CN107419292B - 一种透气析氯电极的制备方法 - Google Patents

一种透气析氯电极的制备方法 Download PDF

Info

Publication number
CN107419292B
CN107419292B CN201710229861.0A CN201710229861A CN107419292B CN 107419292 B CN107419292 B CN 107419292B CN 201710229861 A CN201710229861 A CN 201710229861A CN 107419292 B CN107419292 B CN 107419292B
Authority
CN
China
Prior art keywords
solution
electrode
preparing
mol
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710229861.0A
Other languages
English (en)
Other versions
CN107419292A (zh
Inventor
倪康祥
赵皓翰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GUANGDONG TROTH WATER EQUIPMENT Ltd
Original Assignee
GUANGDONG TROTH WATER EQUIPMENT Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GUANGDONG TROTH WATER EQUIPMENT Ltd filed Critical GUANGDONG TROTH WATER EQUIPMENT Ltd
Priority to CN201710229861.0A priority Critical patent/CN107419292B/zh
Publication of CN107419292A publication Critical patent/CN107419292A/zh
Application granted granted Critical
Publication of CN107419292B publication Critical patent/CN107419292B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier

Abstract

本发明公开了一种透气析氯电极的制备方法,包括以下步骤:1)基体处理;2)前驱体沉积浴配制;3)沉积层制备;4)薄膜中间层制备;5)活性溶液配制;6)烧结。本发明提供了一种析氯电位低、使用寿命长、电解效率高、运行成本低的新型次氯酸钠发生器的透气析氯电极的制备方法。

Description

一种透气析氯电极的制备方法
技术领域
本发明涉及一种次氯酸钠发生器电极,具体涉及一种透气析氯电极的制备方法。
背景技术
随着地球上水资源的不断被污染和水资源的不断缺乏,消毒水处理显得越来越重要,现场制备次氯酸钠与其他消毒技术相比,优势明显,但目前市场上的次氯酸钠发生器存在电耗和盐耗太高、电极使用寿命短等问题,严重制约其大规模应用,影响次氯酸钠发生器性能并制约其应用的关键之处在于电极材料。
专利CN201210172519.9一种钛阳极的制备方法公开了一种钛阳极的制备方法,其先在钛基体表面沉积一层惰性薄膜,然后再涂敷活性氧化物涂层。该方法虽然提高了钛基体与涂层的粘结力,但惰性薄膜导电性差、抗氧渗透能力差,导致电极的电流效率降低、耐腐蚀性差,使得次氯酸钠发生器的电耗和盐耗增加,电极使用寿命短,不利于节能降耗。
专利CN02804636.6电极涂层及其使用和制备方法公开了一种采用电沉积法制备氯酸钠的电极涂层,虽然电沉积法制备工艺相对简单,但该专利中采用钛板或钛管作为承载金属氧化物的基体,显得比表面积小,导致电极电解效率低,次氯酸钠发生器运行成本高。
发明内容
为了克服现有技术的不足,本发明的目的在于提供一种析氯电位低、使用寿命长、电解效率高、运行成本低的新型次氯酸钠发生器的透气析氯电极的制备方法。
实现本发明的目的可以通过采取如下技术方案达到:
一种透气析氯电极的制备方法,包括以下步骤:
1)基体处理:将多孔钛作为基体,先除去多孔钛表面油污,再对多孔钛进行表面预处理,除去表面氧化物,得到钛基体;
2)前驱体沉积浴配制:将80-150mL无水乙醇、10-16mL去离子水、10-20mL前驱体,加入HCl溶液中,然后调节pH至1-5,得到前驱体沉积浴;
3)沉积层制备:在三电极体系电解槽中加入步骤2)得到的前驱体沉积浴,以铂电极为工作电极,以甘汞电极为参比电极,以步骤1)得到的钛基体作为阴极进行电沉积,工作电极和对电极之间间隔15-19mm,得到沉积层;
4)薄膜中间层制备:随后通过热处理将步骤3)得到的沉积层转化为结晶氧化物,在空气气氛中放入高温炉进行烧结,升温速率为3-7℃/min,恒定450-470℃保温50-60min,得到薄膜中间层;
5)活性溶液配制:以正丁醇、异丙醇体积比为2:1配制的混合溶液作为溶剂,以三氯化钌、氯乙酸、钛酸四丁酯和析氯加速剂为溶质,以浓盐酸作为稳定剂,配置得到活性涂层溶液;
6)烧结:将步骤4)得到的薄膜中间层置入步骤5)得到的活性涂层溶液中浸泡2-5min,取出后放入恒温干燥箱中干燥,后放入马弗炉中、空气气氛中烧结,再冷却至室温,重复涂覆9-19次;最后将涂覆好的试样在400℃-530℃下烧结60min,随炉冷却至室温,即可。
优选地,步骤1)的多孔钛采用真空烧结法制备而成,得到的多孔钛的孔隙度为30%-45%、孔径为5μm-20μm、厚度为1mm。
优选地,步骤1)中,多孔钛处理的具体步骤为:先将多孔钛置于浓度为10%的NaCl溶液中震动30min,除去表面油污,再利用浓度为20%的草酸溶液对多孔钛进行表面预处理,除去表面氧化物,得到钛基体。
优选地,步骤2)中的前驱体为IrCo溶液、IrSn溶液、IrSb溶液中的一种。
优选地,步骤3)中电沉积的参数为:控制沉积浴温度为2-4℃,阴极电流密度为15-30mA/cm2,电沉积时间为20-60min。
优选地,步骤4)中薄膜中间层为IrO2-CoO2、IrO2-SnO2、IrO2-Sb2O5的一种或两种以上。
优选地,步骤5)中,析氯加速剂由含钕化合物、含铕化合物、含镱化合物、含钆化合物、含镝化合物中的三种或三种以上组成。
优选地,所述析氯加速剂中的金属离子,所占活性涂层溶液的金属离子含量,按金属离子摩尔百分比计:Nd3+为0-0.8mol%,Eu3+为0.8-1.2mol%,Yb3+为0.9-1.3mol%,Gd3+为0-0.8mol%,Dy3+为0.9-1.2mol%。
优选地,步骤5)中,活性涂层溶液中,按金属离子摩尔百分比计,钌离子所占溶液中的金属离子比例为16-23mol%,铱离子所占溶液中金属离子比例为9-15mol%,钛离子所占溶液中金属离子比例为61-74mol%,析氯加速剂中的金属离子所占内层活性涂液中金属离子的摩尔百分比为1-3mol%。
优选地,步骤6)中,恒温干燥箱中干燥温度为130-170℃,干燥时间为12-18min;马弗炉中温度为400℃-530℃,烧结时间为8-16min。
本发明的有益效果在于:
1、本发明采用透气多孔钛作为钛基体代替现有技术中的钛板或钛管,使得相同几何尺寸的钛基体的比表面积增大数十倍,提供了一种析氯电位低、使用寿命长、电解效率高、运行成本低的新型次氯酸钠发生器的透气析氯电极的制备方法;
2、本发明采用电化学沉积法在透气多孔钛基体上制备一层纳米复合薄膜作为中间层,该薄膜以铱为主,具有极好的导电性、耐腐蚀性,能够显著提高钛基体与涂层的粘结力、降低电解槽槽电压;依据多孔钛孔径大小,采用最佳的电沉积工艺,使得涂层厚度达到最佳值,从而使透气电极的电解效率、使用寿命和运行成本达到最优;
3、本发明以稀土元素Nd、Eu、Yb、Gd、Dy中的三种种或三种以上组合作为次氯酸钠发生器电极析氯加速剂;由于在烧结过程中稀土元素Nd、Eu、Yb、Gd、Dy可以以置换或者添隙的方式进入RuO2晶格內,Nd3+、Eu3+、Yb3+、Gd3+、Dy3+等比Ru4+的价态低,从电荷平衡角度考虑,低于四价的稀土掺杂将导致RuO2晶体中氧空位缺陷增多,电催化活性,此外,稀土离子半径较大,掺杂后使得RuO2晶体膨胀,晶体内电子空位增加,极大的增加了活性点数量,使得电极析氯效率显著增加,同时,稀土元素Nd、Eu、Yb、Gd、Dy都具有独特的4f电子结构,而且离子半径和电子能级十分接近,复合掺杂以上稀土元素能够起到良好的协同催化作用;因此,本发明的电极析氯加速剂能够显著提高次氯酸钠电极的析氯速度,提高设备产能,降低运行成本。
具体实施方式
下面,结合具体实施方式,对本发明做进一步描述:
一种透气析氯电极的制备方法,包括以下步骤:
1)基体处理:将多孔钛作为基体,多孔钛采用真空烧结法制备而成,得到的多孔钛的孔隙度为30%-45%、孔径为5μm-20μm、厚度为1mm,先将多孔钛置于浓度为10%的NaOH溶液中震动30min,除去表面油污,再利用浓度为20%的草酸溶液对多孔钛进行表面预处理,除去表面氧化物,得到钛基体;
2)前驱体沉积浴配制:将80-150mL无水乙醇、10-16mL去离子水、10-20mL前驱体,加入HCl溶液中,然后调节pH至1-5,得到前驱体沉积浴;
3)沉积层制备:在三电极体系电解槽中加入步骤2)得到的前驱体沉积浴,以铂电极为工作电极,以甘汞电极为参比电极,以步骤1)得到的钛基体作为阴极进行电沉积;电沉积的参数为:控制沉积浴温度为2-4℃,阴极电流密度为15-30mA/cm2,电沉积时间为20-60min;工作电极和对电极之间间隔15-19mm,得到沉积层;
4)薄膜中间层制备:随后通过热处理将步骤3)得到的沉积层转化为结晶氧化物,在空气气氛中放入高温炉进行烧结,升温速率为3-7℃/min,恒定450-470℃保温50-60min,得到薄膜中间层,薄膜中间层为IrO2-CoO2、IrO2-SnO2、IrO2-Sb2O5的一种或两种以上;
5)活性溶液配制:以正丁醇、异丙醇体积比为2:1配制的混合溶液作为溶剂,以三氯化钌、氯乙酸、钛酸四丁酯和析氯加速剂为溶质,以浓盐酸作为稳定剂,配置得到活性涂层溶液,活性涂液中的金属离子浓度为0.3-0.4mol/L,溶剂与稳定剂体积比为10:1;
析氯加速剂由含钕化合物、含铕化合物、含镱化合物、含钆化合物、含镝化合物中的三种或三种以上组成;
含钕化合物为氯化钕、硝酸钕、硫酸钕、碳酸钕中的一种或两种以上。
含铕化合物为氯化铕、硝酸铕、硫酸铕、碳酸铕中的一种或两种以上。
含镱化合物为氯化镱、硝酸镱、硫酸镱、碳酸镱中的一种或两种以上。
含钆化合物为氯化钆、硝酸钆、硫酸钆、碳酸钆中的一种或两种以上。
含镝化合物为氯化镝、硝酸镝、硫酸镝、碳酸镝中的一种或两种以上。
析氯加速剂中,按金属离子摩尔百分比计包含:
活性涂层溶液中,按金属离子摩尔百分比计,钌离子所占溶液中的金属离子比例为16-23mol%,铱离子所占溶液中金属离子比例为9-15mol%,钛离子所占溶液中金属离子比例为61-74mol%,析氯加速剂中的金属离子所占内层活性涂液中金属离子的摩尔百分比为1-3mol%。
6)烧结:将步骤4)得到的薄膜中间层置入步骤5)得到的活性涂层溶液中浸泡2-5min,取出后放入恒温干燥箱中干燥,干燥温度为130-170℃,干燥时间为12-18min,后放入马弗炉中、空气气氛中烧结,马弗炉中温度为400℃-530℃,烧结时间为8-16min,再冷却至室温,重复涂覆9-19次;最后将涂覆好的试样在400℃-530℃下烧结60min,随炉冷却至室温,即可。
实施例1a
一种透气析氯电极的制备方法,包括以下步骤:
1)基体处理:将多孔钛作为基体,多孔钛采用真空烧结法制备而成,得到的多孔钛的孔隙度为35%、孔径为9μm、厚度为1mm,先将多孔钛置于浓度为10%的NaOH溶液中震动30min,除去表面油污,再利用浓度为20%的草酸溶液对多孔钛进行表面预处理,除去表面氧化物,得到钛基体;
2)前驱体沉积浴配制:将80-150mL无水乙醇、10-16mL去离子水、10-20mL IrCo溶液,加入HCl溶液中,然后调节pH至2,得到前驱体沉积浴;
3)沉积层制备:在三电极体系电解槽中加入步骤2)得到的前驱体沉积浴,以铂电极为工作电极,以甘汞电极为参比电极,以步骤1)得到的钛基体作为阴极进行电沉积;电沉积的参数为:控制沉积浴温度为3℃,阴极电流密度为16mA/cm2,电沉积时间为25min;工作电极和对电极之间间隔17mm,得到沉积层;
4)薄膜中间层制备:随后通过热处理将步骤3)得到的沉积层转化为结晶氧化物,在空气气氛中放入高温炉进行烧结,升温速率为5℃/min,恒定460℃保温60min,得到薄膜中间层,薄膜中间层为IrO2-CoO2、IrO2-SnO2、IrO2-Sb2O5
5)活性溶液配制:以正丁醇、异丙醇体积比为2:1配制的混合溶液作为溶剂,以三氯化钌、氯乙酸、钛酸四丁酯和析氯加速剂为溶质,以浓盐酸作为稳定剂,配置得到活性涂层溶液,活性涂液中的金属离子浓度为0.3mol/L,溶剂与稳定剂体积比为10:1;
活性涂层溶液中,按金属离子摩尔百分比计,钌离子所占溶液中的金属离子比例为17mol%,铱离子所占溶液中金属离子比例为9mol%,钛离子所占溶液中金属离子比例为72mol%,析氯加速剂中的金属离子所占内层活性涂液中金属离子的摩尔百分比为2mol%;
析氯加速剂由氯化铕、硫酸钕组成;析氯加速剂中,所占活性涂层溶液的金属离子,按金属离子摩尔百分比计,Eu3+为1.2%,Nd3+为0.8mol%;
6)烧结:将步骤4)得到的薄膜中间层置入步骤5)得到的活性涂层溶液中浸泡2min,取出后放入恒温干燥箱中干燥,干燥温度为150℃,干燥时间为15min,后放入马弗炉中、空气气氛中烧结,马弗炉中温度为460℃,烧结时间为10min,再冷却至室温,重复涂覆9次;最后将涂覆好的试样在460℃下烧结60min,随炉冷却至室温,即可。
实施例1b
一种透气析氯电极的制备方法,包括以下步骤:
1)基体处理:将多孔钛作为基体,多孔钛采用真空烧结法制备而成,得到的多孔钛的孔隙度为35%、孔径为11μm、厚度为1mm,先将多孔钛置于浓度为10%的NaOH溶液中震动30min,除去表面油污,再利用浓度为20%的草酸溶液对多孔钛进行表面预处理,除去表面氧化物,得到钛基体;
2)前驱体沉积浴配制:将80-150mL无水乙醇、10-16mL去离子水、10-20mL IrSn溶液,加入HCl溶液中,然后调节pH至3,得到前驱体沉积浴;
3)沉积层制备:在三电极体系电解槽中加入步骤2)得到的前驱体沉积浴,以铂电极为工作电极,以甘汞电极为参比电极,以步骤1)得到的钛基体作为阴极进行电沉积;电沉积的参数为:控制沉积浴温度为3℃,阴极电流密度为18mA/cm2,电沉积时间为30min;工作电极和对电极之间间隔17mm,得到沉积层;
4)薄膜中间层制备:随后通过热处理将步骤3)得到的沉积层转化为结晶氧化物,在空气气氛中放入高温炉进行烧结,升温速率为5℃/min,恒定460℃保温60min,得到薄膜中间层,薄膜中间层为IrO2-SnO2、IrO2-Sb2O5
5)活性溶液配制:以正丁醇、异丙醇体积比为2:1配制的混合溶液作为溶剂,以三氯化钌、氯乙酸、钛酸四丁酯和析氯加速剂为溶质,以浓盐酸作为稳定剂,配置得到活性涂层溶液,活性涂液中的金属离子浓度为0.35mol/L,溶剂与稳定剂体积比为10:1;
活性涂层溶液中,按金属离子摩尔百分比计,钌离子所占溶液中的金属离子比例为19mol%,铱离子所占溶液中金属离子比例为11mol%,钛离子所占溶液中金属离子比例为68mol%,析氯加速剂中的金属离子所占内层活性涂液中金属离子的摩尔百分比为2mol%;
析氯加速剂由硫酸铕、硝酸镱组成;析氯加速剂中,所占活性涂层溶液的金属离子,按金属离子摩尔百分比计,Eu3+为1.1%,Yb3+为0.9mol%;
6)烧结:将步骤4)得到的薄膜中间层置入步骤5)得到的活性涂层溶液中浸泡2min,取出后放入恒温干燥箱中干燥,干燥温度为150℃,干燥时间为15min,后放入马弗炉中、空气气氛中烧结,马弗炉中温度为480℃,烧结时间为12min,再冷却至室温,重复涂覆10次;最后将涂覆好的试样在480℃下烧结60min,随炉冷却至室温,即可。
实施例1c
一种透气析氯电极的制备方法,包括以下步骤:
1)基体处理:将多孔钛作为基体,多孔钛采用真空烧结法制备而成,得到的多孔钛的孔隙度为35%、孔径为14μm、厚度为1mm,先将多孔钛置于浓度为10%的NaOH溶液中震动30min,除去表面油污,再利用浓度为20%的草酸溶液对多孔钛进行表面预处理,除去表面氧化物,得到钛基体;
2)前驱体沉积浴配制:将80-150mL无水乙醇、10-16mL去离子水、10-20mL IrSb溶液,加入HCl溶液中,然后调节pH至2,得到前驱体沉积浴;
3)沉积层制备:在三电极体系电解槽中加入步骤2)得到的前驱体沉积浴,以铂电极为工作电极,以甘汞电极为参比电极,以步骤1)得到的钛基体作为阴极进行电沉积;电沉积的参数为:控制沉积浴温度为3℃,阴极电流密度为25mA/cm2,电沉积时间为35min;工作电极和对电极之间间隔17mm,得到沉积层;
4)薄膜中间层制备:随后通过热处理将步骤3)得到的沉积层转化为结晶氧化物,在空气气氛中放入高温炉进行烧结,升温速率为5℃/min,恒定460℃保温60min,得到薄膜中间层,薄膜中间层为IrO2-CoO2、IrO2-SnO2
5)活性溶液配制:以正丁醇、异丙醇体积比为2:1配制的混合溶液作为溶剂,以三氯化钌、氯乙酸、钛酸四丁酯和析氯加速剂为溶质,以浓盐酸作为稳定剂,配置得到活性涂层溶液,活性涂液中的金属离子浓度为0.38mol/L,溶剂与稳定剂体积比为10:1;
活性涂层溶液中,按金属离子摩尔百分比计,钌离子所占溶液中的金属离子比例为21mol%,铱离子所占溶液中金属离子比例为11mol%,钛离子所占溶液中金属离子比例为66mol%,析氯加速剂中的金属离子所占内层活性涂液中金属离子的摩尔百分比为2mol%;
析氯加速剂由氯化钆、硝酸镝组成;析氯加速剂中,所占活性涂层溶液的金属离子,按金属离子摩尔百分比计,Gd3+为0.8%,Dy3+为1.2mol%;
6)烧结:将步骤4)得到的薄膜中间层置入步骤5)得到的活性涂层溶液中浸泡2min,取出后放入恒温干燥箱中干燥,干燥温度为150℃,干燥时间为15min,后放入马弗炉中、空气气氛中烧结,马弗炉中温度为500℃,烧结时间为14min,再冷却至室温,重复涂覆15次;最后将涂覆好的试样在480℃下烧结60min,随炉冷却至室温,即可。
实施例1d
一种透气析氯电极的制备方法,包括以下步骤:
1)基体处理:将多孔钛作为基体,多孔钛采用真空烧结法制备而成,得到的多孔钛的孔隙度为35%、孔径为16μm、厚度为1mm,先将多孔钛置于浓度为10%的NaOH溶液中震动30min,除去表面油污,再利用浓度为20%的草酸溶液对多孔钛进行表面预处理,除去表面氧化物,得到钛基体;
2)前驱体沉积浴配制:将80-150mL无水乙醇、10-16mL去离子水、8mL IrCo溶液和8mL IrSn溶液,加入HCl溶液中,然后调节pH至2,得到前驱体沉积浴;
3)沉积层制备:在三电极体系电解槽中加入步骤2)得到的前驱体沉积浴,以铂电极为工作电极,以甘汞电极为参比电极,以步骤1)得到的钛基体作为阴极进行电沉积;电沉积的参数为:控制沉积浴温度为3℃,阴极电流密度为25mA/cm2,电沉积时间为40min;工作电极和对电极之间间隔17mm,得到沉积层;
4)薄膜中间层制备:随后通过热处理将步骤3)得到的沉积层转化为结晶氧化物,在空气气氛中放入高温炉进行烧结,升温速率为5℃/min,恒定460℃保温60min,得到薄膜中间层,薄膜中间层为IrO2-Sb2O5
5)活性溶液配制:以正丁醇、异丙醇体积比为2:1配制的混合溶液作为溶剂,以三氯化钌、氯乙酸、钛酸四丁酯和析氯加速剂为溶质,以浓盐酸作为稳定剂,配置得到活性涂层溶液,活性涂液中的金属离子浓度为0.4mol/L,溶剂与稳定剂体积比为10:1;
活性涂层溶液中,按金属离子摩尔百分比计,钌离子所占溶液中的金属离子比例为23mol%,铱离子所占溶液中金属离子比例为12mol%,钛离子所占溶液中金属离子比例为62mol%,析氯加速剂中的金属离子所占内层活性涂液中金属离子的摩尔百分比为3mol%;
析氯加速剂由硝酸铕、氯化镱、硫酸镝组成;析氯加速剂中,所占活性涂层溶液的金属离子,按金属离子摩尔百分比计,Eu3+为0.8mol%,Yb3+为1.3mol%,Dy3+为0.9mol%;
6)烧结:将步骤4)得到的薄膜中间层置入步骤5)得到的活性涂层溶液中浸泡5min,取出后放入恒温干燥箱中干燥,干燥温度为170℃,干燥时间为12min,后放入马弗炉中、空气气氛中烧结,马弗炉中温度为530℃,烧结时间为8min,再冷却至室温,重复涂覆12次;最后将涂覆好的试样在530℃下烧结50min,随炉冷却至室温,即可。
实施例1e
一种透气析氯电极的制备方法,包括以下步骤:
1)基体处理:将多孔钛作为基体,多孔钛采用真空烧结法制备而成,得到的多孔钛的孔隙度为35%、孔径为18μm、厚度为1mm,先将多孔钛置于浓度为10%的NaOH溶液中震动30min,除去表面油污,再利用浓度为20%的草酸溶液对多孔钛进行表面预处理,除去表面氧化物,得到钛基体;
2)前驱体沉积浴配制:将80-150mL无水乙醇、10-16mL去离子水、6mL IrCo溶液和9mL IrSb溶液,加入HCl溶液中,然后调节pH至2,得到前驱体沉积浴;
3)沉积层制备:在三电极体系电解槽中加入步骤2)得到的前驱体沉积浴,以铂电极为工作电极,以甘汞电极为参比电极,以步骤1)得到的钛基体作为阴极进行电沉积;电沉积的参数为:控制沉积浴温度为3℃,阴极电流密度为25mA/cm2,电沉积时间为40min;工作电极和对电极之间间隔17mm,得到沉积层;
4)薄膜中间层制备:随后通过热处理将步骤3)得到的沉积层转化为结晶氧化物,在空气气氛中放入高温炉进行烧结,升温速率为5℃/min,恒定460℃保温60min,得到薄膜中间层,薄膜中间层为IrO2-CoO2、IrO2-Sb2O5
5)活性溶液配制:以正丁醇、异丙醇体积比为2:1配制的混合溶液作为溶剂,以三氯化钌、氯乙酸、钛酸四丁酯和析氯加速剂为溶质,以浓盐酸作为稳定剂,配置得到活性涂层溶液,活性涂液中的金属离子浓度为0.4mol/L,溶剂与稳定剂体积比为10:1;
活性涂层溶液中,按金属离子摩尔百分比计,钌离子所占溶液中的金属离子比例为23mol%,铱离子所占溶液中金属离子比例为12mol%,钛离子所占溶液中金属离子比例为62mol%,析氯加速剂中的金属离子所占内层活性涂液中金属离子的摩尔百分比为3mol%。
析氯加速剂由硫酸铕、硝酸镱、硝酸镝组成;析氯加速剂中,所占活性涂层溶液的金属离子,按金属离子摩尔百分比计,Eu3+为0.9mol%,Yb3+为1.1mol%,Dy3+为1mol%;
6)烧结:将步骤4)得到的薄膜中间层置入步骤5)得到的活性涂层溶液中浸泡5min,取出后放入恒温干燥箱中干燥,干燥温度为170℃,干燥时间为12min,后放入马弗炉中、空气气氛中烧结,马弗炉中温度为530℃,烧结时间为8min,再冷却至室温,重复涂覆12次;最后将涂覆好的试样在530℃下烧结50min,随炉冷却至室温,即可。
对比例1
本对比例1的钛电极:钛基体为普通的钛板,制备方法为传统的热分解法,按照化学计量比Ru:Ir:Ti=20:20:60将三氯化钌、氯铱酸、三氯化钛溶于正丁醇中,然后涂敷在钛板上,烘干后于450℃烧结10min,重复15次,最后一次烧结60min。
测量实施例1a-1e与对比例1的电极涂层厚度、析氯电位、析氧电位、强化寿命等参数,结果如表1所示:
表1各电极测量效果对比
由表1可见,对比例1的涂层厚度、析氯电位均大于实施例1a-1e,而析氧电位、强化寿命均小于实施例1a-1e,说明本发明的制备方法能够降低电极的析氯电位,从而使得电极的产氯效率、电流效率和使用寿命提高,降低了次氯酸钠发生器电耗和盐耗。
实施例2a
依照实施例1制备的电极在次氯酸钠试验电解槽系统中作为阳极被评估。在试验电解槽系统中,储盐水室装有盐水电解液,电解液借助蠕动泵不断进入电解槽,其流速是用流量计测量的并且是通过调节电解槽的流量阀实施控制的。电解槽有电极,阳极面积是100cm2,阴极是用纯钛制成,电极间距是3mm,来自直流稳流电源的外加电压5V,电流控制为15A。
1、试验系统是在下述条件下连续操作的:
温度:25℃
电流密度:1.5KA/m2
电极间距:3mm
盐水浓度:3%
盐水流速:6L/h;
2、测量下述各种指标被完成:
用碘量滴定法测量NaClO3的浓度;
电解液的温度;
电解槽电压;
3、计算下述各种指标:
电流效率
电耗
盐耗;
实施例2b-2e
试验测试方法与实施例2a一致,不同之处在于依次采用实施例1b-1e制备的电极作为试验阳极。
对比例2
本对比例采用对比例1制备的电极作为阳极,电解槽参数和实验系统条件与实施例1a-1e一致。
表2各电极电解试验效果对比
由表2可见,对比例2的电耗、盐耗均高于实施例2a-2d的析氯电位,对比例2的次氯酸钠产率、电流效率小于实施例2a-2d,说明本发明的制备方法制备的电极电耗、盐耗低,节能环保、使用寿命长、电解效率高。
对于本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及变形,而所有的这些改变以及变形都应该属于本发明权利要求的保护范围之内。

Claims (7)

1.一种透气析氯电极的制备方法,其特征在于,包括以下步骤:
1)基体处理:将多孔钛作为基体,先除去多孔钛表面油污,再对多孔钛进行表面预处理,除去表面氧化物,得到钛基体;
2)前驱体沉积浴配制:将80-150mL无水乙醇、10-16mL去离子水、10-20mL前驱体,加入HCl溶液中,然后调节pH至1-5,得到前驱体沉积浴;
3)沉积层制备:在三电极体系电解槽中加入步骤2)得到的前驱体沉积浴,以铂电极为工作电极,以甘汞电极为参比电极,以步骤1)得到的钛基体作为阴极进行电沉积,工作电极和对电极之间间隔15-19mm,得到沉积层;
4)薄膜中间层制备:随后通过热处理将步骤3)得到的沉积层转化为结晶氧化物,在空气气氛中放入高温炉进行烧结,升温速率为3-7℃/min,恒定450-470℃保温50-60min,得到薄膜中间层;
5)活性溶液配制:以正丁醇、异丙醇体积比为2:1配制的混合溶液作为溶剂,以三氯化钌、氯依酸、钛酸四丁酯和析氯加速剂为溶质,以浓盐酸作为稳定剂,配置得到活性涂层溶液;活性涂层溶液中,按金属离子摩尔百分比计,钌离子所占溶液中的金属离子比例为16-23mol%,铱离子所占溶液中金属离子比例为9-15mol%,钛离子所占溶液中金属离子比例为61-74mol%,析氯加速剂中的金属离子所占内层活性涂液中金属离子的摩尔百分比为1-3mol%;析氯加速剂由含钕化合物、含铕化合物、含镱化合物、含钆化合物、含镝化合物中的三种或三种以上组成;所述析氯加速剂中的金属离子,所占活性涂层溶液的金属离子含量,按金属离子摩尔百分比计:Nd3+为0-0.8mol%,Eu3+为0.8-1.2mol%,Yb3+为0.9-1.3mol%,Gd3+为0-0.8mol%,Dy3+为0.9-1.2mol%;
6)烧结:将步骤4)得到的薄膜中间层置入步骤5)得到的活性涂层溶液中浸泡2-5min,取出后放入恒温干燥箱中干燥,后放入马弗炉中、空气气氛中烧结,再冷却至室温,重复涂覆9-19次;最后将涂覆好的试样在400℃-530℃下烧结60min,随炉冷却至室温,即可。
2.根据权利要求1所述的透气析氯电极的制备方法,其特征在于,步骤1)的多孔钛采用真空烧结法制备而成,得到的多孔钛的孔隙度为30%-45%、孔径为5μm-20μm、厚度为1mm。
3.根据权利要求1所述的透气析氯电极的制备方法,其特征在于,步骤1)中,多孔钛处理的具体步骤为:先将多孔钛置于浓度为10%的NaOH溶液中震动30min,除去表面油污,再利用浓度为20%的草酸溶液对多孔钛进行表面预处理,除去表面氧化物,得到钛基体。
4.根据权利要求1所述的透气析氯电极的制备方法,其特征在于,步骤2)中的前驱体为IrCo溶液、IrSn溶液、IrSb溶液中的一种。
5.根据权利要求1所述的透气析氯电极的制备方法,其特征在于,步骤3)中电沉积的参数为:控制沉积浴温度为2-4℃,阴极电流密度为15-30mA/cm2,电沉积时间为20-60min。
6.根据权利要求1所述的透气析氯电极的制备方法,其特征在于,步骤4)中薄膜中间层为IrO2-CoO2、IrO2-SnO2、IrO2-Sb2O5的一种或两种以上。
7.根据权利要求1所述的透气析氯电极的制备方法,其特征在于,步骤6)中,恒温干燥箱中干燥温度为130-170℃,干燥时间为12-18min;马弗炉中温度为400℃-530℃,烧结时间为8-16min。
CN201710229861.0A 2017-04-10 2017-04-10 一种透气析氯电极的制备方法 Active CN107419292B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710229861.0A CN107419292B (zh) 2017-04-10 2017-04-10 一种透气析氯电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710229861.0A CN107419292B (zh) 2017-04-10 2017-04-10 一种透气析氯电极的制备方法

Publications (2)

Publication Number Publication Date
CN107419292A CN107419292A (zh) 2017-12-01
CN107419292B true CN107419292B (zh) 2019-12-13

Family

ID=60423386

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710229861.0A Active CN107419292B (zh) 2017-04-10 2017-04-10 一种透气析氯电极的制备方法

Country Status (1)

Country Link
CN (1) CN107419292B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108046380B (zh) * 2017-12-13 2021-02-12 东华大学 一种钛基Sn-Sb-Ce氧化物电极及其制备方法和应用
CN112573626A (zh) * 2020-12-11 2021-03-30 广东电网有限责任公司电力科学研究院 一种钛电极及其制备方法和应用
CN116024600A (zh) * 2022-11-28 2023-04-28 江苏安凯特科技股份有限公司 一种耐反向电流析氯钛阳极的制备工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1541285A (zh) * 2001-02-06 2004-10-27 美国过滤公司 电极涂层及其使用和制备方法
CN101654790A (zh) * 2009-09-15 2010-02-24 山东大学 钕掺杂钛基二氧化锡-锑电极的制备方法
CN102051634A (zh) * 2011-01-26 2011-05-11 西北有色金属研究院 以多孔钛为基体的钛电极材料及其制备方法
CN103797160A (zh) * 2011-09-13 2014-05-14 学校法人同志社 析氯用阳极
CN104087970A (zh) * 2014-04-04 2014-10-08 武汉丽辉新技术有限公司 一种表面富含二氧化铱的氧化铜掺杂二氧化铱钛阳极及其制备方法
CN104562078A (zh) * 2014-12-24 2015-04-29 蓝星(北京)化工机械有限公司 电解用电极及其制备方法以及电解槽
CN104988535A (zh) * 2015-05-22 2015-10-21 东南大学 一种混合金属氧化物涂层电极及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1541285A (zh) * 2001-02-06 2004-10-27 美国过滤公司 电极涂层及其使用和制备方法
CN101654790A (zh) * 2009-09-15 2010-02-24 山东大学 钕掺杂钛基二氧化锡-锑电极的制备方法
CN102051634A (zh) * 2011-01-26 2011-05-11 西北有色金属研究院 以多孔钛为基体的钛电极材料及其制备方法
CN103797160A (zh) * 2011-09-13 2014-05-14 学校法人同志社 析氯用阳极
CN104087970A (zh) * 2014-04-04 2014-10-08 武汉丽辉新技术有限公司 一种表面富含二氧化铱的氧化铜掺杂二氧化铱钛阳极及其制备方法
CN104562078A (zh) * 2014-12-24 2015-04-29 蓝星(北京)化工机械有限公司 电解用电极及其制备方法以及电解槽
CN104988535A (zh) * 2015-05-22 2015-10-21 东南大学 一种混合金属氧化物涂层电极及其制备方法

Also Published As

Publication number Publication date
CN107419292A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
CN107419292B (zh) 一种透气析氯电极的制备方法
CN107034483B (zh) 一种次氯酸钠发生器电极的制备方法
CN104591342B (zh) 用于污水深度处理的Ti/Ebonex/PbO2电极的制备方法
CN111170415A (zh) 一种亚氧化钛/氧化钌复合电极及其制备方法和应用
JP2009215580A (ja) 水素発生用陰極
JPWO2013179553A1 (ja) 金属水酸化物の製造方法及びitoスパッタリングターゲットの製造方法
CN104294311B (zh) 一种铂铱氧化物合金电极的制备方法
JP4157615B2 (ja) 不溶性金属電極の製造方法及び該電極を使用する電解槽
CN106186205A (zh) 一种微孔钛基管式多维纳米孔嵌入锡锑膜电极及其制备方法
CN114807975B (zh) 非贵金属析氧催化剂及其制备方法和应用
CN107142491A (zh) 一种透气电极及其制备方法
CN106044862A (zh) 低温电解制备纳米二氧化锰的方法
CN113061926A (zh) 一种用于pem水电解池的亚氧化钛阳极扩散层及其制备方法与应用
KR20130124846A (ko) 붕소 도핑 다이아몬드 전극을 이용한 금속산화물 전해환원 방법 및 그 장치
CN107051431B (zh) 一种用于析氯电极的活性涂液及其制备方法
CN109576733A (zh) 一种碳纤维负载的析氯催化电极的制备方法
CN112899715A (zh) 一种氧化钴纳米薄片析氯电极及其制备方法与应用
CN114180682B (zh) 一种碱金属-RuO2-TiO2涂层钛电极及其制备方法
JP6194217B2 (ja) 金属水酸化物の製造方法及びスパッタリングターゲットの製造方法
CN115626693A (zh) 一种具有中间层的铅锑涂层钛阳极板及其制备方法和应用
CN108796544A (zh) 一种电化学矿化co2制备碳酸镁的装置及其方法
CN111943327B (zh) 用于酸性废水处理的具有RuO2-IrO2中间层的电极材料及制备方法
CN112250229A (zh) 一种高催化活性及稳定性电极的制备方法及应用
RU2505625C2 (ru) Способ получения графитовых электродов с покрытием предпочтительно из благородных металлов для электролитических процессов, особенно для электролитов соляной кислоты
CN111893535B (zh) 一种多孔钛基二氧化铅电催化膜电极的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant