CN107429376A - 具有改进的屈服强度和扩孔率的经后退火的高拉伸强度涂覆钢板 - Google Patents

具有改进的屈服强度和扩孔率的经后退火的高拉伸强度涂覆钢板 Download PDF

Info

Publication number
CN107429376A
CN107429376A CN201680011461.6A CN201680011461A CN107429376A CN 107429376 A CN107429376 A CN 107429376A CN 201680011461 A CN201680011461 A CN 201680011461A CN 107429376 A CN107429376 A CN 107429376A
Authority
CN
China
Prior art keywords
steel plate
cold rolling
annealing
terms
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680011461.6A
Other languages
English (en)
Other versions
CN107429376B (zh
Inventor
全贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal SA
Original Assignee
ArcelorMittal SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ArcelorMittal SA filed Critical ArcelorMittal SA
Publication of CN107429376A publication Critical patent/CN107429376A/zh
Application granted granted Critical
Publication of CN107429376B publication Critical patent/CN107429376B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

经冷轧、经涂覆和经后退火的钢板。经冷轧的钢板可包含(以重量%计):C:0.1%至0.3%;Mn:1%至3%;Si:0.5%至3.5%;Al:0.05%至1.5%;Mo+Cr:在0%至1.0%之间;Mo+Cr:在0.2%至0.5%之间。所述钢板可以用锌或锌合金涂层涂覆。经涂覆的钢板可以通过冷轧、锌涂覆经冷轧的板并且在施加所述锌涂覆之后对所述钢板进行退火来形成。所述退火在一定温度下进行一段时间,其足以使经退火经涂覆经冷轧的钢板的屈服强度和扩孔率相比于涂覆态的板提高。

Description

具有改进的屈服强度和扩孔率的经后退火的高拉伸强度涂覆 钢板
相关申请的交叉引用
本申请根据35U.S.C.119(e)要求于2015年2月25日提交的美国临时申请第62/120426号的权益。
技术领域
本发明涉及钢板材料。更具体地,本发明涉及其上具有锌涂层的钢板材。最具体地,本发明涉及其上具有锌涂层的钢板材料,在涂覆工序之后已经对其进行后退火(postanneal)以使经涂覆的钢板的屈服强度和扩孔率相比于涂覆态的板提高。
背景技术
随着汽车应用中高强度钢的使用增加,对于强度提高而不牺牲可成形性的钢的需求不断增长。与现有的先进高强度钢(Advanced High Strength Steel,AHSS)相比,对重量减轻和安全要求的需求日益增长,激发了对可以实现更高延展性同时具有更高强度的汽车钢新概念的密集阐述。
汽车制造商希望能够在车辆中使用GI/GA 1180 HF钢号。该产品用于冷冲压应用。已经研究了目前可用的钢组合物来生产GA HF T1180钢号。基于模拟CL HDGL热分布的实验室研究,仅经退火的特性不能满足拉伸特性(主要是YS)和扩孔率要求。
因此,本领域需要具有高可成形性的经涂覆的1180+MPa拉伸强度的钢板。这需要在屈服强度和扩孔率性能方面超过目前生产中的钢的提高。
发明内容
本发明涉及经冷轧、经涂覆和经后退火的钢板。经冷轧的钢板可以包含(以重量%计):C:0.1%至0.3%;Mn:1%至3%;Si:0.5%至3.5%;Al:0.05%至1.5%;Mo+Cr:在0%至1.0%之间;Mo+Cr:在0.2%至0.5%之间。钢板可用锌或锌合金涂层涂覆。经涂覆的钢板可以通过冷轧、锌涂覆经冷轧的板以及在施加所述锌涂覆之后对所述钢板进行退火来形成。退火可以在150℃至650℃之间,优选150℃至450℃之间,并且最优选200℃至400℃之间的温度下进行。退火可以进行一段时间,其足以使经退火经冷轧经涂覆的钢板的屈服强度相比于涂覆态的经冷轧的钢板提高至少30%并且优选至少40%。
退火可以进行一段时间,其足以使经退火经冷轧经涂覆的钢板的扩孔率相比于涂覆态的经冷轧的钢板提高至少80%并且优选95%。
退火可以进行一段时间,其足以使经退火经冷轧经涂覆的钢板的总延伸率相比于涂覆态的板提高至少25%并且优选40%。
经冷轧的钢板可以优选包含C:0.15%至0.25%;Mn:2%至2.5%;Si:1.5%至2.5%;和Al:0.05%至1.0%。
附图说明
图1绘制了在本发明的模拟中使用的典型CLHDGL热循环的温度(以℃计)相对时间(以秒计)的图;
图2a绘制了样品合金5、6和7的屈服强度YS(以MPa计)相对退火温度(以℃计)的图。图2b绘制了样品合金5、6和7的拉伸强度TS(以MPa计)相对退火温度(以℃计)的图;
图2c绘制了样品合金5、6和7的总延伸率TE(以%计)相对退火温度(以℃计)的图;
图2d绘制了样品合金5、6和7的总延伸率TE(以%计)相对拉伸强度TS(以MPa计)的图;
图3a绘制了样品合金12、13和14的屈服强度YS(以MPa计)相对退火温度(以℃计)的图;
图3b绘制了样品合金12、13和14的拉伸强度TS(以MPa计)相对退火温度(以℃计)的图;
图3c绘制了样品合金12、13和14的总延伸率TE(以%计)相对退火温度(以℃计)的图;
图3d绘制了样品合金12、13和14的总延伸率TE(以%计)相对拉伸强度TS(以MPa计)的图;
图4a绘制了表现出TS为约1180MPa至1300MPa的样品的铁素体的体积(以%计)和总延伸率TE(以%计)相对Si的重量%的图;
图4a绘制了表现出TS为约1180MPa至1300MPa的样品的拉伸强度TS(以MPa计)和总延伸率TE(以%计)相对铁素体的体积(以%计)的图;
图5a绘制了样品合金8、9、11和12的屈服强度YS(以MPa计)相对退火温度(以℃计)的图;
图5b绘制了样品合金8、9、11和12的拉伸强度TS(以MPa计)相对退火温度(以℃计)的图;
图5c绘制了样品合金8、9、11和12的总延伸率TE(以%计)相对退火温度(以℃计)的图;
图5d绘制了样品合金8、9、11和12的总延伸率TE(以%计)相对拉伸强度TS(以MPa计)的图;
图6a绘制了样品合金16、17和18的屈服强度YS(以MPa计)相对退火温度(以℃计)的图;
图6b绘制了样品合金16、17和18的拉伸强度TS(以MPa计)相对退火温度(以℃计)的图;
图6c绘制了样品合金16、17和18的总延伸率TE(以%计)相对退火温度(以℃计)的图;
图6d绘制了样品合金16、17和18的总延伸率TE(以%计)相对拉伸强度TS(以MPa计)的图;
图7a绘制了样品合金8、9和10的屈服强度YS(以MPa计)相对退火温度(以℃计)的图;
图7b绘制了样品合金8、9和10的拉伸强度TS(以MPa计)相对退火温度(以℃计)的图;
图7c绘制了样品合金8、9和10的总延伸率TE(以%计)相对退火温度(以℃计)的图;
图7d绘制了样品合金8、9和10的总延伸率TE(以%计)相对拉伸强度TS(以MPa计)的图;
图8绘制了所有样品合金的总延伸率TE(以%计)相对屈服强度YS(正方形)和拉伸强度TS(菱形)(以MPa计)的图;
图9a绘制了含0.13%和0.2%的C的样品合金的屈服强度YS(以MPa计)相对后分批退火温度(以℃计)的图;
图9b绘制了含有0.13%和0.2%的C的样品合金的拉伸强度TS(以MPa计)相对后分批退火温度(以℃计)的图;
图9c绘制了含有0.13%和0.2%的C的样品合金的均匀延伸率UEL(以%计)相对后分批退火温度(以℃计)的图;
图9d绘制了含有0.13%和0.2%的C的样品合金的总延伸率EL(以%计)相对后分批退火温度(以℃计)的图;
图10a绘制了样品合金9和10和含有0.15%的C的样品合金的屈服强度YS(以MPa计)相对后分批退火温度(以℃计)的图;
图10b绘制了样品合金9和10和含有0.15%的C的样品合金的拉伸强度TS(以MPa计)相对后分批退火温度(以℃计)的图;
图10c绘制了样品合金9和10和含有0.15%的C的样品合金的均匀延伸率UEL(以%计)相对后分批退火温度(以℃计)的图;
图10d绘制了样品合金9和10和含有0.15%的C的样品合金的总延伸率EL(以%计)相对后分批退火温度(以℃计)的图;
图11a绘制了预分批退火TS>1180MPa的样品的屈服强度YS和拉伸强度TS(以MPa计)相对后分批退火温度的图;
图11b绘制了预分批退火TS>1180MPa的样品的总延伸率TE(以%计)和扩孔率(以%计)相对后分批退火温度(以℃计)的图;以及
图12绘制了来自特定炼钢厂的分批退火循环的温度(以℃计)相对时间(以小时计)的图。
具体实施方式
本发明的钢材的碳范围为0.1%至0.3重量%。优选范围为约0.15%至0.25%。0.15%的最小值是通过残留奥氏体和强度实现TRIP效应所需的。0.25%的最大量允许更好的可焊接性。本发明钢材的锰范围为1%至3%,优选2%至2.5%。2%的最小值是实现TS>980MPa所必需的,并且由于可焊接性和带状组织,限制2.5%的最大量。本发明钢材的硅范围为0.5%至3.5%,优选1.5%至2.5%。1.5%的最小值是实现TRIP效应所必需的,而由于可焊接性和Zn可涂覆性,限制2.5%的最大值。本发明钢材的铝范围为0.05%至1.5%,优选0.05%至1.0%。0.5%的最小值是实现TRIP效应所需的,而1%的最大值受热浸镀Zn涂覆线所要求的均热温度(soak temperature)的限制。此外,Mo和Cr的总量应为1%或更少(即,Mo+Cr=0%至1.0%),并且Mo+Cr的优选含量为0.2%至0.5%以实现TS>980MPa。钢的剩余物为铁和残留物,其含量基于实际经验。
用于成型经涂覆的钢材的工艺条件是标准的,从炼钢阶段到热浸镀Zn涂覆没有特殊要求。然后,经热镀锌涂覆的钢板的特性通过后分批退火改善。后分批退火的峰值温度应在150℃至650℃之间,更优选在150℃至450℃之间,最优选在200℃至400℃之间。优选的最低温度200℃是实现更好的可成形性所必需的,并且优选的最高的400℃是为了更好地避免Zn涂层劣化的可能性。
合金组成
锭通过真空感应熔融生产。所研究的钢的组成总结于表1中。锭在多个范围的Mn、Si、Al、Cr、Mo、Nb下具有约0.18%至0.21%的C。本文以下讨论每种元素对机械特性和显微组织的影响。
表1
ID C Mn Si Nb Cr Mo Al P S N B
1 0.18 2.2 0.7 0.011 0.15 0.79 0.014 0.006 0.0056
2 0.18 2.2 0.3 0.010 0.16 1.23 0.010 0.006 0.0048
3 0.19 2.5 0.7 0.010 0.16 1.13 0.008 0.006 0.0044
4 0.19 2.5 0.3 0.010 0.15 1.51 0.008 0.006 0.0051
5 0.20 1.8 1.6 0.017 0.15 0.06 0.009 0.005 0.0061
6 0.21 1.8 2.0 0.018 0.16 0.07 0.008 0.005 0.0055
7 0.21 1.8 2.5 0.018 0.16 0.06 0.008 0.005 0.0056
8 0.20 1.5 1.2 0.020 0.30 0.64 0.005 0.005 0.0048
9 0.21 1.5 1.3 0.020 0.30 0.58 0.016 0.003 0.0041
10 0.21 1.5 1.3 0.021 0.30 0.58 0.016 0.003 0.0042 10ppm
11 0.20 1.5 1.2 0.020 0.50 0.63 0.004 0.005 0.0047
12 0.20 1.5 1.2 0.020 0.15 0.64 0.004 0.005 0.0049
13 0.20 1.5 1.5 0.020 0.15 0.70 0.016 0.003 0.0043
14 0.20 1.5 2.0 0.020 0.16 0.73 0.016 0.003 0.0046
15 0.20 1.8 2.0 0.020 0.71 0.016 0.003 0.0049
16 0.20 2.3 1.0 0.15 0.05 0.01 0.003 0.0053
17 0.19 2.3 1.0 0.34 0.05 0.009 0.003 0.0058
18 0.20 2.5 1.0 0.04 0.009 0.003 0.0052
热轧和冷轧
首先将所有锭热轧成20mm厚的板。然后,将板再加热并以840℃至890℃范围内的终轧温度(FT)和500℃至650℃范围内的卷取温度(CT)再次热轧至3.8mm的平均最终热带厚度。表2总结了热带的拉伸特性相对FT和预期CT。结果表明,CT是确定热带的显微组织和拉伸特性的最重要因素。650℃的较高的CT提高了马氏体的分数,但是通常认为其导致较低强度的产物。增加Mn、Cr和Mo提高了钢的淬硬性,并促进马氏体的形成。添加铁素体稳定剂Al促进了铁素体的形成,导致较低强度的热带。添加另一种如Al的铁素体稳定剂Si促进了铁素体的形成;然而,在相同的热轧条件下,由于固溶硬化,其提高了钢强度。当完成冶金设计时,将讨论热轧条件对热带的显微组织和强度的影响,以及可冷轧性。将热带的两面机械磨削以移除脱碳表面层,然后进行50%冷轧压下至约1.5mm规格。
表2
ID FT,℃ 目标CT,℃ YS,MPa TS,MPa TE,% YPE,% YR
1 853 650 503 800 19.1 0.0 0.63
2 868 650 510 734 22.3 0.0 0.69
3 875 650 494 870 14.2 0.0 0.57
4 877 650 460 787 19.1 0.0 0.58
5 875 580 480 822 14.2 0.0 0.58
6 875 580 690 865 23.1 2.5 0.80
7 888 580 451 860 17.7 0.0 0.52
8 877 620 628 815 23.3 0.0 0.77
9 840 620 635 768 24.0 3.1 0.83
10 883 620 607 869 20.9 0.0 0.70
11 885 620 586 740 25.2 2.5 0.79
12 883 620 600 718 23.3 0.0 0.84
13 870 620 616 747 26.9 3.6 0.82
14 860 620 631 785 26.0 3.1 0.80
15 868 620 636 786 24.5 3.3 0.81
16 880 500 568 997 14.3 0.0 0.57
17 880 500 607 943 13.7 0.0 0.64
18 883 500 695 905 16.4 0.0 0.77
表3示出了所选择的全硬钢(full hard steel)的JIS-T的拉伸特性。观察到约1200至约1350MPa(170ksi至195ksi)的拉伸强度TS。
表3
ID 规格,mm YS,MPa TS,MPa UE,% TE,%
7 1.5 1163 1386 2.5 3.6
7 1.4 1180 1383 2.4 3.2
9 1.43 1058 1187 2.3 4.7
9 1.41 1068 1200 2.3 5.1
10 1.37 1121 1344 3.6 4.2
10 1.52 1102 1304 3.9 6.5
15 1.61 1095 1233 2.5 5.9
15 1.60 1102 1239 2.4 5.9
退火模拟和结果
退火模拟利用实验室加工的全硬钢和CL HDGL热循环使用CAS(连续退火模拟器)进行。图1绘制了本发明人在模拟中使用的典型CL HDGL热循环的温度(以℃计)相对时间(以秒计)的图。研究了宽范围的退火温度。使用三个热电偶来确保在再加热和冷却期间样品内的热均匀性。
Si的影响
有两组用于研究Si含量对拉伸特性的影响的组成,Si范围为1.2%至2.5%的合金5/6/7和合金12/13/14。图2a至2d和3a至3d示出了Si含量和退火温度对这两不同组钢的拉伸特性的影响。图2a绘制了样品合金5、6和7的屈服强度YS(以MPa计)相对退火温度(以℃计)的图。图2b绘制了样品合金5、6和7的拉伸强度TS(以MPa计)相对退火温度(以℃计)的图。图2c绘制了样品合金5、6和7的总延伸率TE(以%计)相对退火温度(以℃计)的图。图2d绘制了样品合金5、6和7的总延伸率TE(以%计)相对拉伸强度TS(以MPa计)的图。图3a绘制了样品合金12、13和14的屈服强度YS(以MPa计)相对退火温度(以℃计)的图。图3b绘制了样品合金12、13和14的拉伸强度TS(以MPa计)相对退火温度(以℃计)的图。图3c绘制了样品合金12、13和14的总延伸率TE(以%计)相对退火温度(以℃计)的图。图3d绘制了样品合金12、13和14的总延伸率TE(以%计)相对拉伸强度TS(以MPa计)的图。第一组(图2a至2d)在0.2C-1.8Mn-0.15Mo-0.02Nb基质中的Si的量在1.5%至2.5%变化,另一组(图3a至3d)在由0.2C-1.5Mn-0.3Mo-0.7Al-0.02Nb构成的基质中具有1.2%至2.0%的Si。
如图2a至2d所示,Si含量从1.5%增加到2.0%显著地提高了强度(屈服强度[YS],拉伸强度[TS]),同时最低限度地降低延展性。随着Si进一步从2.0%增加到2.5%,没有显著的强度提高。将Si含量从1.5%提高到2.0%时获得的强度增加的部分可归因于这些合金中的固溶硬化;对于0.5%的Si增加得到约40至50MPa的强度增加。使用安德鲁方程(Andrew’s equations),Si从1.5%增加到2.0%和2.5%也预期分别将Ac1从747℃提高到762℃和776℃以及将Ac3从910℃提高到933℃和955℃。在1.5%Si的钢中,退火温度从800℃增加到825℃和850℃与大幅度增加的奥氏体形成有关。当奥氏体含量提高时,其在碳中稀释,因此在随后的冷却期间不太可硬化并且更易于分解。这种行为可以解释随着退火温度增加的强度损失。随着钢中的Si含量从1.5%提高至2.0%和2.5%,在相同的退火温度下形成较少的奥氏体,并且也可以更加可硬化。这可以解释在较高Si钢中的跨越退火温度的强度的相对稳定性。
含2.0%和2.5%Si的钢的强度似乎相似。也就是说,与含2.0%Si的钢相比,2.5%硅的钢中更高的固溶强化也与相对较小的马氏体体积分数相关。据信Si从1.5%到2.0/2.5%的增加也增强了钢的淬硬性。含1.5Si和2.0/2.5Si的钢之间的YS差异的另外的潜在原因可归因于随着钢中Si含量增加马氏体的自发回火延迟。这些合金中Si的影响可与其他合金影响相关。
如图3a至3d所示,在该基础组成中Si从1.2%到2.0%的增加改善了强度和延展性之间的平衡。Si含量为1.2%至1.5%的钢不会使TS>1180MPa,因为0.7%的Al的添加显著提高了Ac1和Ac3的温度。具有2.0%的Si的钢在TS>1180MPa时表现出总延伸率(TE)>16%。由于没有可导致显著TRIP效应的大量的残留奥氏体,所以在更高Si含量时钢更好的延展性归因于Si固溶硬化,使得能够以较少量的马氏体达到规定强度。应注意,强度-延展性最佳组合的Si的量取决于其他合金元素。因此,Si的量应相应优化。另外,两组Si钢(图2a至2d和3a至3d)之间的比较表明,即使其他合金元素不同,也存在一种Si和Al添加的协同效应。
图4a示出了在TS为约1180MPa至1300MPa的样品中Si添加对铁素体的分数和TE的影响。图4a绘制了表现出TS为约1180MPa至1300MPa的样品的铁素体的体积(以%计)和总延伸率TE(以%计)相对Si的重量%的图。图4a绘制了表现出TS为约1180MPa至1300MPa的样品的拉伸强度TS(以MPa计)和总延伸率TE(以%计)相对铁素体的体积(以%计)的图。Si含量的增加降低马氏体的体积分数(增加铁素体),从而改善延展性。在含有2.0%的Si的合金14中,在Vf(铁素体的体积)为约70%的条件下可获得TS和TE的最佳组合(TS为1200MPa/TE为16%至18%)。相比于TE为10%至13%的现有技术CR DP T1180的约30%至40%的铁素体,约70%的铁素体分数相当高。然而,应根据整体合金组合优化Si的量,有利于较大的退火工艺窗口、更好的可焊接性和可接受的可涂覆性。图4b绘制了表现出TS为约1180MPa至1300MPa的样品的作为铁素体分数的函数的TS和TE的图。应当注意,铁素体量通过仅使用每个样品一个场的图像分析来测量。因此,观察到的趋势,而不是铁素体的绝对体积分数作为硅添加的函数提供了最重要的信息。
Mn、Cr和Mo的影响
众所周知,Mn、Cr和Mo提高钢的淬硬性。奥氏体向铁素体/贝氏体分解的量的降低得到更高的马氏体的分数。比较所研究的钢,可以评估Mn、Cr和Mo的相对淬硬性。
图5a至5d显示了多种Mo和Cr添加对含0.2C-1.5Mn-1.2Si-0.65Al-0.02Nb的钢的拉伸特性的影响。图5a绘制了样品合金8、9、11和12的屈服强度YS(以MPa计)相对退火温度(以℃计)的图。图5b绘制了样品合金8、9、11和12的拉伸强度TS(以MPa计)相对退火温度(以℃计)的图。图5c绘制了样品合金8、9、11和12的总延伸率TE(以%计)相对退火温度(以℃计)的图。图5d绘制了样品合金8、9、11和12的总延伸率TE(以%计)相对拉伸强度TS(以MPa计)的图。含有0.15Mo和0.5Cr的钢表现出类似的淬硬性,并且在该基础组成中需要添加0.3Mo以在所研究的退火温度下实现TS>1180MPa。
图6a至6d比较了0.15Mo、0.35Cr和增加的(+0.2)Mn对基础组成为0.2C-2.3Mn-1.0Si的钢的拉伸特性的影响。图6a绘制了样品合金16、17和18的屈服强度YS(以MPa计)相对退火温度(以℃计)的图。图6b绘制了样品合金16、17和18的拉伸强度TS(以MPa计)相对退火温度(以℃计)的图。图6c绘制了样品合金16、17和18的总延伸率TE(以%计)相对退火温度(以℃计)的图。图6d绘制了样品合金16、17和18的总延伸率TE(以%计)相对拉伸强度TS(以MPa计)的图。如图6a至6d所示,含有0.15Mo和0.35Cr的钢具有类似的淬硬性,并且二者都具有比+0.2Mn更高的淬硬性。所有组成都显示出比基于0.2C-1.5Mn-1.2Si-0.65Al-0.02Nb-X Mo/Cr的钢更高的YS,因为这些组成在所研究的退火温度范围内完全奥氏体化,从而促进形成部分贝氏体和较少量铁素体。总的来说,没有一个所比较的组成展示出了理想的TS和TE平衡。
硼的影响
已经通过比较含有0.2C-1.5Mn-1.3Si-0.6Al-0.3Mo-0.02Nb的基础组成的合金9和10研究了硼添加的影响。图7a至7d示出了B添加对钢的拉伸特性的影响。图7a绘制了样品合金8、9和10的屈服强度YS(以MPa计)相对退火温度(以℃计)的图。图7b绘制了样品合金8、9和10的拉伸强度TS(以MPa计)相对退火温度(以℃计)的图。图7c绘制了样品合金8、9和10的总延伸率TE(以%计)相对退火温度(以℃计)的图。图7d绘制了样品合金8、9和10的总延伸率TE(以%计)相对拉伸强度TS(以MPa计)的图。可以看出,B添加提高了YS和TS,而没有损失延展性。看起来,B添加另外使马氏体硬化并细化了显微组织,这允许在更高强度下保留更多的铁素体。Mo-Nb-B的协同作用(在经热轧的钢中很好理解)可有助于强度和延展性之间的更好的平衡。然而,没有关于这些元素如何影响从临界温度冷却期间的转变的详细数据/文献。
本发明人的目的是在TS>1180MPa下实现尽可能高的总延伸率。为了达到这个目的,由于铁素体似乎是延展性的主要贡献者,显微组织中铁素体的分数应该最大化,如图4b所示(即使残留奥氏体也有贡献)。然而,更高的铁素体分数由于其较低的强度使得钢变软。因此,铁素体和马氏体应尽可能地硬化以实现TS>1180MPa连同优秀的延展性。此外,冶金在生产者和客户方面二者的可制造性方面必须是合理的。Si添加对铁素体固溶硬化的影响已被很好的说明。0.2%的较高碳含量与降低Ms温度的合金元素一起贡献马氏体的强度。Nb的添加得到铁素体和马氏体二者的更细晶粒。Mn的添加有助于硬化铁素体。然而,其通过促进在经轧制的组织中形成较低温度转化产物也增加了热带的强度。应优化Mn、Cr和Mo以在最终显微组织中获得适当量的马氏体。应调整影响Ac1和Ac3温度的C、Mn、Si和Al的组合,以确保在典型工业工艺窗口内退火(约750℃至850℃)期间所需的奥氏体分数。也应最小化Mn、Si和Al以也改善带材的可涂覆性。
图8显示出了TS-TE和YS-TE的平衡。图8绘制了所有样品合金的总延伸率TE(以%计)相对屈服强度YS(正方形)和拉伸强度TS(菱形)(以MPa计)的图。最佳组合为TS约1180MPa至1250MPa,YS约550MPa至650MPa,并且TE约15%至18%。基于拉伸结果,组成:0.2C-1.5Mn-1.3Si-0.65Al-0.3Mo-0.02Nb被认为是TS和TE的最佳组合。该组成的热带强度(CT 620℃)为YS约630MPa,TS约800MPa。退火后的特性为:YS约550MPa,TS约1250MPa,TE约14%至16%。
虽然屈服强度可能有点低,但认为由于高合金量(导致较低的Ms),马氏体的自发回火机会较少,因此具有影响。
所选组成(0.2C-1.5Mn-1.3Si-0.65Al-0.3Mo-0.02Nb)对于GA1180HF生产产生了两个问题:比期望的0.19%的最高限度更高的C,以及由于0.3Mo添加而导致高合金成本。因此,已经研究了经修改的组成(0.18C-1.8Mn-1.5Si-0.65Al-0.02Nb-0.15Mo,如表4所示)。经修改的合金用0.3%的Si和0.3%的Mn替代了0.15%的Mo。表5示出了与合金8非常相似的经修改的合金7的拉伸特性。经修改的合金8的退火拉伸特性类似于合金8的那些,如表6所示。因此,该修改被认为是合理的。
表4
ID C Mn Si Nb Mo Al P S N
经修改的7 0.17 1.81 1.55 0.02 0.15 0.65 0.017 0.005 0.0045
表5
类型 FT CT YS TS UE TE YPE n YR
ASTM T 865 580 631 867 11.0 15.9 0.0 0.163 0.73
表6
AT,C G,mm YS,MPa TS,MPa UE,% TE,% YPE,% N6-ue YR
775 1.54 487 1121 9.6 13.6 0.0 0.152 0.43
775 1.55 467 1069 8.9 12.6 0.0 0.166 0.44
800 1.55 521 1191 9.5 13.2 0.0 0.140 0.44
800 1.56 526 1195 9.2 13.0 0.0 0.138 0.44
825 1.58 543 1222 10.4 17.1 0.0 0.131 0.44
825 1.52 556 1246 10.3 14.1 0.0 0.130 0.45
850 1.57 544 1209 10.1 13.7 0.0 0.133 0.45
850 1.57 542 1201 9.6 13.3 0.0 0.132 0.45
扩孔率
所选样品的所有测量结果显示小于10%的HE,其不满足最小30%的期望目标。在拉伸样品中没观察到缩颈和明显的脆性断裂。这可能与不良的HE性能相关。在冶金学上,显微组织没有回火导致低的扩孔率值和低的YS。由于所有合金具有高合金量,所以在CL HDGL的后镀锌扩散退火冷却期间,Ms温度降低,并且自发回火延迟。扩孔率和YS的改善是必要的。
后退火的影响
后分批退火已经应用于成品钢。分批退火循环由以下组成:以25℃/小时的速率加热/冷却至回火温度,并在所需温度下等温回火5小时。图9a至图9d示出了后分批退火对拉伸特性的影响。图9a绘制了含0.13%和0.2%的C的样品合金的屈服强度YS(以MPa计)相对后分批退火温度(以℃计)的图。图9b绘制了含有0.13%和0.2%的C的样品合金的拉伸强度TS(以MPa计)相对后分批退火温度(以℃计)的图。图9c绘制了含有0.13%和0.2%的C的样品合金的均匀延伸率UEL(以%计)相对后分批退火温度(以℃计)的图。图9d绘制了含有0.13%和0.2%的C的样品合金的总延伸率EL(以%计)相对后分批退火温度(以℃计)的图。分批退火温度(BAT)的提高显著改善了YS,但是以UEL为代价。值得一提的是TE和TS略有下降。此外,在200℃的BAT下,扩孔率提高至约17%,然而仍然不足并显著低于30%的期望目标。结果表明,需要更高的BAT如250℃和更高。应该注意的是,使用分批退火工艺可能存在不均匀的温度问题(多堆叠退火(multi stack anneal)期间的热/冷点)。
为了避免这种情况,可以通过在线感应加热来施加后回火(比分批退火更短的时间)。已经使用具有更高初始TS的样品来补偿由于回火而导致的TS损失。图10a至10d示出了短时间诱导退火对钢的拉伸特性的影响。
图10a绘制了样品合金9和10和含有0.15%的C的样品合金的屈服强度YS(以MPa计)相对后分批退火温度(以℃计)的图。图10b绘制了样品合金9和10和含有0.15%的C的样品合金的拉伸强度TS(以MPa计)相对后分批退火温度(以℃计)的图。图10c绘制了样品合金9和10和含有0.15%的C的样品合金的均匀延伸率UEL(以%计)相对后分批退火温度(以℃计)的图。图10d绘制了样品合金9和10和含有0.15%的C的样品合金的总延伸率EL(以%计)相对后分批退火温度(以℃计)的图。与分批退火相似,回火提高了YS,但是以UEL为代价。这证实了较高的后回火温度可以提高扩孔率。结果表明回火温度高于300℃。后回火效果的大小取决于钢组成。应修改最初TS以实现热处理后TS>1180MPa,因为在高温下后回火降低TS。
经修改的合金8(AT=825℃)的退火板已在多种温度下等温后回火6小时。图11a至11b示出了后回火温度对拉伸特性和扩孔率的影响。图11a绘制了预分批退火TS>1180MPa的样品的屈服强度YS和拉伸强度TS(以MPa计)相对后分批退火温度的图。图11b绘制了预分批退火TS>1180MPa的样品的总延伸率TE(以%计)和扩孔率(以%计)相对后分批退火温度(以℃计)的图。YS显著提高直至350℃的回火温度,然后降低。TS随着回火温度的升高逐渐降低,并且TE在所研究的温度范围内保持相对恒定。扩孔率也逐渐提高。基于这些结果,已经使用来自特定工厂的分批退火循环进行了进一步的后回火模拟,如图12所示。图12绘制了来自特定炼钢厂的分批退火循环的温度(以℃计)相对时间(以小时计)的图。该预期温度为260℃(500℉)的循环由于长的退火时间,在热点和冷点之间没有温差。表7总结了JIS-T拉伸特性和扩孔率数据。这种低温后分批退火分别引入约20MPa至30MPa和约1%的强度和延展性的不均匀性。这种不均匀性与沿带卷长度的预期变化非常相似。然而,需要更高的初始TS以确保后分批退火之后的TS>1180MPa。Mn增加0.2%将提供约80MPa的另外的拉伸强度以适应后分批退火时的拉伸下降。
表7
实施例
缩写
-UTS(MPa)是指在相对于轧制方向的纵向上通过拉伸试验测量的极限拉伸强度,
-YS(MPa)是指在相对于轧制方向的纵向上通过拉伸试验测量的屈服强度,
-TEl(%)是指总延伸率。
UTS、YS和Tel可以在几次试验后进行测量。用于实施例1和2的试验根据JIS-T标准,而用于实施例3的试验根据ISO标准。
-HE(%)是指扩孔率。此种试验可借助于由顶部为锥形部分的直径为45mm的圆柱形部分制成的锥形冲头。这种冲头位于钢板下方以进行试验,并且预先提供有初始直径Do为10mm的孔。然后将锥形冲头向上移动到这样的孔中,并将其扩大直到出现第一横向裂纹。然后测量孔的最终直径D,并使用以下关系计算扩孔率:
进行这种试验的另一种可能性是使用由直径为75mm的圆柱体制成的所谓的平冲头,所有其他条件都一样。
使用SEM在使用2%的奈塔尔硝酸乙醇腐蚀液(Nital)蚀刻并通过图像分析进行定量的四分之一厚度位置观察显微组织。
实施例1
半成品已经由钢铸件生产。半成品的以重量百分比表示的化学组成示于下表8中。表8中钢组成的其余部分由铁和熔炼产生的不可避免的杂质组成。
表8
C Si Mn P S Cu Al Ti Nb N Cr Ni B Mo
A 0.17 1.55 1.81 0.017 0.005 - 0.65 - 0.020 0.0045 - - - 0.15
B 0.15 0.7 2.6 0.015 0.003 - 0.8 - 0.010 0.0046 - - - 0.15
C 0.21 1.3 1.5 0.016 0.003 - 0.58 - 0.021 0.0042 - - 10 0.30
D 0.21 1.3 1.5 0.016 0.003 - 0.58 - 0.020 0.0041 - - - 0.30
表1:化学组成(重量%,B以ppm计)
将组成A至D的锭首先热轧至20mm厚的板。然后,将板再加热并再次热轧降至3.8mm。然后将经热轧的钢板冷轧和退火。经历的工艺参数如下所示:
-终轧温度:875℃
-卷取温度:580℃
-冷轧压下率:约50%
-退火期间的均热温度:825℃
-退火期间的均热持续时间:150秒。
退火后,通过在460℃的温度下加热钢板,然后在575℃下进行镀锌扩散退火处理,来模拟通过在熔融锌浴中的热浸镀锌的涂覆。
在通过两种不同的方式进行后回火之前,钢板A至D的显微组织包含以下表9中给出的表面比例的铁素体(包括贝氏体铁素体)、马氏体和MA岛。这些表面分数在后回火之后不变,其只是改变那些相内的碳浓度。
表9
铁素体 马氏体+MA岛
A 67 43
B 42 58
C 56 44
D 58 42
表9:显微组织(表面%)
通过分批退火的后回火
一组钢板A的后回火通过在分批退火炉中加热作为带卷的这种钢来进行。回火之前和之后的加热和冷却速率以25℃/小时的速率进行,等温回火在所需温度下进行5小时。
从表10可以看出,后回火处理略微降低了拉伸强度和总延伸率,但显著提高了屈服强度和扩孔率特性。实际上,由于钢太脆,所以没有回火的样品A的扩孔率是不可测量的。
表10
表10:机械特性-nm:未测量
通过感应加热的后回火
一组钢板B至D的后回火通过感应加热钢板以达到在表11规定的时间期间保持的期望温度来进行。
表11
表4:机械特性–HE:锥形冲头
从表11可以看出,后回火处理略微降低了拉伸强度,但显著提高了屈服强度和扩孔率特性。没有回火的样品B、C和D的扩孔率是不可测量的,因为钢太脆了。
实施例2
半成品已经由钢铸件生产。半成品的以重量百分比表示的化学组成示于下表12中。表5中的钢组成的其余部分由铁和熔炼产生的不可避免的杂质组成。
表12
C Si Mn P S Cu Al Ti Nb V N Cr Ni B Mo
E 0.18 1.52 1.99 0.013 0.005 0.04 0.62 0.005 0.007 0.007 0.0065 0.04 0.01 3 0.15
表5:化学组成(重量%,B以ppm计)
将组成5的锭首先热轧至20mm厚的板。然后,将板再加热并再次热轧降至3.8mm。然后将经热轧的钢板冷轧和退火。经历的工艺参数如下所示:
-终轧温度:930℃
-卷取温度:680℃
-冷轧压下率:约50%
-退火期间的均热温度:825℃
-退火期间的均热持续时间:150秒。
退火后,通过在熔融锌浴中的热浸镀锌的涂覆在460℃的温度下的浴中然后镀锌扩散退火处理来进行。
在通过分批退火进行后回火之前,钢板E的显微组织包含以根据本发明的表面比例的铁素体(包括贝氏体铁素体)、马氏体和MA岛。这些表面分数在后回火之后不变,其只是改变那些相内的碳浓度。
通过分批退火的后回火
一组钢板5的后回火通过在分批退火炉中加热作为带卷的这种钢来进行。等温回火在所需温度下进行5小时。然后以0.3%的延伸率进行回火轧制。
表13
表6:机械特性-nm:未测量-HE:锥形冲头
从表13可以看出,后回火处理略微降低了拉伸强度,但显著提高了屈服强度和扩孔率特性。实际上,没有回火的样品5的扩孔率是不可测量的,因为钢太脆了。
在这样的回火处理之后,镀锌涂层没有受到损坏,并且其铁含量为11%,由于后回火而没有显著提高。
实施例3
半成品已经由钢铸件生产。半成品的以重量百分比表示的化学组成示于下表14中。表14中钢组成的其余部分由铁和熔炼产生的不可避免的杂质组成。
表14
C Si Mn P S Cu Al Ti Nb N Cr Ni Mo
F 0.22 0.11 1.73 0.02 0.001 0.04 1.49 0.01 0.01 0.01 0.02 0.02 0.13
表7:化学组成(重量%)
将组成F的锭首先热轧至4mm厚的板。然后将经热轧的钢板冷轧和退火。经历的工艺参数如下所示:
-终轧温度:900℃
-卷取温度:550℃
-冷轧压下率:约50%
-退火期间的均热温度:850℃
-退火期间的均热持续时间:100秒。
退火后,通过在熔融锌浴中的热浸镀锌的涂覆以455℃的浸渍温度然后在540℃下镀锌扩散退火处理来进行。
在通过两种不同方式进行后回火之前,钢板F的显微组织包含71%的铁素体(包括贝氏体铁素体)、20%的马氏体和9%的奥氏体。这些表面分数在后回火之后不变,其只是改变那些相内的碳浓度。
通过分批退火的后回火
一组钢板E的后回火通过在分批退火炉中加热作为带卷的这种钢来进行。等温回火在所需温度下进行8小时。
表15
表15:机械特性–HE:平冲头
扩孔率通过平冲头测量,其为比锥形冲头更严格的试验,并且给出比以下更低的值。然而,无论使用什么试验趋势是相似的。
从表15可以看出,后回火处理略微降低了拉伸强度,但显著提高了屈服强度和扩孔率特性直至500℃。
在这样的回火处理之后,经镀锌扩散退火处理的涂层没有受到损坏,并且铁含量为10%,由于后回火而没有显著提高。
通过感应加热的后回火
一组钢板E的后回火通过感应加热钢板以达到在表16规定的时间期间保持的期望温度来进行。
表16
表16:机械特性–HE:锥形冲头
从表9可以看出,后回火处理略微降低了拉伸强度,但显著提高了屈服强度和扩孔率特性。
在这样的回火处理之后,镀锌涂层没有受到损坏,并且铁含量为10%,由于后回火而没有显著提高。
表17示出了涂覆态的和在288℃下后退火之后的经锌涂覆的钢板的特性。可以看出,与涂覆态的板相比,退火使屈服强度提高了至少30%,优选40%。与涂覆态的板相比,退火还使总延伸率提高了至少25%,优选至少40%。最后,与涂覆态的板相比,退火使扩孔率提高了至少80%,优选95%。
表17
根据本发明的钢板将有利地用于制造汽车工业中的结构或安全部件。应当理解,本文阐述的公开内容是以出于进行本发明的全部和完整公开内容为目的所描述的详细实施方案的形式呈现的,并且这些细节不被解释为限制在所附权利要求中阐述和限定的本发明的真正范围。

Claims (11)

1.一种经冷轧、经涂覆和经后退火的钢板,包括:
经冷轧的钢板,包含(以重量%计):
C:0.1%至0.3%;Mn:1%至3%;Si:0.5%至3.5%;Al:0.05%至1.5%;Mo+Cr:在0%至1.0%之间;Mo+Cr:在0.2%至0.5%之间;和
在所述经冷轧的钢板上的锌或锌合金涂层;
所述经涂覆的钢板已经通过冷轧、锌涂覆经冷轧的板以及在施加所述锌涂覆之后对所述钢板进行退火来形成,所述退火在150℃至650℃之间的温度下进行一段时间,其足以使经退火经冷轧经涂覆的钢板的屈服强度相比于涂覆态的经冷轧的钢板提高至少30%并且使所述经退火经冷轧经涂覆的钢板的扩孔率相比于所述涂覆态的经冷轧的钢板提高至少80%。
2.根据权利要求1所述的经冷轧、经涂覆和经后退火的钢板,其中所述退火在150℃至450℃之间的温度下进行。
3.根据权利要求2所述的经冷轧、经涂覆和经后退火的钢板,其中所述退火在200℃至400℃之间的温度下进行。
4.根据权利要求1所述的经冷轧、经涂覆和经后退火的钢板,其中所述退火进行一段时间,其足以使所述经退火经冷轧经涂覆的钢板的屈服强度相比于所述涂覆态的经冷轧的钢板提高至少40%。
5.根据权利要求1所述的经冷轧、经涂覆和经后退火的钢板,其中所述退火进行一段时间,其足以使所述经退火经冷轧经涂覆的钢板的扩孔率相比于所述涂覆态的经冷轧的钢板提高至少95%。
6.根据权利要求1所述的经冷轧、经涂覆和经后退火的钢板,其中所述退火进行一段时间,其足以使所述经退火经冷轧经涂覆的钢板的总延伸率相比于所述涂覆态的板提高至少25%。
7.根据权利要求6所述的经冷轧、经涂覆和经后退火的钢板,其中所述退火进行一段时间,其足以使所述经退火经冷轧经涂覆的钢板的总延伸率相比于所述涂覆态的板提高至少40%。
8.根据权利要求1所述的经冷轧、经涂覆和经后退火的钢板,其中所述经冷轧的钢板包含0.15%至0.25%的C。
9.根据权利要求1所述的经冷轧、经涂覆和经后退火的钢板,其中所述经冷轧的钢板包含2%至2.5%的Mn。
10.根据权利要求1所述的经冷轧、经涂覆和经后退火的钢板,其中所述经冷轧的钢板包含1.5%至2.5%的Si。
11.根据权利要求1所述的经冷轧、经涂覆和经后退火的钢板,其中所述经冷轧的钢板包含0.05%至1.0%的Al。
CN201680011461.6A 2015-02-25 2016-02-24 具有改进的屈服强度和扩孔率的经后退火的高拉伸强度涂覆钢板 Active CN107429376B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562120426P 2015-02-25 2015-02-25
US62/120,426 2015-02-25
PCT/US2016/019428 WO2016138185A1 (en) 2015-02-25 2016-02-24 Post annealed high tensile strength coated steel sheet having improved yield strength and hole expansion

Publications (2)

Publication Number Publication Date
CN107429376A true CN107429376A (zh) 2017-12-01
CN107429376B CN107429376B (zh) 2020-10-09

Family

ID=55527652

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680011461.6A Active CN107429376B (zh) 2015-02-25 2016-02-24 具有改进的屈服强度和扩孔率的经后退火的高拉伸强度涂覆钢板

Country Status (11)

Country Link
US (3) US20180044750A1 (zh)
EP (1) EP3262205A1 (zh)
JP (2) JP2018510263A (zh)
KR (2) KR20190134842A (zh)
CN (1) CN107429376B (zh)
BR (1) BR112017016683A2 (zh)
CA (1) CA2975149C (zh)
MX (1) MX2017010788A (zh)
RU (1) RU2705741C2 (zh)
UA (1) UA120199C2 (zh)
WO (1) WO2016138185A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107796A (zh) * 2020-08-31 2022-03-01 宝山钢铁股份有限公司 一种1180MPa级高塑性高扩孔钢及其制造方法
SE545209C2 (en) * 2020-12-23 2023-05-23 Voestalpine Stahl Gmbh Coiling temperature influenced cold rolled strip or steel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1910301A (zh) * 2004-01-14 2007-02-07 新日本制铁株式会社 镀层粘附性和扩孔性均优异的热浸镀锌高强度钢板及其制造方法
CN103003460A (zh) * 2010-07-15 2013-03-27 杰富意钢铁株式会社 延展性和扩孔性优良的高屈服比高强度热镀锌钢板及其制造方法
EP2738278A1 (en) * 2011-07-29 2014-06-04 Nippon Steel & Sumitomo Metal Corporation High-strength steel sheet having excellent shape-retaining properties, high-strength zinc-plated steel sheet, and method for manufacturing same
WO2015015239A1 (en) * 2013-08-02 2015-02-05 ArcelorMittal Investigación y Desarrollo, S.L. Cold rolled, coated and post tempered steel sheet and method of manufacturing thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4235030B2 (ja) 2003-05-21 2009-03-04 新日本製鐵株式会社 局部成形性に優れ溶接部の硬さ上昇を抑制した引張強さが780MPa以上の高強度冷延鋼板および高強度表面処理鋼板
KR100990772B1 (ko) 2005-12-28 2010-10-29 가부시키가이샤 고베 세이코쇼 초고강도 박강판
JP5434960B2 (ja) 2010-05-31 2014-03-05 Jfeスチール株式会社 曲げ性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP5298114B2 (ja) * 2010-12-27 2013-09-25 株式会社神戸製鋼所 塗膜密着性と加工性に優れた高強度冷延鋼板、及びその製造方法
WO2012153009A1 (fr) 2011-05-12 2012-11-15 Arcelormittal Investigación Y Desarrollo Sl Procede de fabrication d'acier martensitique a tres haute resistance et tole ainsi obtenue
US20130076187A1 (en) 2011-09-16 2013-03-28 Adam Daniel Flaster 5-phase alternating current induction motor and inverter system
JP2013237877A (ja) * 2012-05-11 2013-11-28 Jfe Steel Corp 高降伏比型高強度鋼板、高降伏比型高強度冷延鋼板、高降伏比型高強度亜鉛めっき鋼板、高降伏比型高強度溶融亜鉛めっき鋼板、高降伏比型高強度合金化溶融亜鉛めっき鋼板、高降伏比型高強度冷延鋼板の製造方法、高降伏比型高強度溶融亜鉛めっき鋼板の製造方法、および高降伏比型高強度合金化溶融亜鉛めっき鋼板の製造方法
JP2013241636A (ja) * 2012-05-18 2013-12-05 Jfe Steel Corp 低降伏比型高強度溶融亜鉛めっき鋼板、低降伏比型高強度合金化溶融亜鉛めっき鋼板、低降伏比型高強度溶融亜鉛めっき鋼板の製造方法、および低降伏比型高強度合金化溶融亜鉛めっき鋼板の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1910301A (zh) * 2004-01-14 2007-02-07 新日本制铁株式会社 镀层粘附性和扩孔性均优异的热浸镀锌高强度钢板及其制造方法
CN103003460A (zh) * 2010-07-15 2013-03-27 杰富意钢铁株式会社 延展性和扩孔性优良的高屈服比高强度热镀锌钢板及其制造方法
EP2738278A1 (en) * 2011-07-29 2014-06-04 Nippon Steel & Sumitomo Metal Corporation High-strength steel sheet having excellent shape-retaining properties, high-strength zinc-plated steel sheet, and method for manufacturing same
WO2015015239A1 (en) * 2013-08-02 2015-02-05 ArcelorMittal Investigación y Desarrollo, S.L. Cold rolled, coated and post tempered steel sheet and method of manufacturing thereof

Also Published As

Publication number Publication date
KR20190134842A (ko) 2019-12-04
US20180044750A1 (en) 2018-02-15
US20230257846A1 (en) 2023-08-17
KR20170110650A (ko) 2017-10-11
EP3262205A1 (en) 2018-01-03
RU2705741C2 (ru) 2019-11-11
MX2017010788A (es) 2018-04-30
BR112017016683A2 (pt) 2018-04-10
UA120199C2 (uk) 2019-10-25
CA2975149C (en) 2019-04-30
CA2975149A1 (en) 2016-09-01
JP2020153016A (ja) 2020-09-24
CN107429376B (zh) 2020-10-09
RU2017133036A3 (zh) 2019-03-25
US20210123114A1 (en) 2021-04-29
US11661637B2 (en) 2023-05-30
RU2017133036A (ru) 2019-03-25
WO2016138185A1 (en) 2016-09-01
JP2018510263A (ja) 2018-04-12

Similar Documents

Publication Publication Date Title
CN106471147B (zh) 高强度多相钢、生产方法和用途
JP6946332B2 (ja) 改善された延性及び成形加工性を有するコーティングされた高強度鋼板を製造するための方法並びに得られたコーティングされた鋼板
JP6823148B2 (ja) 強度、延性および成形性が改善された高強度被覆鋼板を製造する方法
CA2934599C (en) Hot-pressed steel sheet member, method of manufacturing the same, and steel sheet for hot pressing
RU2687284C2 (ru) Способ получения высокопрочного стального листа с покрытием, имеющего улучшенную прочность и пластичность, и полученный лист
CN110114500A (zh) 冲击特性优异的热压成型用镀覆钢板、热压成型部件及它们的制造方法
JP2017048412A (ja) 溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、およびそれらの製造方法
JPWO2013105633A1 (ja) ホットスタンプ成形体、及びホットスタンプ成形体の製造方法
JP7082963B2 (ja) 強度、成形性が改善された高強度被覆鋼板の製造方法および得られた鋼板
RU2677888C2 (ru) Способ изготовления высокопрочной листовой стали, имеющей улучшенную формуемость, и полученный лист
CN106661653A (zh) 用于制造高强度钢板的方法和获得的板
CN109414904A (zh) 高强度钢产品和用于制造其的退火过程
CA2977346C (en) Steel sheet for hot pressing and method for producing same
CN113151735A (zh) 表现出良好延展性的高强度钢以及通过镀锌槽进行淬火和分配处理的制备方法
US20230257846A1 (en) Cold rolled, coated and post batch annealed steel sheet
CN108431271A (zh) 扩孔性优异的超高强度钢板及其制造方法
JP6048625B1 (ja) 高強度鋼板及びその製造方法
JP2017526818A (ja) 高強度鋼片の製造方法
WO2016148045A1 (ja) 熱間プレス用鋼板およびその製造方法
CN113574190A (zh) 高碳钢板及其制造方法
JP2021508000A (ja) 焼付硬化性及びめっき密着性に優れた鋼板及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant