合体上的目标分子结合结构域结合的目标小分子。
如本文中使用的,术语“骨架/融合-替代”或“骨架/融合-替代复合体”是指与骨架/融合分子上的目标分子结合结构域结合的替代分子(例如,有效负荷结合的替代小分子)。
如本文中使用的,术语“纳米孔隙”是指允许特别调整大小的聚合物通过的足够大小的开口(孔洞或通道)。利用放大器,施加电压以驱动带电聚合物通过纳米孔隙,且通过孔隙的电流检测是否分子穿过孔隙。
如本文中使用的,术语“传感器”是指从纳米孔隙装置收集信号的装置。在许多实施方式中,传感器包括设置在孔隙的两侧的一对电极,以在分子或其他实体,特别是聚合物骨架,移动通过孔隙时测量跨孔隙的离子电流。除了电极之外,另外的传感器,例如光学传感器,可以检测纳米孔隙装置中的光学信号。其他传感器可用于检测如电流阻塞、电子隧穿电流、电荷诱导场效应、纳米孔隙通过时间、光学信号、光散射和等离子体共振的特性。
如本文中使用的,术语“电流测量”是指在施加的电压下随时间流过纳米孔隙的电流的一系列测量。电流被表示为用于量化事件的量度,并且按照电压(电导)标准化的电流也用于定量事件。
如本文中使用的,术语“开放通道”是指在噪声范围内通过纳米孔隙通道的电流的基线水平,其中该电流不偏离由分析软件定义的值的阈值。
如本文中使用的,术语“事件”是指一组电流阻抗测量值,该值从电流测量偏离开放通道值达到定义的阈值时开始,并且当电流返回到开放通道值的阈值之内时结束。
如本文中使用的,术语“电流阻抗特征”是指在检测到的事件中确定的电流测量值和/或模式的集合。在事件中也可能存在多个特征以增强分子类型之间的区分。
如本文中使用的,术语“目标检测事件”是指给出骨架/融合-目标复合体穿过纳米孔隙的信号的区别性事件或电流阻抗特征。如本文中使用的,术语“替代检测事件”是指给出骨架/融合-替代复合体穿过纳米孔隙的信号的区别性事件或电流阻抗特征。
替代目标检测事件可以是由于增大体积的有效负荷。正是与替代小分子结合的有效负荷分子的增大的体积使得能够区分骨架/融合-目标复合体和骨架/融合-替代复合体,其中区分是基于电流阻抗特征中的一种或多种差异。
替代目标检测事件可以是由于有效负荷电荷。正是与替代小分子结合的有效负荷分子的增加的电荷使得能够区分骨架/融合-目标复合体和骨架/融合-替代复合体,其中区分是基于电流阻抗特征中的一种或多种差异。
除了体积和长度外,替代目标检测事件可以是由于具有使得能够在骨架/融合-目标复合体和骨架/融合-替代复合体之间区分的其它特征的有效负荷,其中区分是基于电流阻抗特征中的一种或多种差异。实例特征包括有效负荷亲水性、疏水性、长度、氨基酸组成、碱基组成或其它化学特征。
如本文中使用的,术语“捕获速率(capture rate)”是指在纳米孔隙装置中随时间检测到的事件的数量。在一些实施方式中,捕获速率可以具体指与特定的复合体相关的事件的捕获和/或转位的速率。如本文所述,与在类似的纳米孔隙条件下具有相似质/荷比的对照相比,捕获速率可用于推断浓度。
竞争分析
本文公开了用于通过使用目标和替代之间的竞争分析和使用用于区分适应于在纳米孔隙中的检测(例如,通过电流阻抗特征)的目标结合的和替代结合的大分子的纳米孔隙装置来检测目标小分子的方法和组合物。在一些实施方式中,本文公开的方法、组合物和装置适应于允许随着骨架DNA结合的分子穿过纳米孔隙的纯电子计数。示例“目标结合的骨架/融合”中提供的实例提供了每次单一骨架/融合大分子穿过纳米孔隙时可与“替代结合的骨架/融合”区分的明确和稳定的信号。这允许从混合样品准确和精确地检测和定量目标分子的快速和简单的方式,从而允许使用电子检测(其不需要化学或光学检测)在数分钟内100s-1000s或更大的目标分子单独地计数并与背景非目标分子区分开。另外,鉴于装置的便宜的硬件、低功率需求、小尺寸和对广泛的纳米孔隙几何形状的耐受性,制造和设备成本是极低的。
在一些实施方式中,本文提供了进行待纳米孔隙装置中分析的竞争结合分析的方法。在一个实施方式中,竞争结合分析使用饱和(平衡)分析进行,其中替代小分子具有足够的浓度以产生饱和曲线,Bmax值可以从该饱和曲线获得。在一些实施方式中,固定量的骨架-融合与提高浓度的替代小分子温育并允许达到平衡。然后,骨架穿过孔隙并记录被小分子替代结合的骨架的量。通过针对替代分子的浓度比较替代分子结合的骨架/融合复合体的量,生成了基于对数浓度的反应曲线,替代小分子的最大复合体-结合(Bmax)浓度可以从该反应曲线确定。这一Bmax浓度然后可以用于后续竞争分析中。替代分子和融合分子之间的结合相互作用的KD可以从Scatchard曲线计算,其中X-轴上的截距等于Bmax,Y-轴是替代结合的骨架除以未结合骨架。对于这一曲线,斜率等于-1/KD。这一KD值(产生50%结合的骨架的替代小分子浓度)在生成如下所述的标准曲线时使用。使用计算的Bmax,竞争分析可以通过稀释包含目标小分子的测试样品到多种不同浓度,将各浓度与骨架-融合复合体温育,并允许混合物到平衡来进行。然后,Bmax浓度的替代分子添加到混合物并温育足够长的时间以使反应再次达到平衡(例如,通常5-10分钟)。反应置于纳米孔隙装置中,且电压跨纳米孔隙施加以诱导聚合物骨架-融合复合体通过纳米孔隙的转位并观察各自的电子特征以确定是否复合体结合于替代分子或结合于目标分子。
在一些实施方式中,记录替代结合的复合体的捕获速率。这一捕获速率然后可以映射到通过相对于替代结合的骨架的浓度(X-轴)测量结合事件的捕获速率(每秒)(Y-轴)生成的标准曲线以估计测试样品中替代结合的骨架的浓度。由于每次温育的骨架分子的数量是已知的且各骨架仅可以结合一个小分子,小分子的数量可以测定。例如,如果未知样品中替代结合的骨架的速率匹配标准曲线上的50%结合率,且1百万骨架/ml用于反应中,我们推断小分子浓度是0.5百万/ml。
对检测分配统计学显著性
在一些实施方式中,对随时间记录的传感器测量值的集进行汇总并应用数学工具以对疑似存在于样本中的目标小分子的检测(如前面章节中所详细描述的)赋予数字置信度值。
最近开发出基于纳米孔隙事件群体特征的差异从背景(即其他分子类型)区分分子类型的定量方法(Morin,T.J.等,“Nanopore-based target sequence detection”,2015年12月31日提交到PloS On)。这种区分方法意味着可以在不同类型的其他分子的存在中检测特定分子类型,并且可以赋予检测的统计学显着性(例如,以99%置信度的试剂X的检测)。为将该方法应用到下面提供的实例中,我们这里首先总结该方法。
一般来说,在孔隙上方的腔室中有两类分子:类型1是骨架/融合-替代分子,而类型2是骨架/融合-目标分子。基于来自实验的数据,我们确定存在于相当部分的类型2事件和存在于相对较小分数的类型1事件的事件特征标准。特征标准可以取决于δG、持续时间、每个事件内的级别的数量和特征和/或从事件信号计算的任何其它数值或值的组合。
注意,可以手动或通过查表或以自动方式选择事件特征标准。例如,先前的实验可以建立用于广泛的孔径和预期在给定测试中存在的其他条件的阳性和阴性对照的性能,且当对于给定的测试遇到相当的条件(即,用于给定的替代小分子/有效负荷类型)时,可以使用从这些对照确定的所选定标准(以查表的方式)。例如,基于恰好在样品前的对照运行,也可以实时地确定自动标准。对于来自样品的目标小分子的实时检测,如本申请中所公开的,自动标准选择是合适和优选的途径。具体地,在测试样品之前,产生类型1事件群体的对照可以用于使“2型事件边界”的计算自动化,该“2型事件边界”建立相对于“类型1-阳性”事件标示“类型2-阳性”事件的标准。可以通过围绕2D绘图中的点拟合曲线的任何方法来计算边界(例如,所述点是平均偏移相对持续时间曲线图内的事件)。曲线拟合方法可以包括最小二乘法、线性或二次规划或者任何形式的数值优化,并通过分段多项式或样条的系数来对边界进行参数化。计算凸包可以提供边界。更高维的边界拟合途径也是可能的,例如,使用表征事件的3种特性(3D边界)。所得到的边界可以是多边形的或平滑的。用于用边界(其包括特定百分比的事件)来包围事件的子集(即,作为在包围用于自动标准确定的点时消减异常值的机制)的目的的相关技术是计算被定义为包含总概率的z分数的最小区域的边界的z-分位数边界。例如,95%分位数边界是包含总概率的95%(95%的数据)的最小区域的边界。虽然概率密度未知,但可以使用该数据和用标准数值技术来估算。
一旦(手动、通过查表或以自动方式)选择了标准,如果对于事件满足特征标准,则将该事件“标示”为类型2。我们将p定义为捕获事件是类型2的概率。在没有类型2分子的对照实验中,我们知道p=0,和在测试类型2分子的实验中,我们想知道是否p>0。我们定义假阳性概率q1=Pr(标示的|类型1事件)。在仅具有骨架/融合-替代分子的对照实验或实验组中,从合理数目的捕获事件以良好精确度确定q1。在确定是否类型2分子存在于本体溶液中的检测实验中,捕获事件被标示的概率是p的函数且可以近似计算为:
Q(p)=(标示的事件数)/N
在该公式中,N是事件的总数。可以用Qsd(p)=2.57*sqrt{Q(p)*(1-Q(p))/N}计算99%置信区间Q(p)±Qsd(p),其中sqrt{}为平方根函数。在实验的过程中,随着事件数N的增加,Q(p)的值收敛和不确定性界减弱。作为记录时间的函数的Q(p)±Qsd(p)的曲线图示出了对于每种试剂类型它是如何演化的(图10、13、17和19)。在没有类型2分子的对照实验中,观察到Q(0)=q1。
在检测实验中,当以下标准为真时,类型2分子以99%的置信度存在
Q(p)-Qsd(p)>q1 (1)
如果上述标准是真的,我们得出结论p>0;如果其是非真的,我们不能说p>0。该框架在下面提供的实施例中被使用。
从测量的捕获速率估算浓度
在一些实施方式中,对随时间记录的传感器测量值的集进行汇总并应用数学工具以估算疑似存在于样本中的目标小分子的浓度。
在一些实施方式中,可以在骨架、融合、替代小分子和/或疑似存在于样品中的目标小分子中一种或多种的不同浓度下重复该过程(将样品与骨架/融合试剂温育并进行纳米孔隙实验)。然后数据集可以组合以收集更多的信息。在一个实施方式中,目标小分子的总浓度通过将数学工具应用于汇总的数据集来估算。
按照文献(Wang,Hongyun等,“Measuring and Modeling the Kinetics ofIndividual DNA-DNA Polymerase Complexes on a Nanopore.”ACS Nano 7,no.5(May28,2013):3876-86.doi:10.1021/nn401180j;Benner,Seico等,“Sequence-SpecificDetection of Individual DNA Polymerase Complexes in Real Time Using aNanopore.”Nature Nanotechnology 2,no.11(October 28,2007):718-24(doi:10.1038/nnano.2007.344)中的方法,可以将生物物理模型应用于纳米孔隙数据以量化目标小分子和其底物之间的结合和平衡动力学,且在目标和替代小分子之间的竞争。以上引用的Wang等中的研究检查了蛋白质对其DNA底物的两种互斥的和竞争的结合状态。相同的建模框架可应用,但以两种不同的分子产生可以与各底物分子发生的两种不同的结合配置。
在我们的分析中,纳米孔隙从本体相采样和测量单个分子。在目标分子存在下,每个骨架/融合是目标结合的或替代结合的,且骨架/融合-目标复合体的分数与目标的浓度成比例。在相对于替代浓度的高目标浓度下,目标的结合快速地进行,且所有骨架/融合复合体是目标结合的。在相对于替代浓度的较低浓度下,替代的结合相对快速地进行,且所有骨架/融合复合体是替代结合的。在中间浓度下,非零百分比的骨架/融合事件标示为是目标结合的(类型2),且这一百分比在邻近纳米孔隙的本体相腔室中反应快速达到平衡时随时间保持恒定。
为估算总目标小分子浓度,可以用纳米孔隙并使用两种或更多种不同的替代分子浓度的恒定的骨架/融合浓度重复实验。不同的替代分子浓度,从低(1pM)到高(100nM),可以在使用一部分常用样品保持目标分子浓度的同时进行滴定。通过测量标示的目标阳性事件的百分比和捕获速率,Wang,Hongyun等,ACS Nano 7,no.5(May 28,2013)中的建模框架可允许估算与已知浓度的替代分子竞争的目标分子总浓度。该方法可以使用目标与融合分子上的目标分子结合结构域之间结合亲和力的预定Kd值或者允许估算这一Kd值。为估算总目标小分子浓度,多纳米孔隙阵列也可以实施,其中各纳米孔隙测量相对于待估算的骨架/融合-目标的不同骨架/融合-替代浓度。
组合物
在一些实施方式中,本文提供了与有效负荷分子结合的替代小分子。在一些实施方式中,本文提供了包含有效负荷分子结合位点的替代小分子。
在一些实施方式中,有效负荷分子可以是树状分子、双链DNA、单链DNA、DNA适体、荧光团、蛋白质、多肽、纳米棒、纳米管、富勒烯、PEG分子、脂质体或胆固醇-DNA杂合体或化学合成的化合物。在优选的实施方式中,替代小分子和有效载荷通过共价键、氢键、离子键、范德华力、疏水相互作用、阳离子-pi相互作用、平面堆叠相互作用或金属键、生物素-(链霉亲和素/中性抗生物素蛋白/单体亲和素)亲和素相互作用直接或者间接地连接。有效负荷增大了替代小分子的区别特征,并且利于检测,其中与骨架/融合-小分子结合的有效负荷在穿过纳米孔隙时具有与不具有有效负荷的骨架/融合-小分子显著不同的电流特征。在一些实施方式中,有效载荷分子可以结合另一分子以影响该分子的体积,从而进一步提高不具有或具有有效负荷的骨架/融合-小分子之间区分的灵敏度。
在一些方面,替代小分子包含引起或有助于有效载荷分子的识别和结合的化学修饰。在一些实施方式中,替代小分子具有足够的特征,例如,大小、长度、电荷等,以使得其适应于在纳米孔隙中通过在与骨架/融合大分子结合时产生可识别的电流阻抗特征进行检测。
在一些实施方式中,目标小分子包含肽、胰岛素、催产素、氨基酸、蛋白质或蛋白质的结构域、核苷酸、寡聚体、DNA、RNA、激素、脂质、胆固醇类、代谢产物、糖类、聚糖类、肽聚糖、多聚聚糖、糖类、寡糖、多糖、磷脂、类固醇、化学合成的激动剂和拮抗剂、合成的衍生物(PNA、LNA、BNA)、多环芳族烃(PAH)、碳分解副产物、二噁英、环己酰胺、维生素、三磷酸腺苷和ATP类似物、神经递质、多巴胺、L-多巴、5-羟色胺、金属、电解质、有机金属、麻醉剂和麻醉剂衍生物、透明质酸、视黄醇。这一列表不意味着是排它的,因为在一些实施方式中,本发明提供了用于检测能够与替代分子竞争结合融合分子上的结合位点的任何目标小分子的新机制。
在一些实施方式中,聚合物骨架包括在施加电压时通过纳米孔隙转位的带负电或带正电的聚合物。在一些实施方式中,聚合物骨架包含可切割结构域或可切割接头。在一些实施方式中,聚合物骨架能够与包含可切割接头的融合分子结合或结合于包含可切割接头的融合分子且在施加电压时通过孔隙转位。在一些方面,聚合物骨架包括脱氧核糖核酸(DNA)、核糖核酸(RNA)、肽核酸(PNA)、DNA/RNA杂合体或多肽。骨架也可以是化学合成的聚合物,且不是天然存在的或生物的分子。在优选的实施方式中,聚合物骨架是dsDNA以允许在转位通过纳米孔隙时更可预测的信号和减少存在于ssDNA或RNA中的二级结构。在一些实施方式中,聚合物骨架包含可以位于骨架末端或在骨架的两个末端的融合分子结合位点。骨架和融合分子可以通过共价键、氢键、离子键、范德华力、疏水相互作用、阳离子-pi相互作用、平面堆叠相互作用或金属键连接。或者,可切割接头组分与骨架的直接共价系连可以连接骨架和融合分子。或者,融合的连接体组分可以通过直接共价系连将可切割接头接合到骨架上。在优选的实施方式中,融合分子包含骨架-结合结构域,其可以是DNA、RNA、PNA、多肽、胆固醇/DNA杂合体或DNA/RNA杂合体。
在一些实施方式中,本文公开的分子可以进行修饰或具有通过特定结合结构域结合指定的实体的能力。能够特异性地识别结合基序的分子,尤其是蛋白质,是本领域中已知的。例如,蛋白结构域如螺旋-转角-螺旋、锌指、亮氨酸拉链、翼状螺旋、翼状螺旋-转角-螺旋、螺旋-环-螺旋和HMG盒已知能够结合于核苷酸序列。这些分子中的任何一个可以用作结合扩增子或引物的有效载荷分子。
在一些方面,结合结构域可以是锁核酸(LNA)、桥连核酸(BNA)、所有类型的蛋白质核酸(例如bisPNA、γ-PNA)、转录激活因子样效应物核酸酶(TALEN)、成簇的规律间隔短回文重复序列(CRISPR)或适体(如DNA、RNA、蛋白质或其组合)。
在一些实施方式中,结合结构域是DNA结合蛋白(例如锌指蛋白)、抗体片段(Fab)、化学合成的粘合剂(例如PNA、LNA、TALENS或CRISPR)或合成聚合物骨架中的化学修饰(即反应性部分)(例如,硫醇盐、生物素、胺、羧酸酯)中的一个或多个。
纳米孔隙装置
所提供的纳米孔隙装置包括在将其内部空间分隔为两个体积的结构中形成开口的至少一个孔隙,以及至少配置为识别穿过孔隙的物体(例如,通过检测指示物体的参数的变化)的传感器。用于本文所描述的方法的纳米孔隙装置也在PCT公开WO/2013/012881中公开,其通过引用整体并入。
传感器
如上所述,在各个方面,纳米孔隙装置还包括一个或多个传感器用于完成目标小分子的检测。
所述装置中使用的传感器可以是适合用于识别与有效载荷分子结合或未结合的目标多核苷酸扩增子的任何传感器。例如,传感器可以配置为通过测量与聚合物相关的电流、电压、pH值、光学特征或停留时间来识别与替代分子或目标小分子结合的聚合物骨架/融合分子。在其他方面,传感器可以被配置为识别聚合物骨架/融合复合体的一个或多个单个组分或者与聚合物骨架/融合分子复合体结合或连接的一种或多种组分(例如,替代分子或目标小分子)。传感器可以由配置为检测可测量参数的变化的任何组分形成,其中此变化指示与复合体结合的实体、复合体的组分或优选地,与复合体结合或连接的组分。在一个方面,传感器包括布置在孔隙两侧的一对电极以测量在分子或其他实体移动通过孔隙时的跨孔隙离子电流。在某些方面,在穿过孔隙的聚合物骨架/融合分子节段结合于替代分子或目标分子时,跨孔隙的离子电流发生可测量的变化。此类电流变化可以对应于,例如,与聚合物骨架/融合分子复合体结合的替代分子(和结合的实体)或目标小分子的存在、不存在和/或大小以可预测的、可测量的方式发生变化。
在优选的实施方式中,传感器包括施加电压并用于测量跨纳米孔隙的电流的电极。分子转位通过纳米孔隙提供了电阻抗(Z),其根据欧姆定律,V=IZ,影响通过纳米孔隙的电流,其中V是施加的电压,I是通过纳米孔隙的电流,和Z是阻抗。相反地,监测电导G=1/Z以通知和定量纳米孔隙事件。当分子在电场中(例如,在施加的电压下)转位通过纳米孔隙时的结果是,当进一步分析电流信号时,可能与穿过纳米孔隙的分子相关的电流特征。
当使用来自电流特征的停留时间测量时,基于通过探测设备所花费的时间长度,可以将组分的大小与特定组分相关联。
在一个实施方式中,在纳米孔隙装置中提供的传感器测量聚合物、聚合物的组分(或单元)或者结合或连接于聚合物的组分的光学特征。这种测量的一个实例包括通过红外(或紫外)光谱识别特定单元特有的吸收带。在一些实施方式中,传感器是电传感器。在一些实施方式中,传感器检测荧光特征。孔隙出口处的辐射源可用于检测该特征。
实施例
本技术进一步参考以下实施例和实验进行定义。对于本领域技术人员明显的是许多改变可以在不背离本发明的范围的情况下实行。
实施例1:DNA的纳米孔隙检测
固态纳米孔隙是在分隔两个水性体积的薄的固体膜中形成的纳米级开口。电压钳放大器在测量通过开放孔隙的离子电流的同时施加跨膜的电压V。与任何其他单分子传感器不同,纳米孔隙装置可以以非常低的成本封装成手持形式因素。当单一带电分子如双链DNA(dsDNA)通过电泳被捕获并被驱动通过孔隙时,测量的电流偏移及电导偏移深度(δG=δI/V)和持续时间被用于表征事件(图4(a))。
值δG(也标记为ΔG)可以被计算为平均电流偏移除以电压。值δG(也标记为ΔG)也可以被计算为最大电流偏移除以电压。持续时间被计算为偏移宽度。
我们将0.1nM 3.2kb dsDNA置于具有27nm直径纳米孔隙的纳米孔隙装置中。纳米孔隙装置中的溶液包含1M LiCl。我们施加跨纳米孔隙的100mV电压以诱导dsDNA跨纳米孔隙的转位。事件通过电流传感器检测和如下所述进行分析。
在实验期间记录许多事件之后,分析事件的分布以表征相应的分子。图4(b)显示在电压V=100mV(1M LiCl)下穿过27nm直径纳米孔隙的0.1nM的3.2kb dsDNA的事件特征,产生在10分钟内记录的744个事件。显示两个画圆圈的代表性事件:更宽的和更浅的事件对应于展开地穿过的DNA;以及更快的但更深的事件对应于折叠地穿过的DNA。对于~1kb和更短的dsDNA,DNA仅在展开的状态下穿过孔隙。
实施例2:具有改变的目标和替代分子的竞争分析
为证明我们的竞争分析方法,使用具有单一bisPNA分子(即,融合分子)的dsDNA骨架(即,聚合物骨架)。bisPNA进行半胱氨酸标记以与不同浓度的小N-乙基马来酰亚胺(NEM)(即,目标小分子)反应和结合,小N-乙基马来酰亚胺(NEM)与不同的预选择量的10kDa马来酰亚胺聚乙二醇(PEG-mal)(即,替代分子)竞争。分析的目标:替代相对比率为1:1和1:4。
试剂制备的方法如下:25μM半胱氨酸标记的bis肽核酸(bisPNA)的溶液与不同的选择浓度的小分子N-乙基马来酰亚胺(NEM,125g/mol)和/或10kDa马来酰亚胺聚乙二醇(PEG-mal,10,000g/mol)在室温下混合并允许反应20分钟的时间。偶联在bisPNA结合缓冲液(0.01M磷酸钠,pH 7.4)中进行。
在简短温育后,反应产物通过反相HPLC(Agilent 1100系列)分析以确认NEM-bisPNA和/或PEG-bisPNA偶联物的组成。在RP-HPLC中,分析物通过随时间提高有机移动相的浓度从非极性固定相洗脱并通过其特征性吸收光谱鉴定。相应反应物的峰吸光度是220nm(10kDa PEG-马来酰亚胺)、270nm(PNA)和303nm(NEM)。因为PNA给出反应物的最强信号,其用于所有竞争实验中以监测PNA-NEM和/或PNA-PEG的所得反应产物的进展。
单个反应物单独的洗脱时间和吸收谱首先通过RP-HPLC表征以用作后续竞争反应的基准对照(图5)。PNA在6.12分钟洗脱并在270nm表现出强吸光度(图5(a))。另外在9.80分钟洗脱的峰确定为由制造商提供的PNA中的杂质,且不参与任何以下反应。PEG-马来酰亚胺分子本身给出18.73min的小的宽峰(图5(b))而单独的NEM给出5.71min的非常小的峰(图5(c))。由于竞争分子PEG和NEM给出的弱信号,6.12分钟的PNA吸收的消失和具有强的270nm吸收的另外的新PNA峰的出现然后用作成功PNA偶联的指示。
当PNA与单独的PEG-马来酰亚胺温育时,PNA吸收通常在6.12min的洗脱时间检测到,其指示消失的未偶联的PNA(图6,实心菱形),且在17.86min洗脱的具有270nm的强吸收的新分子指示PNA-PEG偶联物的形成(图6,实心方块)。类似地,当PNA允许与单独的NEM温育时,PNA与分子完全反应且新峰在9.5分钟出现(图6,空心圆形)。PEG和NEM也允许以等摩尔和4:1的PEG-NEM比率与PNA反应(图6,实心星形和实心十字)。随着NEM浓度相对于PEG提高,17.86min的峰的强度值在样品间降低,表明NEM能够成功地竞争半胱氨酸标记的PNA分子的硫醇反应性基团。
NEM-PNA和/或PEG-PNA复合体在60℃下bisPNA结合缓冲液中与1074bp双链DNA(dsDNA)片段混合2小时的时间以允许形成聚合物骨架/融合分子复合体(即,dsDNA与bisPNA偶联物的结合)。骨架-融合分子结合复合体通过5%聚丙烯酰胺凝胶上的电泳迁移率变动分析确认(图7)。具体地,运行5%聚丙烯酰胺凝胶以评估通过用NEM(目标)或10kDaPEG(替代)标记(即,结合)的PNA分子对dsDNA的结合。Bare 1074bp dsDNA(图7,道1)允许与相对于DNA 10至100-倍摩尔过量范围NEM-结合PNA的提高量的NEM-结合PNA温育(图7,道2-5)。50-倍摩尔过量的NEM-结合PNA发现足以完全标记1074bp序列(图7,道4),且因此用于后续纳米孔隙分析中。PEG-标记的PNA类似地允许以10至50-倍摩尔过量范围的浓度结合dsDNA(图7,道7-9)。用于纳米孔隙分析的样品是其中所有存在的DNA与PEG标记的PNA结合的样品(图7,道9,50-倍摩尔过量)。
一旦验证,与NEM或PEG-mal结合的聚合物骨架/融合复合体在用于纳米孔隙分析的运行缓冲液(1M LiCl,10mM Tris,1mM EDTA,pH 8)中稀释到所示浓度。实施例1中的所有试剂在22nm膜中的相同20-22nm直径孔隙上系列地测试。仅缓冲液的冲洗在各试剂类型的测试之间使用。
首先,0.5nM的DNA/PNA-NEM复合体在17分钟内产生346个事件。大多数事件快于100μs,其中中位驻留时间(IQR(四分间距))=44(20)μsec,如图8和9中所见的。捕获速率是0.33sec-1(R2=0.9973)。随后,1074DNA+PNA+PEG在0.5nM下测量并在20分钟内产生651个事件。许多事件长于100μs,其中中位驻留时间(IQR)=72(275)μsec,如图8和9中所见的。捕获速率是0.68sec-1(R2=0.9985)。
通过应用在“对检测分配统计学显著性”一节中建立的框架,我们可以将统计置信度分配于检测作为类型2分子的DNA/PNA-NEM复合体和作为类型1分子的DNA/PNA-PEG。合适的标准是,如果它快于0.1ms,则将事件标示为类型2。DNA/PNA-PEG可以用作阴性对照以计算假阳性q1=0.585(58.8%)。DNA/PNA-NEM(类型2)对照以99%置信度产生Q(p)±Qsd(p)=94.7977±3.0752。从数学框架的等式(1),结果是Q(p)-Qsd(p)=0.917>0.585,其意味着我们可以说DNA/PNA-NEM分子以99%的置信度存在。
Q(p)±Qsd(p)作为记录时间的函数的曲线图在图10中对于每种试剂类型(DNA/PNA-NEM和DNA/PNA-PEG)显示。观察到DNA/PNA-NEM复合体(骨架/融合-目标)在记录的前1分钟内以99%的置信度被检测到。
我们接着改变80:20和50:50的PEG:NEM比率以评估对于bisPNA结合位点的竞争如何在纳米孔隙测量中转变。
用NEM(目标)和10kDa PEG(替代)标记的PNA分子的溶液对dsDNA的结合在5%聚丙烯酰胺凝胶上检测(图11)。之前与等摩尔量的PEG和NEM(1:1)反应的PNA的溶液与相对于DNA 10至100-倍摩尔过量PNA中的1074bp dsDNA片段(即,聚合物骨架)混合以将PNA分子与dsDNA结合(图9,道2-5)。纳米孔隙分析在其中各DNA分子结合于PNA标记的分子的样品上进行(图11,道3)。PNA也与其中PEG数目以4:1的摩尔比超过NEM的PEG和NEM的溶液混合。这种标记的PNA分子的溶液随后允许以相似的方式侵入DNA(道7-9,10至50-倍摩尔过量)。纳米孔隙分析在其中各DNA分子结合于PNA标记的分子的样品上进行(图11,道9)。
首先,0.2nM 1074DNA/PNA+PEG:NEM=80:20在19分钟内产生952个事件,其中中位驻留时间(IQR)=56(44)μsec和捕获速率为1.0sec-1(R2=0.9984)。快于0.1ms的事件的分数在99%置信度下是Q(p)±Qsd(p)=79.0966+/-3.3946。随后,0.2nM 1074DNA/PNA+PEG:NEM=50:50在15分钟内产生754个事件,其中中位驻留时间(IQR)=48(20)μs和捕获速率为0.951sec-1(R2=0.9978)。随着NEM相对于PEG的相对量增加,快于0.1ms的事件的分数在99%置信度下提高至Q(p)±Qsd(p)=91.7772+/-2.577。图12显示DNA/PNA-NEM和DNA/PNA-PEG对照及DNA/PNA+PEG:NEM=80:20和DNA/PNA+PEG:NEM=50:50的覆盖事件图。也显示仅DNA对照。图13显示对于图12中的每种试剂类型作为记录时间的函数的Q(p)±Qsd(p)的曲线图。随着NEM相对于PEG的相对量增加而分数提高的趋势表明NEM和PEG之间的竞争用纳米孔隙是可检测的。这些测量可以用于检测目标小分子的存在,如此处对于NEM和以99%置信度显示的。这些测量也可以与生物物理模型结合以估算目标小分子浓度。
实施例3:具有固定的替代和改变的目标分子的竞争分析
如在实施例2中,使用具有单一bisPNA分子的dsDNA骨架,其中半胱氨酸标记的bisPNA与作为模型目标小分子的不同浓度的小N-乙基马来酰亚胺(NEM)和恒定量的模型替代10kDa马来酰亚胺聚乙二醇(PEG-mal)混合。替代和目标小分子竞争结合半胱氨酸标记的bisPNA。替代分子的浓度是恒定的,与其中目标和替代两者均变化的实施例2相反。这一实施例中利用的目标:替代的相对比率是1:2和1:10和1:50。从各混合物形成的复合体使用直径20-22nm的纳米孔隙和22nm膜分析。
试剂制备的方法如下:25μM半胱氨酸标记的bisPNA的溶液与250μM 10kDa PEG-mal和不同浓度的NEM在室温下bisPNA结合缓冲液中混合20分钟的时间以允许PEG-mal或NEM与各半胱氨酸标记的bisPNA结合。
在简短温育后,反应产物通过反相HPLC(Agilent 1100系列)分析以确认NEM-bisPNA和/或PEG-bisPNA偶联物的组成。单个反应物单独的洗脱时间和吸收谱首先通过RP-HPLC表征以用作后续竞争反应的基准对照(图5)。PNA在6.12分钟洗脱并在270nm表现出强吸收(图5(a))。在9.80分钟洗脱的峰确定为由制造商提供的PNA中的杂质,且不参与任何以下反应。PEG-马来酰亚胺分子本身给出18.73min的小的宽峰(图5(b))而单独的NEM给出5.71min的非常小的峰(图5(c))。由于竞争分子PEG和NEM给出的弱信号,6.12分钟的PNA吸收的消失和具有270nm强吸收的另外的新PNA峰的出现然后用作成功的PNA偶联的指示。
PNA也与固定量的PEG温育而同时滴定目标分子NEM以利用不同的实验设计证明对于半胱氨酸的硫醇反应性基团的竞争。首先,250μM的单独PEG与25μM PNA温育,清晰的峰在17.86min检测到(图14,实心方块)。在单独的反应中,NEM然后在250μM PEG存在下从5μM(图14,实心星形)至125uM(图14,空心三角形)滴定。随着添加更多的NEM,看到17.86分钟的PNA-PEG峰的明显降低,同时检测到指示PNA-NEM偶联物的9.5分钟峰的提高。总的来说,这些结果表明目标分子NEM能够成功地竞争硫醇反应性基团。
NEM-PNA和/或PEG-PNA复合体在60℃下bisPNA结合缓冲液中与1074bp dsDNA片段混合2小时的时间以允许半胱氨酸标记的bisPNA融合分子与dsDNA聚合物骨架的结合。
温育的结果通过5%聚丙烯酰胺凝胶上的电泳迁移率变动分析观察(图15)。具体地,图15(a)显示运行的5%聚丙烯酰胺凝胶以评估dsDNA与用NEM(目标)标记的PNA分子的结合。Bare 1074bp dsDNA((a),道1)允许与相对于DNA 10至100-倍摩尔过量范围标记的PNA的提高量的NEM标记的PNA温育((a),道2-5)。50-倍摩尔过量的NEM-标记的PNA发现足以完全标记1074bp序列,且因此用于后续纳米孔隙分析中((a),道4)。图12(b)显示运行以评估dsDNA与PNA分子的结合的10%聚丙烯酰胺凝胶,该PNA分子已经与10kDaPEG(替代)偶联。1074bp DNA类似地与提高浓度的PNA-PEG温育,且其中各DNA分子与PNA结合的样品用于纳米孔隙分析中((b),道4)。
一旦验证复合体形成,样品在运行缓冲液(1M LiCl,10mM Tris,1mM EDTA,pH 8)中稀释到所示浓度,且样品置于纳米孔隙装置中用于纳米孔隙分析(图16)。首先,0.2nM的1074bp DNA-PNA-NEM在15分钟内产生389个事件,(中位,IQR)驻留时间=(44,16)μsec,捕获速率是0.45sec-1(R2=0.9972)。随后,0.2nM的1074bp DNA-PNA-PEG在15分钟内产生251个事件,再次具有较长事件的增加,(中位,IQR)驻留时间=(60,252)μsec,且捕获速率为0.2742sec-1(R2=0.9972),对于25%修整的数据。
通过应用在“对检测分配统计学显著性”一节中建立的框架,我们将统计置信度分配用于检测作为类型2分子的DNA/PNA-NEM复合体和作为类型1分子的DNA/PNA-PEG。合适的标准是,如果它快于0.07ms,则将事件标示为类型2。DNA/PNA-PEG可以用作阴性对照以计算假阳性q1=0.554(55.4%)。DNA/PNA-NEM(类型2)对照以99%置信度产生Q(p)±Qsd(p)=95.3728±2.7436。从数学框架的等式(1),结果是Q(p)-Qsd(p)=0.926>0.554,其意味着我们可以说DNA/PNA-NEM分子以99%的置信度存在。
作为记录时间的函数的Q(p)±Qsd(p)曲线在图17中对于每种试剂类型(DNA/PNA-NEM和DNA/PNA-PEG)显示。观察到DNA/PNA-NEM复合体在记录的前1分钟内以99%的置信度被检测到。
我们接着改变50:1、10:1和2:1的PEG:NEM比率以评估对于bisPNA结合位点的竞争如何在纳米孔隙装置中观察,且特别是当PEG替代保持恒定时。
运行5%聚丙烯酰胺凝胶(图18)以评估用NEM(目标)和10kDa PEG(替代)标记的PNA分子的溶液对dsDNA的结合。图18(a)显示10%聚丙烯酰胺凝胶运行以评估PNA的DNA结合能力,该PNA已经与包含50:1摩尔比的PEG和NEM的溶液反应。1074bp DNA与10至100-倍摩尔过量浓度范围的提高量的完全反应的PNA温育(图18(a),道2-5)。纳米孔隙分析在表现出通过PNA-PEG和PNA-NEM种类的完全DNA结合的样品上进行(图18(a),道4)。图18(b)显示运行以评估与PEG和提高量的NEM(分别10:1和2:1的PEG-NEM摩尔比)结合的PNA的DNA结合能力的10%聚丙烯酰胺凝胶。1074bp DNA与10至100-倍摩尔过量浓度范围的提高量的结合PNA温育(道2-5=10:1比率,道7-10=2:1比率)。纳米孔隙分析在表现出通过PNA-PEG和PNA-NEM种类的完全DNA结合的样品上进行(图18(b),道4和9)。
首先,在相同孔隙上,使用不可与仅PEG分析区分的群体,1074bp DNA-PNA-10xPEG和0.2x NEM(50:1替代:目标)在15分钟内产生337个事件,(中位,IQR)驻留时间=(68,210)μsec。快于0.07ms的事件的分数在99%置信度下是Q(p)±Qsd(p)=51.3353+/-7.0132,这不足够高以推断DNA/PNA-NEM存在的检测。即,由于未满足等式(1),我们不能说DNA/PNA-NEM在50:1替代:目标比率的这一测试中存在。随后,1074bp DNA-PNA-10x PEG和1x NEM在30分钟内产生472个事件,(中位,IQR)驻留时间=(60,76)μsec。随着NEM相对于PEG的相对量增加,快于0.07ms的事件的分数在99%置信度下提高至Q(p)±Qsd(p)=62.0763+/-5.7526。从数学框架的等式(1),结果是Q(p)-Qsd(p)=0.563>0.554,其意味着我们可以说DNA/PNA-NEM分子以99%的置信度存在。最后,1074bp DNA-PNA-10x PEG和5x NEM在30分钟内产生687个事件,(中位,IQR)驻留时间=(52,48)μsec。随着NEM相对于PEG的相对量增加,快于0.07ms的事件的分数在99%置信度下进一步提高至Q(p)±Qsd(p)=70.0146+/-4.5029。再次,从数学框架的等式(1),结果是Q(p)-Qsd(p)=0.655>0.554,其意味着我们可以说DNA/PNA-NEM分子以99%的置信度存在。图19显示对于每种试剂类型作为记录时间的函数的Q(p)±Qsd(p)曲线。
如在实施例2中,随着NEM相对于PEG的相对量增加而分数提高的趋势表明NEM和PEG之间的竞争用纳米孔隙是可检测的。这些测量可以用于检测目标小分子的存在,如此处对于NEM和以99%置信度显示的。这些测量也可以与生物物理模型结合以估算目标小分子浓度。
在99%置信度下,Q(端值)=63.5015+/-6.7551。

Claims (56)

1.一种用于检测疑似存在于样品中的目标分子的存在或不存在的方法,包括:
提供包含层的装置,其中所述层将所述装置的内部空间分隔成第一体积和第二体积,其中所述层包含连接所述第一体积和所述第二体积的纳米孔隙,且其中所述装置包含配置为识别穿过所述纳米孔隙的物体的传感器;
提供替代分子、融合分子和聚合物骨架,所述融合分子包含适应于结合所述聚合物骨架以形成骨架/融合分子复合体的聚合物骨架结合结构域,和所述融合分子包含适应于结合所述替代分子或所述目标分子的目标分子结合结构域;
通过将所述替代分子和所述融合分子与所述样品组合来进行竞争分析,其中,如果所述目标分子存在于所述样品中,所述目标分子与所述替代分子竞争结合所述目标分子结合结构域;
加载所述样品到所述第一体积中;
施加跨所述纳米孔隙的电压,其中所述第一体积包含所述聚合物骨架、所述融合分子、所述替代分子和疑似包含所述目标分子的所述样品,其中所述聚合物骨架与所述融合分子杂交,且其中所述融合分子与所述替代分子或所述目标分子杂交。
2.权利要求1的方法,其中所述电压诱导与所述目标分子或所述替代分子结合的所述骨架/融合分子复合体从所述第一体积通过所述纳米孔隙转位以产生通过所述传感器检测的电信号的变化。
3.权利要求2的方法,还包括记录作为时间的函数的所述电信号的变化。
4.权利要求3的方法,还包括分析作为时间的函数的所述电信号的变化以确定所述样品中所述目标分子的存在或不存在。
5.权利要求1-4任一项的方法,其中所述竞争分析在加载所述样品到所述第一体积中之后进行。
6.权利要求1-4任一项的方法,其中所述竞争分析在加载所述样品到所述第一体积中之前进行。
7.权利要求1-4任一项的方法,其中所述替代分子包含马来酰亚胺聚乙二醇。
8.权利要求1-4任一项的方法,其中所述替代分子包含选自以下的化学反应性基团:酮、醛、异氰酸酯、胺、羧酸、卤化物、酯、马来酰亚胺、硫醇、二环碳酰亚胺、吡啶基、吡啶二硫物和乙酰基。
9.权利要求1-4任一项的方法,其中所述替代分子包含强或弱的亲核体或亲电子体。
10.权利要求1-4任一项的方法,其中所述替代分子包含肽、树状分子、核酸、纳米或微米珠或颗粒、量子点、蛋白质、多核苷酸、脂质体、抗体或抗体片段。
11.权利要求1-4任一项的方法,其中所述替代分子包含适应于结合有效负荷分子的有效负荷结合位点。
12.权利要求11的方法,其中所述有效负荷分子选自:树状分子、双链DNA、单链DNA、DNA适体、荧光团、蛋白质、抗体、多肽、纳米珠、纳米棒、纳米管、纳米颗粒、富勒烯、PEG分子、脂质体或胆固醇-DNA杂合体。
13.权利要求11的方法,其中所述有效负荷分子包含电荷。
14.权利要求13的方法,其中所述带电的有效负荷分子选自:肽、氨基酸、带电纳米颗粒、合成分子、核苷酸、多核苷酸、金属或离子。
15.权利要求11的方法,其中所述替代分子通过选自以下的相互作用与所述有效负荷分子结合:共价键、氢键、离子键、范德华力、疏水相互作用、阳离子-pi相互作用、平面堆叠相互作用、金属键和生物素-抗生物素蛋白相互作用。
16.权利要求1-4任一项的方法,其中所述目标分子包含大小小于30,000Da、20,000Da、10,000Da、5,000Da、2,000Da、1,000Da、500Da、200Da、100Da、50Da、20Da或10Da的小分子。
17.权利要求1-4任一项的方法,其中所述目标分子包括肽、胰岛素、催产素、氨基酸、蛋白质或蛋白质的结构域、核苷酸、寡聚体、DNA、RNA、PNA、LNA、BNA、激素、脂质、胆固醇类、代谢产物、糖类、聚糖类、肽聚糖、多聚聚糖、磷脂、类固醇、化学合成的激动剂和拮抗剂、多核酸的合成衍生物、多环芳族烃、碳分解副产物、二噁英、环己酰胺、维生素、三磷酸腺苷和ATP类似物、神经递质、多巴胺、L-多巴、5-羟色胺、金属、电解质、有机金属、麻醉剂和麻醉剂衍生物、透明质酸或视黄醇。
18.权利要求1-4任一项的方法,其中所述融合分子包含肽核酸。
19.权利要求1-4任一项的方法,其中所述融合分子包含桥连核酸、锁核酸、生物素、链霉亲和素、链霉亲和素衍生物、锌指蛋白、zfp结合结构域、CRISPR结构域、TALEN、DNA、PNA或RNA寡聚体。
20.权利要求19的方法,其中所述融合分子包含半胱氨酸标记的bis肽核酸。
21.权利要求1-4任一项的方法,其中所述聚合物骨架包括适应于在对所述纳米孔隙施加电位时通过所述纳米孔隙从所述第一体积到所述第二体积转位的带负电或带正电的聚合物。
22.权利要求1-4任一项的方法,其中所述聚合物骨架包括选自以下的分子:脱氧核糖核酸、核糖核酸、肽核酸、DNA/RNA杂合体和多肽。
23.权利要求1-4任一项的方法,其中所述传感器配置为鉴别穿过仅单一纳米孔隙的物体。
24.权利要求1-4任一项的方法,其中所述传感器是电传感器。
25.权利要求24的方法,其中所述传感器检测在施加跨所述纳米孔隙的电压时通过所述纳米孔隙的电流。
26.权利要求3-4任一项的方法,其中所述作为时间的函数的电信号的变化的分析包括分离与所述替代分子结合的所述骨架/融合复合体通过所述纳米孔隙转位导致的事件和与所述目标分子结合的所述骨架/融合复合体通过所述纳米孔隙转位导致的事件。
27.权利要求1-4任一项的方法,其中所述方法提供大于90%、95%、98%或99%的所述目标分子的检测置信度。
28.权利要求1-4任一项的方法,其中所述样品在加载到所述第一体积中之前未纯化。
29.权利要求1-4任一项的方法,其中所述纳米孔隙直径为至少5nm、10nm、20nm、30nm、40nm或50nm。
30.权利要求11的方法,其中所述装置包含至少两个串联的纳米孔隙,且其中与所述有效负荷分子结合的扩增子在转位过程中同时处于所述至少两个串联的纳米孔隙中。
31.一种试剂盒,包含
包含纳米孔隙的装置,其中所述装置包含将所述装置的内部空间分隔成第一体积和第二体积的层,其中所述层包含连接所述第一体积和所述第二体积的穿过所述层的纳米孔隙,且其中所述装置包含配置为识别穿过所述纳米孔隙的物体的传感器;
替代分子、融合分子和聚合物骨架,所述融合分子包含适应于结合所述聚合物骨架以形成骨架/融合分子复合体的聚合物骨架结合结构域,和所述融合分子包含适应于结合所述替代分子或目标分子的目标分子结合结构域;和
用于通过观察所述装置中竞争分析的结果检测所述目标分子的存在或不存在的说明。
32.权利要求31的试剂盒,其中所述替代分子包含马来酰亚胺聚乙二醇。
33.权利要求31的试剂盒,其中所述替代分子包含选自以下的化学反应性基团:酮、醛、异氰酸酯、胺、羧酸、卤化物、酯、马来酰亚胺、硫醇、二环碳酰亚胺、吡啶基、吡啶二硫物和乙酰基。
34.权利要求31的试剂盒,其中所述替代分子包含弱或强的亲核体或亲电子体。
35.权利要求31的试剂盒,其中所述替代分子包含肽、树状分子、核酸、纳米或微米珠或颗粒、量子点、蛋白质、多核苷酸、脂质体或抗体。
36.权利要求31的试剂盒,其中所述替代分子包含适应于结合有效负荷分子的有效负荷结合位点。
37.权利要求36的试剂盒,其中所述有效负荷分子选自:树状分子、双链DNA、单链DNA、DNA适体、荧光团、蛋白质、抗体、多肽、纳米珠、纳米棒、纳米管、纳米颗粒、富勒烯、PEG分子、脂质体或胆固醇-DNA杂合体。
38.权利要求36的试剂盒,其中所述有效负荷分子包含电荷。
39.权利要求38的试剂盒,其中所述带电的有效负荷分子选自:肽、氨基酸、带电纳米颗粒、合成分子、核苷酸、多核苷酸、金属或离子。
40.权利要求36的试剂盒,其中所述替代分子通过选自以下的相互作用与所述有效负荷分子结合:共价键、氢键、离子键、范德华力、疏水相互作用、阳离子-pi相互作用、平面堆叠相互作用、金属键和生物素-抗生物素蛋白相互作用。
41.权利要求31的试剂盒,其中所述目标分子包含大小小于30,000Da、20,000Da、10,000Da、5,000Da、2,000Da、1,000Da、500Da、200Da、100Da、50Da、20Da或10Da的小分子。
42.权利要求31的试剂盒,其中所述目标分子包括选自以下的分子:N-乙基马来酰亚胺、肽、胰岛素、催产素、氨基酸、蛋白质或蛋白质的结构域、核苷酸、寡聚体、DNA、RNA、PNA、LNA、BNA、激素、脂质、胆固醇类、代谢产物、糖类、聚糖类、肽聚糖、多聚聚糖、磷脂、类固醇、化学合成的激动剂和拮抗剂、合成衍生物、多环芳族烃、碳分解副产物、二噁英、环己酰胺、维生素、三磷酸腺苷和ATP类似物、神经递质、多巴胺、L-多巴、5-羟色胺、金属、电解质、有机金属、麻醉剂和麻醉剂衍生物、透明质酸或视黄醇。
43.权利要求31的试剂盒,其中所述融合分子包含肽核酸。
44.权利要求43的试剂盒,其中所述融合分子包含半胱氨酸标记的bis肽核酸。
45.权利要求31的试剂盒,其中所述融合分子包含桥连核酸、锁核酸、生物素、链霉亲和素或其衍生物、锌指蛋白或zfp结合结构域、CRISPR结构域、TALEN、DNA或RNA寡聚体,其与结合目标小分子的结构域融合。
46.权利要求31的试剂盒,其中所述聚合物骨架包括适应于在对所述纳米孔隙施加电位时通过所述纳米孔隙从所述第一体积到所述第二体积转位的带负电或带正电的聚合物。
47.权利要求31的试剂盒,其中所述聚合物骨架包括选自以下的分子:脱氧核糖核酸、核糖核酸、肽核酸、DNA/RNA杂合体和多肽。
48.权利要求31的试剂盒,其中所述传感器配置为鉴别穿过仅单一纳米孔隙的物体。
49.权利要求31的试剂盒,其中所述传感器是电传感器。
50.权利要求49的试剂盒,其中所述传感器检测在施加跨所述纳米孔隙的电压时通过所述纳米孔隙的电流。
51.一种用于定量样品中存在的目标小分子的量的方法,包括:
提供包含层的装置,其中所述层将所述装置的内部空间分隔成第一体积和第二体积,其中所述层包含连接所述第一体积和所述第二体积的纳米孔隙,且其中所述装置包含配置为识别穿过所述纳米孔隙的物体的传感器;
提供替代分子、融合分子和聚合物骨架,所述融合分子包含适应于结合所述聚合物骨架以形成骨架/融合分子复合体的聚合物骨架结合结构域,且所述融合分子包含适应于结合所述替代分子或目标分子的目标分子结合结构域;
通过将所述替代分子和所述融合分子与所述样品组合进行竞争分析,其中,如果所述目标分子存在于所述样品中,所述目标分子与所述替代分子竞争结合所述目标分子结合结构域;
加载所述样品到所述第一体积中;
施加跨所述纳米孔隙的电压,其中所述第一体积包含所述聚合物骨架、所述融合分子、所述替代分子和疑似包含所述目标分子的所述样品,其中所述聚合物骨架与所述融合分子杂交,且其中所述融合分子与所述替代分子或所述目标分子杂交;
比较与所述目标小分子结合的所述骨架/融合分子在所述纳米孔隙中的捕获速率和与所述替代分子结合的所述骨架/融合分子在所述纳米孔隙中的捕获速率以定量所述样品中目标小分子的量。
52.权利要求51的方法,其中所述电压诱导与所述目标分子或所述替代分子结合的所述骨架/融合分子复合体从所述第一体积通过所述纳米孔隙的转位以产生通过所述传感器检测的电信号的变化。
53.权利要求52的方法,还包括记录作为时间的函数的所述电信号的变化。
54.权利要求53的方法,还包括分析作为时间的函数的所述电信号的变化以确定所述样品中所述目标小分子的存在或不存在。
55.权利要求51的方法,其中所述竞争分析在加载所述样品到所述第一体积中之后进行。
56.权利要求51的方法,其中所述竞争分析在加载所述样品到所述第一体积中之前进行。
CN201680014418.5A 2015-03-11 2016-03-11 通过竞争分析的小分子的纳米孔隙检测 Active CN107430107B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562131693P 2015-03-11 2015-03-11
US62/131,693 2015-03-11
PCT/US2016/022210 WO2016145415A1 (en) 2015-03-11 2016-03-11 Nanopore detection of small molecules through competition assays

Publications (2)

Publication Number Publication Date
CN107430107A CN107430107A (zh) 2017-12-01
CN107430107B true CN107430107B (zh) 2019-08-30

Family

ID=56878896

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680014418.5A Active CN107430107B (zh) 2015-03-11 2016-03-11 通过竞争分析的小分子的纳米孔隙检测

Country Status (9)

Country Link
US (1) US10837954B2 (zh)
EP (1) EP3268732A4 (zh)
JP (1) JP6568949B2 (zh)
KR (2) KR101945366B1 (zh)
CN (1) CN107430107B (zh)
CA (1) CA2978202A1 (zh)
HK (1) HK1246395A1 (zh)
MX (1) MX2017011489A (zh)
WO (1) WO2016145415A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170109046A (ko) * 2015-02-02 2017-09-27 투 포어 가이즈, 인코포레이티드 바이오마커 검출용 불안정성 링커
MX2018006146A (es) * 2015-11-23 2019-05-27 Two Pore Guys Inc Modificación de diana para seguimiento y detección.
CN107014791B (zh) * 2017-03-29 2019-10-29 郑州轻工业学院 一种荧光传感器及其制备方法和应用
CN108181358B (zh) * 2017-11-15 2020-02-11 华东理工大学 基于气单胞菌溶素纳米通道检测氨基酸的方法
DE102018210484A1 (de) 2018-06-27 2020-01-02 Robert Bosch Gmbh Sensor zum Detektieren von Ionen in einem Fluid sowie Verfahren zum Detektieren von Ionen in einem Fluid mit einem solchen Sensor
CN109239140B (zh) * 2018-08-16 2021-04-13 广东第二师范学院 一种纳米孔功能性控制方法及系统
CN109078628B (zh) * 2018-08-27 2021-06-11 西北大学 一种以苄胺为配基的高效疏水相互作用色谱介质、制备方法及其在蛋白质复性与纯化的应用
EP3847449A4 (en) * 2018-09-07 2022-08-31 Ontera Inc. DETECTION COMPOSITIONS, METHODS AND DEVICES FOR DETECTING MOLECULES USING A NANOPORE DEVICE
KR102127111B1 (ko) 2019-01-31 2020-06-26 경희대학교 산학협력단 나노포어의 제조 방법 및 이를 통해 제조된 나노포어 구조체
CN111999490B (zh) * 2019-12-19 2021-07-30 瑞芯智造(深圳)科技有限公司 一种检测样品体系中微量蛋白的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1419606A (zh) * 2000-02-03 2003-05-21 研究发展基金会 将分子识别转导成不同信号的信号适体
CN1742201A (zh) * 2002-11-14 2006-03-01 Qtl生物系统有限公司 使用荧光聚合物和猝灭剂-系链-配体生物缀合物的生物传感方法
CN104379724A (zh) * 2012-01-31 2015-02-25 托莱多大学 用于分析物的检测和测量的方法和装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6780584B1 (en) 2000-09-27 2004-08-24 Nanogen, Inc. Electronic systems and component devices for macroscopic and microscopic molecular biological reactions, analyses and diagnostics
US20030022150A1 (en) 2001-07-24 2003-01-30 Sampson Jeffrey R. Methods for detecting a target molecule
US20030138419A1 (en) 2001-11-16 2003-07-24 The University Of Tennessee Research Corporation Recombinant antibody fusion proteins and methods for detection of apoptotic cells
US8346482B2 (en) * 2003-08-22 2013-01-01 Fernandez Dennis S Integrated biosensor and simulation system for diagnosis and therapy
US20130071837A1 (en) * 2004-10-06 2013-03-21 Stephen N. Winters-Hilt Method and System for Characterizing or Identifying Molecules and Molecular Mixtures
JP2009543058A (ja) * 2006-06-30 2009-12-03 アプライド バイオシステムズ, エルエルシー 結合相互作用を分析する方法
RU2446402C2 (ru) * 2006-10-24 2012-03-27 Конинклейке Филипс Электроникс Н.В. Обнаружение целевых молекул в образце
CA2700859A1 (en) * 2007-10-02 2009-04-09 President And Fellows Of Harvard College Capture, recapture, and trapping of molecules with a nanopore
JP2013523131A (ja) 2010-03-30 2013-06-17 トラスティーズ オブ ボストン ユニバーシティ ナノ細孔解離依存核酸配列決定のためのツールおよび方法
KR101820834B1 (ko) 2011-07-20 2018-01-22 더 리전트 오브 더 유니버시티 오브 캘리포니아 이중-포어 디바이스
EP2888855B1 (en) 2012-08-21 2018-12-19 Onity Inc. Systems and methods for lock access management using wireless signals
JP5951527B2 (ja) * 2013-03-07 2016-07-13 株式会社東芝 検体検出装置及び検出方法
ES2704902T3 (es) * 2013-05-06 2019-03-20 Two Pore Guys Inc Un método de detección de objetivos biológicos usando un nanoporo y un agente de unión a proteínas de fusión
EP3014264A4 (en) * 2013-06-25 2016-11-16 Two Pore Guys Inc QUANTIFICATION OF MULTIPLEXED BIOMARKERS BY NANOPORENT ANALYSIS OF BIOMARKER POLYMER COMPLEXES
EP3039155B1 (en) * 2013-08-26 2019-10-09 Ontera Inc. Molecule detection using boronic acid substituted probes
US9983191B2 (en) * 2015-03-11 2018-05-29 Two Pore Guys, Inc. Nanopore detection of small molecules through competition assays
CA2986921A1 (en) 2015-06-02 2016-12-08 Nanopore Diagnostics, Llc Nucleic acid detection
WO2018093976A1 (en) 2016-11-16 2018-05-24 Nanopore Diagnostics, Llc Analysis of nucleic acids using probe with non-linear tag

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1419606A (zh) * 2000-02-03 2003-05-21 研究发展基金会 将分子识别转导成不同信号的信号适体
CN1742201A (zh) * 2002-11-14 2006-03-01 Qtl生物系统有限公司 使用荧光聚合物和猝灭剂-系链-配体生物缀合物的生物传感方法
CN104379724A (zh) * 2012-01-31 2015-02-25 托莱多大学 用于分析物的检测和测量的方法和装置

Also Published As

Publication number Publication date
EP3268732A4 (en) 2018-07-25
CN107430107A (zh) 2017-12-01
KR20190012278A (ko) 2019-02-08
JP2018508023A (ja) 2018-03-22
US20180313814A1 (en) 2018-11-01
WO2016145415A1 (en) 2016-09-15
KR101945366B1 (ko) 2019-02-07
CA2978202A1 (en) 2016-09-15
JP6568949B2 (ja) 2019-08-28
EP3268732A1 (en) 2018-01-17
HK1246395A1 (zh) 2018-09-07
KR20170118229A (ko) 2017-10-24
MX2017011489A (es) 2018-01-23
US10837954B2 (en) 2020-11-17

Similar Documents

Publication Publication Date Title
CN107430107B (zh) 通过竞争分析的小分子的纳米孔隙检测
US9983191B2 (en) Nanopore detection of small molecules through competition assays
US20220195501A1 (en) Targeted Sequence Detection by Nanopore Sensing of Synthetic Probes
US20230392157A1 (en) Aptamer method
JP7079092B2 (ja) サンプル分析のためのデバイスおよび方法
Xi et al. Ultrasensitive detection of cancer cells combining enzymatic signal amplification with an aerolysin nanopore
Fahie et al. Selective detection of protein homologues in serum using an OmpG nanopore
Ying et al. Single molecule analysis by biological nanopore sensors
Wang et al. Bio-inspired track-etched polymeric nanochannels: steady-state biosensors for detection of analytes
Shoji et al. Spatially resolved chemical detection with a nanoneedle-probe-supported biological nanopore
Ross et al. New technologies for nutrition research
Wang et al. Remote activation of a nanopore for high-performance genetic detection using a pH taxis-mimicking mechanism
CN106471369A (zh) 利用纳米细孔的目标检测
Guida et al. Peptide biosensors for anticancer drugs: Design in silico to work in denaturizing environment
Das Saha et al. Multichannel DNA sensor array fingerprints cell states and identifies pharmacological effectors of catabolic processes
Loh et al. Electric single-molecule hybridization detector for short DNA fragments
Cao et al. Enhanced resolution of low molecular weight poly (ethylene glycol) in nanopore analysis
US20180328919A1 (en) Target modification for tracking and detection
Dai Engineering the Bio-electrode Interface for Electrochemical Biosensors with Sensitivity, Accuracy and Simplicity
KR101941771B1 (ko) 반도체 2d 결정 물질을 이용한 dna의 전기화학적 검출방법
Patil et al. Antisense oligonucleotide conjugated gold nanoconstructs-based electrochemical biosensor for detection of SARS-CoV-2
Hoogerheide et al. Model-Free Observation of Polypeptide Translocation Success Rate through a Nanopore
Wanunu Nanopore Analysis of Individual RNA/Antibiotic Complexes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1246395

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: American California

Patentee after: Altela Inc.

Address before: American California

Patentee before: The double man company

CP01 Change in the name or title of a patent holder