CN107419002A - 用于微阵列选择的设备和方法 - Google Patents
用于微阵列选择的设备和方法 Download PDFInfo
- Publication number
- CN107419002A CN107419002A CN201710188177.2A CN201710188177A CN107419002A CN 107419002 A CN107419002 A CN 107419002A CN 201710188177 A CN201710188177 A CN 201710188177A CN 107419002 A CN107419002 A CN 107419002A
- Authority
- CN
- China
- Prior art keywords
- reaction zone
- equipment
- molecule
- temperature
- target molecule
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6834—Enzymatic or biochemical coupling of nucleic acids to a solid phase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
- C12M1/36—Apparatus for enzymology or microbiology including condition or time responsive control, e.g. automatically controlled fermentors
- C12M1/38—Temperature-responsive control
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6834—Enzymatic or biochemical coupling of nucleic acids to a solid phase
- C12Q1/6837—Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/58—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
- G01N33/582—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2527/00—Reactions demanding special reaction conditions
- C12Q2527/107—Temperature of melting, i.e. Tm
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2537/00—Reactions characterised by the reaction format or use of a specific feature
- C12Q2537/10—Reactions characterised by the reaction format or use of a specific feature the purpose or use of
- C12Q2537/149—Sequential reactions
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- General Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Medicinal Chemistry (AREA)
- Urology & Nephrology (AREA)
- Sustainable Development (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明还涉及用于特异性选择靶分子的设备,其中被固定的捕获分子以点、细长点和/或线的形式组织在所述微阵列中。在另一个方面,本发明涉及特异性选择靶分子的方法,其包括对这样的设备引入介质,在反应区中进行相互作用反应,将未相互作用或未结合的靶分子运输至允许靶分子再活化的区域和用再活化的靶分子在反应区进行另外的相互作用反应,以及这样的设备用于特异性选择靶分子的用途,例如用于靶富集,在文献中又将其称作基于微阵列的基因组选择(MGS)。
Description
本申请是以下申请的分案申请:申请日:2010年8月26日;申请号:201080038948.6;发明名称:同上。
发明领域
本发明涉及一种用于特异性选择靶分子的设备(device),其包含:(a)至少一个包含微阵列的反应区,其中所述微阵列包含基片,其中一种或多种捕获分子被固定在所述基片上,所述反应区包含一个或多个温度控制和/或调节单元用于控制和/或调节在所述区域内的温度;(b)至少一个非反应区,其包含一个或多个温度控制和/或调节单元用于控制和/或调节在所述区域内的温度,所述区域与所述反应区以流体连接;和(c)至少一个运输装置(means),其能够在所述反应区(a)和包含一个或多个温度控制和/或调节单元的所述非反应区(b)之间产生和/或调节液流。本发明还涉及用于特异性选择靶分子的设备,其中固定的捕获分子以点、细长点和/或线的形式组织在所述微阵列中。在另一个方面,本发明涉及特异性选择靶分子的方法,其包括对这样的设备引入介质,在反应区中进行相互作用反应,将未相互作用或未结合的靶分子运输至允许靶分子再活化的区域和用再活化的靶分子在反应区进行另外的相互作用反应,以及这样的设备用于特异性选择靶分子的用途,例如用于靶富集,在文献中又将其称作基于微阵列的基因组选择(MGS)。
背景技术
自从NIH计划在20世纪90年代末开始完整的人基因组测序以来,测序技术已迅速发展。特别是自从在2005年引入第二代测序机器以来,测序的成本已降低了10倍,在2008年初为每个人基因组约1百万美元。测序工业现在致力于更进一步地降低DNA测序成本,甚至目的是在不久的将来达到每个人基因组约1000美元的成本。基于这些预期和期望,DNA测序,特别是基因组DNA的测序将成为至关重要的临床和诊断工具,其可被用于分析基因变异,检测疾病或说明疾病倾向,特别是用于诊断癌症或检测患上癌症的倾向。然而,临床DNA测序的关键应用不会是完整基因组的测序,而是已知参与疾病病因学的相关基因组部分或基因的重测序(re-sequencing)。
进行这样的方法的先决条件是有效分离待测序的靶DNA。一般地,复杂的真核基因组如人基因组过大,不降低复杂性就无法研究,基于例如通过PCR法(包括短PCR和长PCR)直接扩增特定序列,或通过fosmid文库构建、BAC文库构建、TAR克隆或通过使用选择器(selector)技术降低复杂性。
所述降低基因组DNA复杂性的方法的一种替代方案构成了基于微阵列的基因组选择(MGS),其被开发用于从复杂的真核基因组中分离用户定义的独特基因组序列(WO 2008/097887)。此方法包括物理剪切基因组DNA以产生约300 bp平均大小的随机片段,片段的末端修复,与具有互补的T核苷酸突出端的独特衔接子(unique adaptors)的连接,和将所述片段与通过参考基因组序列鉴定的序列互补的高密度寡核苷酸微阵列杂交,随后的片段洗脱和使用衔接子序列通过PCR的片段的扩增(WO 2008/097887)。
然而,使用现有的MGS方案仅可回收约80-90%的靶区域。因此,10%-20%的靶序列丢失了且可能仅以低水平包含若干其他区域,这可能阻碍在重测序方法中可信的突变发现。迄今为止未被意识到的问题是以下事实,即在通常的MGS杂交混合物中,基因组DNA的2条互补链以高拷贝数存在,这有利于与互补链的回复杂交(back-hybridization)而不是与捕获探针的结合,这可能解释了定量回收靶区域所遇到的困难。
因此,需要改进的靶分子,特别是靶DNA分子例如基因组核酸的富集方法,所述方法允许有效、可信和定量地回收靶分子。
发明内容
本发明提出了此需求并提供了用于特异性选择靶分子的装置和方法。通过用于特异性选择靶分子的设备具体实现了上面的目标,所述设备包含:
(a)至少一个包含微阵列的反应区,其中所述微阵列包含基片(substrate),其中一种或多种捕获分子被固定在所述基片上,所述反应区还包含一个或多个温度控制和/或调节单元用于控制和/或调节所述反应区内的温度,
(b)至少一个非反应区,其包含一个或多个温度控制和/或调节单元用于控制和/或调节所述非反应区内的温度,所述非反应区与所述反应区以流体连接(in fluidconnection);和
(c)至少一个运输装置,其能够在所述反应区(a)和包含一个或多个温度控制和/或调节单元的所述非反应区(b)之间产生和/或调节液流。
这样的设备有利地允许未与捕获分子结合的靶分子的重复的再活化,而其中靶分子已与捕获分子结合的区域被维持在理想的用于结合的温度下。例如,未与微阵列中的捕获探针杂交的靶DNA分子可有利地在重复的周期中变性,而其中靶DNA分子已与捕获探针结合的区域被维持在最佳杂交温度下。因此,未与捕获探针结合但与互补靶分子结合的靶分子将被再活化并被提供另一次寻找互补捕获分子的机会,而已与捕获分子结合的靶分子将保持结合,导致特异性结合的分子的富集和与互补靶分子结合的靶分子的显著减少。
在本发明的优选实施方案中,用于控制和/或调节区域内温度的单元可被整合在区域中,或可位于外部。
在本发明的另外的实施方案中,如上述的反应区(a),如上述的包含一个或多个温度控制和/或调节单元的非反应区(b),和如上述的运输装置(c)被排列在封闭环中,或单个流径(flow path)中或被整合在室(chamber)中。在本发明的特别优选的实施方案中,所述室可为形成流体通道的细长室。在本发明的另一个优选的实施方案中,所述室可包含2-5个重复的如上述的反应区(a)和如上述的包含一个或多个温度控制和/或调节单元的非反应区(b)。
在本发明的另外的优选实施方案中,如上述的封闭环或单个流径允许如上述的反应区(a)和包含一个或多个温度控制和/或调节单元的非反应区(b)之间的连续的流体交换。
在本发明的另外的优选实施方案中,所述设备另外包含混合装置。特别优选在区之间的流体连接区域中存在混合装置。
在本发明的另外的优选实施方案中,如上述的包含一个或多个温度控制和/或调节单元的非反应区(b)或如上述的形成流体通道的细长室包含弯曲的流径。
在本发明的另一个特别优选的实施方案中,如上述的反应区(a)是能够允许核酸与所述捕获分子杂交的杂交区。所述设备能够将反应区维持在约20℃至70℃的温度下。甚至更优选约40℃至70℃的温度。
在本发明的另一个特别优选的实施方案中,如上述的包含一个或多个温度控制和/或调节单元的非反应区(b)是能够介导(mediate)核酸变性的变性区。所述设备能够将反应区维持在约80℃至98℃的温度下。在甚至更优选的实施方案中,将反应区维持在约95℃的温度下。
在本发明的另一个优选的实施方案中,固定的捕获分子以点、细长点和/或线的形式组织在微阵列中。
在本发明的特别优选的实施方案中,如上述的线以约20°和90°之间的角度排列。在另一个更优选的实施方案中,所述线以约45°和90°之间的角度排列。在仍然另一个甚至更优选的实施方案中,所述线以相对流径约90°的角度排列,即所述线约垂直于流径。
在本发明的另一个特别优选的实施方案中,所述线具有约300 nm和30 µm之间的宽度和/或以约500 nm至100 µm的线间距排列,优选的线间距是尽可能的小。基于实验数据,线之间的面积应当优选地小于线的面积。此外,未被探针或探针线覆盖的区域可引起特异性结合,并因此减少选择的目的片段的百分比。
在本发明的另一个优选的实施方案中,捕获分子是选自核酸、肽、蛋白质、抗原、抗体、碳水化合物和/或其类似物的分子,优选核酸。特别优选在具有平表面或由珠状元件如磁性颗粒组成的基片上排列捕获分子。
在另一个方面,本发明涉及特异性选择靶分子的方法,其包括以下步骤:(a)在如本文上述的设备的区域中引入含有一种或多种靶分子的介质;(b)在所述靶分子和在反应区中固定的捕获分子之间进行相互作用反应;(c)将未相互作用的或未结合的靶分子运输至包含一个或多个温度控制和/或调节单元的非反应区;(d)在所述包含一个或多个温度控制和/或调节单元的区域中再活化,优选地变性所述靶分子;和(e)将再活化的,优选地变性的靶分子运输至反应区,因而允许根据步骤(b)的所述靶分子和固定的捕获分子之间的进一步相互作用。所述方法的优势是(特别是如果选择核酸的话)避免了长杂交时间,因为介质的确定移动和靶分子的再活化显著提高了反应区中的相互作用反应的效率。
在本发明的优选实施方案中,可重复如本文上述的特异性选择靶分子的方法的步骤(b)至(e)。在另外的优选实施方案中,重复可为2至100次,和/或可连续和/或平行进行预定的时间。在还另一个优选的实施方案中,重复可被进行1分钟至72小时或5分钟至20小时。最优选进行重复10分钟至2小时。
在另一个方面,本发明涉及如本文上述的设备用于特异性选择靶分子的用途。在本发明的优选实施方案中,如本文上述的设备可被用于进行靶富集。
附图说明
图1:基于微阵列的基因组选择方法的示意说明。
图2:在使用包含244.000个不同探针的Agilent阵列进行的经典的用于选择0.1%的人基因组的基于微阵列的基因组选择中的基因组DNA回收率的概述;回收率非常低。
图3:设备的示意展示,所述设备包含2个室,一个用于杂交和一个用于变性,在室之间通过封闭的环抽吸连续交换流体。
图4:杂交室和弯曲通道的示意展示,所述弯曲通道在加热的表面上运行且其中发生变性。体积和特别是长度决定了流体在变性通道中的驻留时间。
图5:设备的示意展示,在所述设备中流体在变性和杂交室之间来回抽吸。连接通道包含被动混合结构,导致流体及其成分的最佳均匀化。
图6:包含具有不同加热区的弯曲通道的设备的示意展示(图6A),和相应的预期和测量的荧光杂交强度图(图6B)。图6C显示了相应的沿通道的温度变化图。
图7:图象,其显示在包含设定为95℃的不同加热区的弯曲通道的末端部分中的高结合效率。流动方向是从右到左,出口在左手侧。
图8:图象,其显示在设定为50℃的弯曲通道中的低结合效率。流动方向是从右到左,出口在左手侧。
图9:微阵列布局的示意图,其中探针线与样品流基本正交或垂直。在此布局中最佳使用了整个阵列表面。
图10:可选的微阵列布局的示意图,其中探针线相对样品流呈α角度。
图11:可选的微阵列布局的示意图,其中探针线相对样品流呈α角度。在此布局中,线也存在于角落,尽管其没有跨越整个阵列。
图12:可选的微阵列布局的示意图,其中探针线相对来自阵列宽边的样品流基本正交或垂直排列。
图13:通过根据本发明的设备,杂交效率增加。
具体实施方案
本发明涉及用于特异性选择靶分子的设备以及相应的方法和用途。
尽管本发明将结合特定实施方案描述,但不认为此描述具有限制意义。
在详细描述本发明的示例性实施方案之前,提供对理解本发明重要的定义。
如在此说明书和在附加的权利要求中使用的,单数形式“一(a)”和“一个(an)”也包括各自的复数,除非上下文明确另外指示。
在本发明的上下文中,术语“约”和“大约”表示本领域技术人员将理解的仍然确保讨论中的特征的技术效果的精确区间。所述术语通常指示偏离指示的数值±20 %,优选±15 %,更优选±10 %,和甚至更优选±5 %的偏差。
应当理解,术语“包含”不是限制性的。用于本发明的目的,认为术语“由...组成”是术语“包含(comprising of)”的优选实施方案。如果在下文中将组定义为包含至少特定数目的实施方案,这表示也包含优选地仅由这些实施方案组成的组。
此外,在说明书和在权利要求中的术语“第一”、“第二”、“第三”或“(a)”、“(b)”、“(c)”、“(d)”等等和类似术语被用于区分相似的元素且不一定用于描述相继的或时间顺序。应当理解,这样使用的术语在适当的情况下可互换使用,且本文描述的本发明的实施方案能够以除了本文描述或说明的顺序以外的顺序操作。
在术语“第一”、“第二”、“第三”或“(a)”、“(b)”、“(c)”、“(d)”等等涉及方法的步骤或用途时,在步骤之间没有时间或时间间隔的连贯性,即所述步骤可同时进行,或在这些步骤之间可有秒、分钟、天、周、月或甚至年的时间间隔,除非在如本文上述或下述的申请中另外指出。
应当理解,本发明不受限于本文描述的特定方法、方案、试剂等等,因为这些可能变化。还应当理解,本文使用的术语仅是为了描述特定实施方案的目的,且无意限制本发明的范围,本发明的范围仅受限于附加的权利要求书。除非另外定义,本文使用的所有技术和科学术语具有与本领域普通技术人员一般理解的相同的含义。
如上已陈述地,本发明在一个方面涉及用于特异性选择靶分子的设备,其包含:(a)至少一个包含微阵列的反应区,其中所述微阵列包含基片,其中一种或多种捕获分子被固定在所述基片上,所述反应区还包含一个或多个温度控制和/或调节单元用于控制和/或调节在所述区域内的温度,(b)至少一个非反应区,其包含一个或多个温度控制和/或调节单元用于控制和/或调节在所述非反应区内的温度,所述非反应区与所述反应区以流体连接;和(c)至少一个运输装置,其能够在所述反应区(a)和包含一个或多个温度控制和/或调节单元的所述区域(b)之间产生和/或调节液流。
如本文使用的术语“选择靶分子”指根据本发明的设备的元件和实体与靶分子,例如在周围环境中存在的分子之间的相互作用。这样的相互作用可为本领域技术人员已知的任意合适的分子,亚分子或大分子相互作用,例如亲和相互作用,基于范德华力的相互作用,基于氢键的相互作用和/或基于电荷的相互作用,例如不同电荷的分子之间的相互作用。这样的相互作用的一般实例是蛋白质-蛋白质相互作用,涉及核酸的杂交反应,配体与其受体的结合,抗体与相应的抗原或表位的结合,小分子与蛋白质或酶的活性中心的结合,蛋白质或核酸与碳水化合物结构的相互作用。基于相互作用,相互作用伙伴将与根据本发明的设备的一个或多个元件或实体结合,并因此从周围环境中被选择出来。靶分子的选择优选为特异性的。如在选择靶分子的上下文中使用的术语“特异性”具有不同的含义,其主要取决于靶分子的身份和/或相互作用类型,且其遵循本领域已知的一般适用规则和定义。例如,如果可相互作用的核酸靶分子彼此完全或部分互补,或在其全长或全长的部分上彼此至少约60%至99%互补,则可认为核酸-核酸相互作用是特异性的。例如,如果仅认可表位的分子和/或空间参数的话,则根据本领域的已知标准可认为抗体及其抗原的相互作用是特异性的。例如,如果配体能够结合受体的结合区和/或配体能够在受体中或与受体一起传达分子反应(例如产生下游信号),则根据本领域的已知标准可认为配体及其受体的相互作用是特异性的。
如本文使用的“靶分子”可为允许如本文上述的特异性相互作用的任意合适的分子。使用本发明的设备将选择的靶分子的实例为核酸,蛋白质,肽,任意形式和格式的配体,抗体,抗原,小分子如有机或无机结构或有机和无机结构的混合物,例如碳水化合物或糖,聚合物,实体如细胞或细胞碎片或细胞亚部分,例如细菌细胞或其碎片,真核细胞或其碎片,病毒颗粒或病毒,或上述任意衍生物或组合。
如本文使用的术语“周围环境”指材料或介质,在其中进行如上述的相互作用。介质可为例如流体介质、气体介质。优选流体介质,特别优选水介质,例如以不同比例包含水的介质。另外介质可包含另外的成分,例如盐、离子、有机或无机分子,可使用本领域技术人员已知的任意合适的缓冲液缓冲介质,介质可包含染料或荧光标记物,用于核酸或蛋白质的稳定剂,例如RNA酶抑制剂、DNA酶抑制剂、蛋白酶抑制剂,介质可包含另外的相互作用成分,例如第二抗体等。
如本文使用的术语“反应区”指适于允许如本文上述的相互作用的设备的部分。为了适于允许相互作用,可设置或调节反应区中的一个或多个参数。例如,反应区中的温度可被调节为本领域技术人员已知的合适值。所述值可主要取决于待选择的靶分子和发生的相互作用类型,并且如果要选择核酸或要选择蛋白质或要选择有机或无机小分子等是可变化。用于这些相互作用的最佳温度可来自合适的教科书,例如来自Lottspeich, F.,和Zorbas H. (1998) Bioanalytik, Spektrum Akademischer Verlag, Heidelberg /Berlin, Germany,或可通过在不同的温度下,例如在4℃和120℃之间的温度下,优选地在约20℃和100℃之间的范围内重复反应经实验测定。根据本发明在反应区中可设置或调节的另外的参数(特别是在液体环境中)是pH,其可在0和14之间,例如为0, 1, 2, 3, 4, 5,6, 7, 8, 9, 10, 11, 12, 13, 14。优选约6.5和8.5之间的pH,更优选约7.5的pH。可在反应室中设置或调节的另一个参数是流量,特别是周围材料的质量流量。质量流量可例如在约0和1000 µg/秒之间,例如为0, 5, 10, 50, 100, 150, 500, 700, 750, 800或1000 µg/秒。根据本发明可在反应室中调节或设置的另外的参数是总盐或离子浓度。根据本发明,可使用本领域技术人员已知的任意合适的总盐或离子浓度。例如,总盐或离子浓度可为约0.1mM和1M之间。任意参数可一致地存在于反应区各处或可以一个或多个梯度的形式存在。例如,可为跨越反应区的温度梯度、pH梯度、盐浓度梯度和/或流速或质量流梯度。如果存在多于一种梯度,梯度可具有相同的方向或彼此相反,或可选地具有不同的方向,例如彼此垂直或具有特定角度,例如30°, 45°, 60°。参数可被主动地改变或修改,例如在设备的使用过程中,例如可在特定时段中提高或降低温度,可在特定时段中提高或降低pH,和可在特定时段中提高或降低流速或质量流量。反应区可为封闭的,即包含盖、盖子或罩子,或为开放的。反应区可由本领域技术人员已知的任意合适材料构成,例如金属、玻璃、塑料,例如PMMA或任意其衍生物或组合。特别优选使用玻璃和/或塑料,例如聚合材料。用于加热/冷却元件,可使用金属材料。
反应区可还包含微阵列。如本文使用的术语“微阵列”指为了阵列中的捕获分子和周围环境(例如如本文上述的介质)中潜在的相互作用物之间的相互作用而提供的有序阵列。阵列可包括可访问区的任意二维或三维排列,优选二维排列。
如本文使用的“捕获分子”可为任意合适的分子,其允许与靶分子的特异性相互作用,所述靶分子来自如本文上面定义的根据本发明的设备中的环境或介质。能够选择来自环境或介质的靶分子的捕获分子的实例是核酸,蛋白质,肽,任意形式和格式的配体,受体,抗体,抗原,有机或无机结构,例如碳水化合物或糖,聚合物,实体如细胞或细胞碎片或细胞亚部分,例如细菌细胞或其碎片,真核细胞或其碎片,病毒颗粒或病毒,或上述任意衍生物、类似物或组合。特别优选选自核酸、肽、蛋白质、抗原、抗体和碳水化合物的捕获分子。甚至更优选的捕获分子是核酸。
如本文使用的术语“核酸”指本领域技术人员已知的任意核酸,优选地指DNA,RNA, PNA, CNA, HNA, LNA或ANA。DNA可为例如A-DNA, B-DNA或Z-DNA的形式。RNA可为例如p-RNA,即吡喃基-RNA的形式,或结构修饰形式如发夹RNA或茎-环RNA。术语“PNA”指肽核酸,即人工合成的类似DNA或RNA的聚合物,其被用于生物学研究和药物治疗,但已知其不天然存在。RNA骨架一般由通过肽键连接的重复的N-(2-氨乙基)-甘氨酸单元组成。不同的嘌呤和嘧啶碱基通过亚甲基羰基键与骨架连接。PNA一般被描述为类似肽,N端在第一(左)位和C端在右边。术语“CNA”涉及氨基环己基乙烷酸核酸。此外,此术语涉及环戊烷核酸,即包含例如2'-脱氧氨基甲酸鸟苷酸(2'-deoxycarbaguanosine)的核酸分子。
术语“HNA”涉及己糖醇核酸,即用标准的核碱基和磷酸化的1,5-失水己糖醇骨架建立的DNA类似物。术语“LNA”涉及锁定的核酸。通常,锁定的核酸是经修饰的并因此是难以接近的RNA核苷酸。LNA核苷酸的核糖部分可被连接2’和4’碳的额外的桥修饰。这样的桥以3’-内结构构象锁定核糖。锁定的核糖构象增强了碱基堆积和骨架的预组织。这可显著提高热稳定性,即寡核苷酸的解链温度。术语“ANA”涉及阿拉伯糖核酸或其衍生物。在本发明的上下文中优选的ANA衍生物是2'-脱氧-2'-氟-β-D-阿拉伯糖核苷(2'F-ANA)。在另外的优选实施方案中,核酸分子可包含DNA, RNA, PNA, CNA, HNA, LNA和ANA中的任一种的组合。特别优选具有DNA或RNA碱基的LNA核苷酸的混合物。在另外的优选的实施方案中,如本文定义的核酸分子可为短寡核苷酸、长寡核苷酸或多核苷酸的形式。
阵列元件可被包含在基片上。通常,阵列元件或捕获分子被固定在基片上。如本文使用的术语“固定”指通过分子相互作用将一种或多种捕获分子连接在支持基片上,所述分子相互作用把分子置于基片的特定区域并附随地阻碍捕获分子的脱离,例如在洗涤、漂洗或相互作用步骤等期间。通常,如本领域技术人员已知地,这样的分子相互作用是基于支持材料的结构元件或功能基与固定的捕获分子,例如相应的核酸的功能基之间的共价化学键。例如,可通过热或光交联捕获分子,即通过在如热或光的能量来源提供的能量的影响或驱动下形成分子相互作用或将2个结构元件连接在一起的键,或通过化学固定进行固定。
通常,通过干燥和随后在特定温度下在基片上烘烤捕获分子进行通过热交联的固定。认为干燥和烘烤通过疏水相互作用导致分子变得粘附在基片上。此程序可被归类为物理吸附的亚形式(sub-form)。术语“物理吸附”涉及包括初始分离和吸引步骤的过程,由此捕获分子接近反应基,这是基于物理吸附过程。生物分子例如核酸在固体支持物上的吸附可实际上在任意支持材料上进行,因为已观察到任意这样的支持材料将与几乎任意表面相互作用。通常,支持材料与待固定的捕获分子之间的相互作用水平取决于支持材料的性质和形式和捕获分子的化学性能而变化。相互作用一般是5阶段的程序,其包括以下步骤:(i)将捕获分子运输至表面,(ii)吸附至表面,(iii)吸附的捕获分子的重排,(iv)吸附的捕获分子的潜在解吸和(v)将解吸的捕获分子运离表面。尽管所述程序在一定程度上暗示解吸的可能性是固有的,取决于捕获分子的大小,结合通常是不可逆的。在吸附相互作用的上下文中,术语“捕获分子的大小”涉及存在的结合位点数。尽管原则上任一个结合位点可在任意时间从基片表面解离,大量结合位点的作用是捕获分子在整体上将保持结合。通过以热的形式,例如在约40至150℃,优选50至120℃,更优选60至110℃,甚至更优选70至100℃和最优选80至90℃的温度下应用能量,可增强捕获分子至支持材料的物理吸附和缩短有效固定所必需的时间。可在本领域技术人员已知的任意合适时段中进行热交联,例如2分钟至12小时,优选10分钟至8小时,更优选30分钟至6小时,甚至更优选45分钟至4小时,甚至更优选1小时至3小时和最优选2小时。可通过本领域技术人员已知的任意合适装置进行通过热或烘烤的交联,例如干燥室或烘箱。除了温度以外,也可将其他参数如湿度、曝气或通风调节至本领域技术人员已知的合适值。通过热或烘烤的交联也可与其他固定的形式如光交联或化学固定组合。
通常通过对捕获分子应用特定波长,例如150至550 nm范围内,优选200至500 nm范围内的光进行光交联,从而在捕获分子和支持材料之间诱导相互作用。通常,在捕获分子和支持材料之间诱导的相互作用是核酸与材料的共价结合。例如可通过使用紫外光进行光交联。紫外交联是确保支持材料与探针共价结合的最简单的方式之一。如本领域技术人员已知地,在核酸的情况下,通过核酸分子的碱基,例如胸腺嘧啶、鸟嘌呤、腺嘌呤、胞嘧啶或尿嘧啶残基进行连接,所述碱基与支持材料上的相应和合适的功能化学基起反应。可通过合适的化学活化过程控制和调节在支持材料上或内的功能化学基的存在和数目。这样的活化过程可例如提供在支持材料上或内的特异性定位的功能基,并在这些定位的功能基环境下促进捕获分子和材料的特异性相互作用。在支持材料上或内的功能基的存在和数目也可对固定的捕获分子的取向和自由度具有影响。例如,功能基的较大量的存在可导致在捕获分子内的不同点上的固定。此外,在捕获分子内的相应反应元件的存在可被用于控制捕获分子在支持材料上的取向。
如本文提及的“化学固定”可为支持材料和捕获分子之间的基于化学反应的相互作用。这样的化学反应一般不依赖通过热或光的能量输入,但可通过应用热,例如用于化学反应的特定最佳温度,或特定波长的光增强。例如,可在支持材料上的功能基和捕获分子上的相应功能元件之间发生化学固定。在捕获分子中的这样的相应功能元件可为分子的具有创造性的化学物的一部分,或可被另外引入。这样的功能基的实例是胺基。通常,待固定的捕获分子,例如核酸,包含功能胺基或经化学修饰从而包含功能胺基。用于这样的化学修饰的装置和方法是本领域技术人员已知的,并可例如来自有机化学教科书,如Hart 等人,2007, Wiley-Vch的Organische Chemie或Vollhardt 等人, 2005, Wiley-Vch的Organische Chemie。可使用在待固定的捕获分子内的所述功能基的定位,以控制和塑造捕获分子的结合行为和/或取向,例如功能基可被置于捕获分子尾部的末端或捕获分子的中心。待固定的捕获分子的一般反应伙伴包含能够与这样的捕获分子,例如核酸(例如胺功能性核酸)结合的部分。这样的支持材料的实例是醛、环氧树脂或NHS基片。这样的材料是本领域技术人员已知的。在通过引入胺基而具有化学反应性的捕获分子和支持材料之间给予连接反应的功能基是本领域技术人员已知的。待固定的捕获分子的可选的反应伙伴可能必须被化学活化,例如通过在支持材料上可用的功能基的活化。术语“活化的支持材料”涉及一种材料,其中通过如本领域技术人员已知的化学修饰程序产生或实现了相互作用或反应性化学功能基。例如,包含羧基的基片必须在使用前被活化。此外,存在可用的基片,其包含可与在核酸中已经存在的特定部分反应的功能基。这些反应中的一些通过热或紫外光增强。一个实例是在基片表面上的胺基,其可与DNA中的特定碱基结合。
可选地,可在基片上直接合成捕获探针。用于这样的方法的合适方法是本领域技术人员已知的。实例是Agilent Inc., Affymetrix Inc., Nimblegen Inc.或Flexgen BV开发的制造技术。通常,使用激光和一组镜子特异性活化将发生核苷酸加入的点。这样的方法可提供例如约30 µm或更大的点大小。捕获探针可因此具有最大达约80核苷酸的长度。在不同的也设想的技术中,可通过使用非接触式喷墨印刷法沉积捕获分子,其中寡聚单体被一致地沉积在特别制备的载玻片上。此原位合成法通常可产生60个单体长度的寡核苷酸探针,例如从数字序列文件中逐个碱基地产生。
“基片”可为本领域技术人员已知的任意合适基片。基片可具有任意合适的形式或格式,例如其可为平的,弯曲的,例如中凸地或凹面弯曲地朝向发生相互作用的区域,基片可为卷曲的或包含波形格式。其也可被组织在圆形结构中。特别优选以珠状元件的形式组织,其可例如排列在阵列中。珠子可覆盖(overly)在基片表面或通过连接元件如棒等固定在反应区中。本发明设想的珠状元件的实例是包含捕获分子的磁性颗粒。可选地,可使用如本领域技术人员已知的涂珠。
通常,基片是固体支持物,即其包含主要为非液体稠度的支持材料并因此允许捕获分子在支持材料上的精确和可追踪的定位。基片的实例是包含功能化学基,例如胺基或胺功能基的固体材料或基片。本发明设想的基片的另外的实例是多孔支持材料或多孔基片如尼龙,例如Nytran N®或Nytran SPC®或Biodyne C®。另外的一般支持材料或基片类型是无孔基片。在无孔基片中优选玻璃、聚L-赖氨酸覆盖的材料、硝酸纤维素、聚苯乙烯、环烯共聚物(COC)、环烯聚合物(COP)、聚丙烯、聚乙烯和聚碳酸酯。硝酸纤维素膜是一般用于核酸范围中的转移技术的传统膜。实现核酸与硝酸纤维素结合的方法是在现有技术中广为人知的,通常通过物理吸附。硝酸纤维素的首要优势是其易得性和熟悉度。硝酸纤维素膜和放射性信号检测法的使用是建立完善的。作为硝酸纤维素膜的替代,可使用尼龙作为基片,特别是用于核酸结合,这是由于其更好的物理强度和结合能力,和提供的广泛范围的可用的、优化核酸附着的表面化学。例如,可通过光交联,特别是紫外光交联,或化学活化进行在尼龙膜上的固定。已经证明,在尼龙上的固定在重复剥离探针期间是非常持久的。可使用本领域技术人员已知的任意合适材料作为疏松材料。通常使用玻璃或聚苯乙烯。聚苯乙烯是适于结合负电荷大分子的疏水材料,因为其通常包含很少的亲水基。用于在载玻片上固定核酸,还知道通过提高玻璃表面的疏水性可增强DNA固定。这样的增强可允许相对更密集地填充的形成。除了用聚L-赖氨酸覆盖或处理表面以外,可通过硅烷化(例如用环氧树脂硅烷或氨基硅烷)或通过硅化(silynation)处理,或用聚丙烯酰胺处理疏松材料,特别是玻璃。也可用如本文上述的膜材料覆盖或涂布疏松材料。
一般的微阵列可包含多个点、特征、单独的固定区或单独的分子同一性区。例如,阵列可包含多于2, 5, 10, 50, 100, 500, 750, 1000, 1500, 3000, 5000, 10.000,20.000, 40.000, 50.000, 70.000, 100.000, 200.000, 300.000, 400.000, 500.000,750.000, 800.000, 1.000.000, 1.200.000, 1.500.000, 1.750.000, 2.000.000或2.100.000个点、特征、单独的固定区或单独的分子同一性区。这些区域可被包含在小于约20 cm2,小于约10 cm2,小于约5 cm2,小于约1 cm2,小于约1 mm2,小于约100 µm2的区域中。
微阵列可包一种或多种捕获分子种类,即在微阵列中可存在一种或多种不同的分子类型,如核酸和蛋白质,蛋白质和碳水化合物等。可选地,术语“一种或多种种类”也涉及相同类别或具有相同形式或格式的捕获分子,例如核酸,但所述捕获分子在其分子同一性(例如在核酸或蛋白质的情况下为序列)上不相同或不相似。因此,微阵列可包含不同的核酸,或不同的蛋白质,或不同的碳水化合物,或不同的抗体,或不同的配体等,或不同核酸和不同蛋白质等的任意组合。如果在微阵列中存在不同分子同一性的捕获分子,这些捕获分子可为部分相同的或部分相似的,即,特别是在核酸的情况下在序列上具有重叠,或可不具有重叠。这些捕获分子可包含基因组的任意合适区域或百分比,例如基因组的约0.00001 %至约30 %之间,如生物基因组,优选哺乳动物基因组,更优选人基因组的至少约0.00001,0.00005, 0.0001, 0.0005, 0.001, 0,005, 0.01, 0.02, 0.05, 0.06, 0.07, 0.08,0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.2, 0.3, 0.4, 0.5, 0.75, 0.8,0.9, 1, 1.5, 2, 3, 4, 5, 10, 15, 20,或30 %,和/或与这些区域互补的区域。这样的区域或百分比可包含,例如约2至5.000个基因,例如2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20,25, 30, 50, 100, 150, 200, 350, 500, 750, 1000, 1200, 1500, 2000, 2500, 3000,4000, 5000或多于5000个基因的组。这些基因可位于邻近的基因组区或区域中,或可选地可分散在基因组各处。也设想基因的亚组、组合、谱,例如来源于表达数据等的谱。
反应区可还包含一个或多个温度控制和/或调节单元。如本文使用的术语“温度控制和/或调节单元”指能够提供和/或维持温度在约0.5℃和120℃之间的范围中,优选地约20℃和100℃之间的范围中,更优选地约35℃和95℃之间的范围中的机械、电气(电阻式)、辐射、微波或任意其他合适的加热设备或元件。温度控制和/或调节单元可因此充当加热器(如果在反应区中的环境温度低于特定的预定值),或冷却器(如果在反应区中的环境温度高于特定的预定值)。温度控制和/或调节单元可相应地包含用于测量环境温度的传感器和允许起始冷却或加热活动的元件(如果测量的温度不在预定值上)。预定值可为任意合适的值,优选地约0.5℃和120℃之间,优选地的约20℃和100℃之间的范围中,更优选地约35℃和95℃之间的范围中的温度值。温度控制和/或调节单元可被独立地访问,例如通过其自身的使用界面,或被整合在类似元件的网络中,或被连接至调节电子设备等等。反应区可优选地包含1至15个之间的温度控制和/或调节单元。如果存在多于一个这样的单元,其温度可相对其他单元不同或可为相同或相似的。例如通过将反应区中的这样的单元设置为不同的温度,可在反应区内产生温度梯度。优选地,反应区可被设置为有利于待选择的靶分子和反应区中的捕获分子之间的相互作用的温度。
在本发明的特定实施方案中,反应区可为主体(bulk)反应区,即包含设备的大多数元件,例如微阵列等的反应区。这样的反应区可例如位于设备的内部和/或底部。
根据本发明的设备还包含至少一个非反应区,其包含一个或多个调节单元用于控制和/或调节非反应区中的温度,如本文上面已经描述的。因此,所述设备包含第二个或另外的具有加热和/或冷却元件的区域。反应区和第二个非反应区可相应地显示不同的温度或相似的温度或相同的温度。优选地,至少一个第二个非反应区与至少一个反应区相比具有不同的温度。例如,如果在至少一个反应区中的温度被设置为值x,在第二个非反应区中的温度可被设置为值x + 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75或85 ℃。优选地,至少一个包含一个或多个用于控制和/或调节区域中的温度的调节单元的非反应区可被设置为有利于被反应区中的捕获分子选择的靶分子的活化和/或再活化的温度。
另外或可选地,这样的非反应区可包含允许改变其他参数如带电实体的存在,离子的存在的单元、元件或装备,或可赋予机械或剪力等。例如,非反应区可适于产生电流或电泳电流,所述区域可适于提供特定的pH或特定的化学或物理实体的存在,例如特定酸、盐、溶剂等的存在,和/或所述区域可适于提供强介质移动。任意上述另外的设施也可用于根据本发明的设备的任意其他部分,例如用于反应区中。
在本发明的特定实施方案中,至少一个包含一个或多个温度控制和/或调节单元的非反应区可为表面反应区。如本文使用的术语“表面反应区”指如本文上面定义的反应区,其被放置在根据本发明的设备的外侧或表面。表面反应区可优选地不装备微阵列,但优选地被用于加热和/或再活化过程。
至少一个反应区和至少一个包含一个或多个温度控制和/或调节单元的非反应区还可被连接。如果在设备中包含流体介质,连接可为流体连接。可选地,连接也可为不同的,例如气体连接或空间连接等。如本文使用的术语“连接”指提供从一个区域到另一个区域运输材料,例如如本文上述的介质的可能性。这样的运输可为被动的,或通过运输装置被增强或传递。在设备的区域之间的连接可为管、管道、管线的形式或一个区域至另一个区域的延伸的形式,例如区域的并列。这样的区域的并列可具有任意合适的形式,例如区域可侧面连接,或一个在另一个上面,或堆叠的或可形成弯曲的结构等。
如在根据本发明的设备中存在的“运输装置”可为任意合适的元件、仪器或单元,其允许介质从一个区域至其他区域或反过来的移动和/或运输,即从至少一个反应区至至少一个包含一个或多个温度控制和/或调节单元的非反应区的移动和/或运输。这样的运输装置的实例是泵,例如3阀泵或纤毛泵。然而,也设想可被合适地整合进根据本发明的设备的任意其他类型或形式的泵。这样的运输装置可位于反应区和包含一个或多个温度控制和/或调节单元的非反应区之间,和/或可位于设备的末端。此外,运输装置可被整合进设备的一个或多个区域。运输装置可优选地调节设备中的流体的流动。可通过设置和/或调节流量或流速至特定的值实现调节。可根据待运输的材料、使用的温度、靶分子或捕获分子、在靶分子和捕获分子之间发生的相互作用类型等设置这样的值,和依赖上述因素决定这样的值。运输装置还可以不同的运行间隔使用。例如,可在特定时段中,例如约10 sec, 20 sec,30 sec, 1 min, 2 min, 3 min, 5 min, 7 min, 10 min, 15 min, 30 min, 40 min, 60min等中使用运输装置,随后关闭特定的时段,例如约10 sec, 20 sec, 30 sec, 1 min, 2min, 3 min, 5 min, 7 min, 10 min, 15 min, 30 min, 40 min, 60 min等,随后再次打开约10 sec, 20 sec, 30 sec, 1 min, 2 min, 3 min, 5 min, 7 min, 10 min, 15min, 30 min, 40 min, 60 min等,等等。可根据前面的间隔或相互作用反应的阶段改变或修改间隔,即其可在随后的步骤中变得更长或更短。如果在设备中存在多于一种运输装置,所有运输装置可工作或仅其一部分(sub-portion)工作。可根据反应区和/或第二个区的存在和定位确定和设置运输装置的有效数目和位置。
在本发明的特定实施方案中,设备可包含一个反应区,一个包含一个或多个温度控制和/或调节单元的非反应区和一个如本文上述的运输装置。在本发明的另外的优选实施方案中,设备可包含多于一个反应区,多于一个包含一个或多个温度控制和/或调节单元的非反应区和多于一个如本文上述的运输装置。例如,在设备中可存在2, 3, 4, 5, 6, 7,8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 35, 40, 50或多于50个的一系列反应区。可选或另外地,在设备中可存在2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,20, 25, 30, 35, 40, 50或多于50个的一系列包含一个或多个温度控制和/或调节单元的非反应区。可选或另外地,在设备中可存在2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,14, 15, 20, 25, 30, 35, 40, 50或多于50个的一系列运输装置。本发明也设想若干反应区和一个包含一个或多个温度控制和/或调节单元的非反应区和一个或若干运输装置的组合。
在本发明的另外的特定实施方案中,设备可包含至少一个主体反应区和至少一个表面反应区。设备也可包含多于一个,例如2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,14, 15, 20, 25, 30, 35, 40, 50或多于50个的一系列主体和表面反应区。可选或另外地,在设备中可存在2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30,35, 40, 50或多于50个的一系列运输装置。所有这些区域可被整合在室中,或可置于单独的外壳中,例如用如本文上述的连接元件连接。
如果在设备中存在多于一种区域类型,不同类型的区域可以类似阵列的形式存在,即基本上都聚集在一起。可选地,不同区域类型,例如反应区后可为包含一个或多个温度控制和/或调节单元的非反应区,和/或为一个或多个运输装置。
如果存在多于一个反应区,反应区可包含不同的微阵列,即包含不同捕获探针的微阵列。“不同的微阵列”可为例如能够与基因组DNA的不同部分,或不同的蛋白质组、抗体、配体等相互作用的微阵列。相互作用能力也可在微阵列或具有捕获分子的区域之间重叠。在一个反应区中或一个微阵列内也可存在捕获探针之间的差异。例如,特定的相互作用可仅在阵列的一侧有可能发生。可组合一个或若干这样的不同的微阵列或具有不同捕获分子的区域,例如以系列的形式。例如,基因组DNA的特定区域可被连续的行、域或一系列不同的微阵列或捕获分子覆盖。
在本发明的另外的特定实施方案中,第一反应区可包含用于大量靶分子,优选极大量靶分子,例如大量核酸分子的捕获分子。随后的反应区可包含用于量较少的靶分子的捕获分子,因此在优选的实施方案中形成从高丰度至低丰度的一系列反应区。在一个或多个反应区之间,例如在每个、每2个、每3个等反应区后,或在末端位置可散布一个或多个另外的包含一个或多个温度控制和/或调节单元的非反应区和/或一个或多个运输装置。可优选地使用这样的设置以区别选择复杂的靶分子,因为推测由于背景随着每个新反应区而减少,靶分子与捕获分子的相互作用更好。
区域可以任意合适的形式或设计排列。例如所有区域可排列成连续的线,例如如本文描述的弯曲的线,或可呈放射状排列,例如,具有或不具有经过圆心的连接,或可排列成低于或高于中心水平存在的三维形式的区域。
在本发明的优选实施方案中,用于控制和/或调节区域内的温度的单元可被整合进区域。例如,所述单元可在区域的底部或顶部或壁面作为加热设备存在。可这样整合,即加热设备被例如玻璃或塑料板的结构覆盖,所述结构优选地允许容易地处理热或冷。可选地,所述单元可作为突出的元件位于区域中并相应地能够对区域直接驱散热或冷。也可组合两种形式。此外,可在根据本发明的区域,例如反应区中整合一个或多个运输装置。可这样整合,即运输装置被一种结构覆盖,或作为突出的元件位于区域中。
在本发明的另外的优选实施方案中,用于控制和/或调节区域内的温度的单元可位于外部。例如,所述单元可位于区域的上面或下面,并以传导、对流、辐射(红外线或微波)的形式,或以热或冷的空气或液体的形式,以微波的形式,通过使用Peltier元件等驱散热。此外,可使用整合的冷却和/或加热通道(冷或热的液体可流经所述通道)或可与设备连接的块状冷却元件(例如金属元件)。也设想与超声波的连接,这可用于加热的目的。可通过在电阻器中的电力耗散和/或通过Peltier元件产生热。所述区域可还位于被设置为特定温度的室或空间内。此外,可以本领域技术人员已知的任意合适方式组合任意上述整合地和外部提供的加热或冷却单元。
在本发明的另外的优选实施方案中,如本文上面定义的反应区,如本文上面定义的包含一个或多个温度控制和/或调节单元的非反应区和/或如本文上面定义的运输装置可排列在封闭的环中。如本文使用的术语“封闭的环”指提及的区域和装置的排列,所述排列允许材料例如流体从一个区域到下一个区域和相应的材料回到起始区域的单向流动。这样的排列允许材料在相同的区域,例如一个或多个反应区上的连续的循环移动。所述重复通过重复靶分子和捕获分子之间接近的机会,特别地允许增加这些分子之间的相互作用数。连接可为如本文上面定义的连接,例如通过管、管道、管线等。在这样的设置中,可根据需要调节在设备的不同部件中的流量。例如,可使用这样的流量,其在相互作用区降低以允许靶分子的延长的相互作用窗口。封闭的环可还具有一个或多个入口和出口点或端口,例如1, 2, 3, 4或5个入口或出口。在这些端口中,可引入或去除包含将与捕获分子结合的靶分子的介质。
在本发明的另一个优选的实施方案中,如本文上面定义的反应区,如本文上面定义的包含一个或多个温度控制和/或调节单元的非反应区和/或如本文上面定义的运输装置可排列在单个流径中。如本文使用的“单个流径”指不存在环状元件的区域的线性排列。在这样的排列中,反应区可在一侧与运输装置例如抽吸区或室组合,并可在另一侧与如本文上面定义的包含一个或多个温度控制和/或调节单元的非反应区连接,所述非反应区依次后接运输装置例如抽吸区或室。连接可为如本文上面定义的连接,例如听过管、管道、管线等。运输装置相应地允许材料或介质在反应区和如本文上面定义的包含一个或多个温度控制和/或调节单元的非反应区之间来回运输。可选地,所述区域可以任意其他组合排列,只要保留其线性排列。在另外的可选的分支末端,可使用包含运输装置或如上定义的区域的分支。
在本发明的另一个优选的实施方案中,如本文上面定义的反应区,如本文上面定义的包含一个或多个温度控制和/或调节单元的非反应区和/或如本文上面定义的运输装置可被整合在单独的腔或室中。这样的整合可以下述形式提供:如本文上面定义的反应区,如本文上面定义的包含一个或多个温度控制和/或调节单元的非反应区和/或如本文上面定义的运输装置极为接近,或区域之一至下一个区域的延伸或与其的融合。在特别优选的实施方案中,根据本发明的设备包含反应区,其包含如本文上面定义的微阵列和多于一个用于控制和/或调节温度的温度控制和/或调节单元,其中在所述单元中的温度被设置为2个或多个不同的值,例如,有利于靶分子和捕获分子之间的相互作用的值和有利于靶分子的活化或再活化的值。运输装置可相应地位于壁面区或置于室的入口或出口点。室也可以封闭系统的形式排列,没有入口或出口点,或具有可密封的入口和/或出口点,一旦介质进入后可被关闭。
特别优选细长的腔或室。如本文使用的术语“细长的”指室的形式,其中室的一侧比另一侧长。如本文使用的术语“更长”指约2, 4, 5, 6, 10, 15, 20, 30, 40或50等的系数。通常,室可宽大于深(broader than lower),例如约2, 4, 5, 6, 10, 15, 20, 30, 40或50的系数。可选地,本发明也设想本领域技术人员已知的室的任意其他形式、形状或排列。
这样的室在另外的特别优选的实施方案中可包含任意合适数的重复的如本文上面定义的反应区,如本文上面定义的包含一个或多个温度控制和/或调节单元的非反应区和/或如本文上面定义的运输装置。例如,这些区域可存在2, 4, 5, 6, 7, 8, 9, 10, 11,12, 13, 14,或15次。
在本发明的特别优选的实施方案中,可这样排列如本文上面定义的封闭的环或单个流径,即使在至少一个反应区和至少一个包含一个或多个温度控制和/或调节单元的非反应区之间的材料(例如流体)的连续交换有可能。如本文使用的术语“材料的连续交换”指在提及的区域中的恒定流量。所述术语又指区域间材料的定量交换,即在一个区域中存在的所有或基本上所有材料、介质或流体可被运输到下一个或不同的区域。如本文使用的“基本上所有”指至少约70, 75, 80, 85, 90, 95, 98, 99, 99.5或100%的材料。可通过在区域或连接区或连接管或管道等中使用疏水或超疏水材料传递相应地材料交换,例如通过避免流径中的角落或转角和/或调节流量等至定量交换等,避免区域中的局部涡旋和湍流。流体材料的交换可发生1次或若干次,例如约2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,14, 15, 20, 30, 40, 50, 100, 200, 500, 1000或多于1000次。
在本发明的另外的优选实施方案中,如本文上述的设备可还包含混合装置。如本文使用的“混合装置”指混合结构,其一般在材料或介质的流径中,例如在流体或液体流径中并能够导致局部涡旋和/或湍流。这样的混合结构可为,例如在流径中的一个或多个分配器或分离器棒,在流径中的突起或突出,在流径中的存在弯曲或本领域技术人员已知的任意其他合适的机械或设计元件。可选地,也可通过抽吸或主动混合单元,例如涡轮状单元、搅拌器单元、鼓泡器单元或介质,特别是流体搅拌机提供混合。这些元件的使用可导致有关介质(特别是流体)的温度的区域中的均质性提高,和/或有关待选择的靶分子的含量的均质性提高。
混合装置优选地位于设备的区域之间的连接区,例如在区域之间的流体连接区中。例如,所有流体连接,或10%, 20%, 30%, 50%, 70%, 80%或90%的连接可包含这样的混合装置。混合装置可在连接的入口、中间、出口或任意其他位置,或在整个连接的各处存在。例如,混合装置可填充约10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%或90%的连接区,例如管、管道或管线的直径。
在本发明的另外的优选实施方案中,任意上述区域和/或整个设备可包含弯曲的流径。如本文使用的“弯曲的路径”指强烈弯曲的和曲折的流径,其优选地包含显著比例的区域面积。例如,流径可为这样弯曲和曲折的,即使多达40%, 50%, 60%, 70%, 80%, 90%或95%的区域或整个设备的面积被流径覆盖或占据。流径可在特定的实施方案中包含一种或多种微阵列或固定的捕获分子。在本发明的另外的实施方案中,弯曲的流径可仅在反应区中存在或仅在包含一个或多个温度控制和/或调节单元的非反应区中存在。沿着弯曲的流径可放置运输装置,例如在设备的壁面或在任意其他合适位置。还可在弯曲的流径中提供导致内部环产生的分支,还可对所述分支提供另外的运输装置,这允许介质重复经过弯曲的流径。
可对设备的分支点或任意其他位置提供任意合适种类的门、出入口或阀门。这样的元件可能能够控制介质流的方向和速度。此外,所述区域和/或连接区可另外包含允许去除或检测介质中的成分的筛子和/或滤器。筛子或滤器可为特定孔径的,仅允许小于排阻大小的物体通过。通过使用这样的元件,例如可分离不同类型的细胞、大分子如蛋白质等。
在本发明的另外的、特别优选的实施方案中,设备是被设计用于选择核酸靶分子的设备。相应地,设备可包含核酸捕获分子微阵列,器优选地与如本文上面定义的待选择的靶分子互补。此外,设备可包含一个或多个反应区,其充当所述微阵列和所述待选择的靶分子之间的杂交区。在所述杂交区中的温度可维持在任意合适的值,例如在约20℃和70℃之间,在约40℃和70℃之间的温度,或约20, 30, 40, 42, 45, 50, 55, 58, 59, 60, 62,65, 67或70℃的温度。可依赖杂交反应的一种或多种参数调节或设置温度,例如捕获分子的长度,介质的组成,盐或离子的浓度,pH,流量等。捕获探针分子可具有约20至150核苷酸之间的长度。特别优选具有约40至70核苷酸,更优选约50至60核苷酸之间的长度的捕获分子。大体上,较短的捕获分子可能需要较低的杂交温度和较长的捕获分子可能需要较高的杂交温度。在本发明的特别优选的实施方案中,在反应区中的杂交是特异性杂交。此外,对含有相当比例的甲酰胺的反应缓冲液可使用较低的温度,而对不含甲酰胺的反应缓冲液可使用较高的温度。
如本文使用的术语“特异性杂交”指在严格条件下,核酸与特定的另外的核酸,例如捕获探针的结合、形成双链或杂交。术语“严格条件”在核酸杂交的上下文中是序列和序列长度依赖的,并如本领域技术人员应当知道地,在不同的实验参数下可能不同。在本发明的情况下可使用的严格杂交条件的实例是在42℃下在包含50%甲酰胺、5xSSC和1 % SDS的缓冲液中的杂交,或在65℃下在包含5xSSC和1 % SDS的缓冲液中的杂交。示例性严格杂交条件也可包括在37℃下在40%甲酰胺、1M NaCl和1% SDS的缓冲液中的杂交。可选地,可在65℃下在0.5 M NaHPO, 4,7% SDS, 1 mM EDTA中进行杂交。其他另外的严格杂交条件包括在60℃或更高的温度下和3xSSC (450 mM氯化钠/45 mM柠檬酸钠)中的杂交,或在包含30%甲酰胺、1M NaCl、0.5%肌氨酸钠、50 mM MES, pH 6.5的溶液中在42℃下孵育。在本发明的情况下可使用的洗涤条件可包括,例如约0.02摩尔的盐浓度,在pH7和至少约50℃或约55℃至约60℃的温度下;或约0.15M NaCl的盐浓度,在72℃下进行约15分钟;或约0.2xSSC的盐浓度,在至少约50℃或约55℃至约60℃的温度下进行约15至约20分钟;或用具有约2xSSC的盐浓度的包含0.1% SDS的溶液在室温洗2次杂交复合物,每次15分钟,并然后用包含0.1% SDS的0.1xSSC在68℃下洗2次,每次15分钟;或等同的条件。可选地,可在0.1xSSC/0.1% SDS中在68℃下进行洗涤。用于洗涤的严格条件也可为,例如在0.2xSSC/0.1% SDS中在42℃下。此外,可使用任意合适的可商业获得的杂交和/或洗涤和/或孵育缓冲液或介质等。
用于根据本发明的杂交反应的介质可还包含特定的盐,例如羧基盐,或分子的氨基的酸加成盐(acid addition salt)。羧基盐可通过本领域已知方法形成,并包括无机盐,例如钠、钙、铵、铁或锌盐等等,和有机碱盐,如例如与胺类,例如三羟乙基胺、精氨酸或赖氨酸、哌啶、普鲁卡因等形成的盐。酸加成盐包括,例如无机酸盐,如例如盐酸或硫酸盐,和有机酸盐,如例如醋酸或草酸盐。在本发明的另外的优选实施方案中,包含温度控制和/或调节单元的非反应区是变性区。如本文使用的术语“变性区”指待选择的靶分子或将与根据本发明的捕获分子结合的靶分子的再活化或变性。优选地,所述术语涉及能够并用于核酸变性的区域。如本文使用的术语“变性”指双链核酸分离为2条单链,这在链间的氢键破裂时可发生。为了允许核酸变性,可将变性区维持在约75℃至100℃的温度上,优选地约80°至95℃的温度上,例如约80, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97或98℃的温度上。特别优选95℃的变性温度。
如果在根据本发明的设备中存在多于一个反应区和/或变性区,反应区可具有单独地不同的温度和/或变性区可具有单独地不同的温度。可选地,所有变性区和所有反应区可具有相同或相似的温度。如果在例如设备中的多于一个微阵列中使用不同长度的捕获分子,可相应地调节杂交温度,特别是根据上面提供的一般方法。相反地,待选择的靶分子,即核酸的形式,例如长度和复杂性可对杂交温度和/或变性温度具有影响。杂交温度和/或变性温度可随着这些分子的长度减少而减少。
在另外的方面,本发明涉及新的改进的阵列布局。这样的布局可用于任意类型的阵列,例如用于包含核酸的微阵列,蛋白质阵列或任意其他合适的阵列形式,例如,如本文上述的或本领域技术人员已知的阵列形式。特别优选在本文上述特征的设备的上下文中使用的或可用的改进的布局系统。通常,阵列的新布局不再包含以单独位置的形式固定的探针,而是提供了这些探针的成直线的组织。此新的材料或元件在阵列中的组织提供了以下优势,即与点或其他迄今使用的布局形式的使用相比,提高了相互作用物,例如互补核酸分子、抗体、配体等找到相应的捕获探针的机会。与样品材料的流径相交的线的存在还提供了强制样品在至少某点穿过每条探针线的优势。相应地,线可用作捕获设备,从而提供捕获分子和相互作用分子,例如靶分子之间的更有效的相互作用。包含线的新布局的存在提供了对基于微阵列技术的选择过程高度有效的另外的优势,因为这里不需要随后的光学检测,即可通过线的存在进行结合反应的优化,而不依赖任何有关相互作用元件的光学检测的事宜,即阵列的组织有利地仅由结合效率事宜支配,而不受有关随后检测的事宜和更重要地,靶分子和捕获分子之间的相互作用的差别的支配。
在此新方面的特定实施方案中,阵列布局可包含线,以相对阵列上的流径约5°至约90°的角度提供所述线。
在此新方面的另外的特定实施方案中,阵列布局可包含线,以相对阵列上的流径约45°至约90°的角度提供所述线。
在此新方面的另外的甚至更优选的实施方案中,阵列布局可包含线,其基本上垂直或正交于阵列上的流径。如本文使用的术语“基本上垂直”指相对阵列上的流径约85°至95,优选约90°的角度。
如在阵列布局的上下文中使用的“流径”指相对阵列的材料流,例如液体或液体中的探针。可相对在固定位置中包含阵列的设备确定流径,或相对流径排列阵列,通过改变其位置和/或在三维空间中的倾角。阵列上的流径的方向可为任意合适的方向,例如,流径可开始于阵列的任意侧,阵列的每一侧的任意点,或任意合适的角度,即从0°至360°。流径可与阵列平行或与阵列平面在相同的平面上(具有0°的倾角),或相对阵列平面具有倾角。例如,流径可具有约1°至约45°的倾角。如果具有倾角,流径的方向可从阵列上面朝向阵列平面。流径也可在阵列使用期间以约1°至270°的步幅,例如以约5°,10°, 20°, 30°, 45°,60°, 70°, 80°, 90°, 120°, 145°, 180°, 270°等的步幅被改变或翻转,例如变为对面。
在阵列具有长度不相等的边,例如具有长方形或矩形的形式的情况下,流径的方向优选地与长边平行。在此构型中,可在阵列上放置较多的具有减少的长度的线。可选地,流径的方向可与短边平行。在此构型中,可在阵列上放置较少的具有增加的长度的线。
在此新方面的另一个特定实施方案中,阵列布局可包含相同或相似长度和/或相同或相似宽度的线。可选地,阵列布局可包含不同长度和/或不同宽度的线。如在此上下文中使用的术语“不同”指在最短和最长的线之间或在最细和最粗的线之间的约10, 20, 30,40, 50, 60, 70, 80, 90, 100, 150, 200, 300, 400, 500, 750, 1000或大于1000%的差异。
优选地,阵列中的所有线从阵列的一侧延伸到阵列的对侧,在流径的方向上不留下未被覆盖的区域。在本发明的此方面的可选实施方案中,也可在阵列的侧面之前,例如在阵列的两侧或仅在一侧前终止线。
在此新方面的另外的实施方案中,线可在阵列的转角方向延续,例如,如果以相对流径<约90°和>约5°的角度提供线的话。如果设想这样的延续,与阵列中的其他线相比,转角中的线可为不同的质量。其可例如比其他线粗。可选地,其可包含显示比其他捕获分子更容易相互作用的模式的捕获分子,导致与阵列的其余区域相比在转角区中的相似的相互作用量。在另外的可选方案中,其可用于捕获容易被捕获的片段。这样的方法提供了以下优势,即在最终的测序实验中可实现一致的覆盖。
在本发明的此新方面的另外的实施方案中,每条线可包含不同的捕获分子。可选地,每条线可包含2个或多个包含不同捕获分子或由不同捕获分子组成的区域,例如,每条线可包含约2至100种之间的不同的捕获分子,例如2, 3, 4, 5, 6, 7, 8, 9, 10, 15,20, 30, 40或50或多于50个不同的捕获分子。在线中的单个区域可为线性排列。可选地,所述线可包含2个或多个包含相同捕获区的区域,在区域间散布包含不同捕获分子的区域。
在本发明的此新方面的另外的实施方案中,相同的捕获分子可存在于2条或多条不同的线中,例如在一个区域中每隔2或3条线等可包含相同的捕获分子。此外,多于一条线可包含特定的捕获分子。例如,特定的捕获分子可存在于阵列中的2至50条线中,例如2, 3,4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50或多于50条线中。这些线可一个接一个的放置,或以任意其他合适的模式在阵列中分布。例如,每隔2, 3, 4, 5, 6, 7, 8, 9, 10,15, 20, 30, 40, 50, 100等条线分布。线可包含确定或特定的捕获分子或由确定或特定的捕获分子组成。
在本发明的此新方面的另外的实施方案中,如本文上面定义的线可具有约100 nm至约100 µm,优选约300 nm至30 µm之间的宽度,例如约150 nm, 200 nm, 300nm, 400nm,500 nm, 600 nm, 700 nm, 750 nm, 800 nm, 900 nm, 1 µm, 2 µm, 5 µm, 7 µm, 10 µm, 12µm, 15µm, 20 µm, 25 µm, 30 µm, 35 µm, 50 µm, 75 µm或100 µm的宽度。
在本发明的此新方面的另外的实施方案中,可以任意合适的和技术上可行的线间距排列如本文上面定义的线。线间距可优选地尽可能得小。如通过实验证明的,线之间的区域应当优选地小于线的区域。此外,探针或探针线未覆盖的区域可引起特异性结合和因此降低选择的片段在靶上的百分比。线间距可为约25 nm至200 µm,优选地约500 nm至约100µm,例如约600 nm, 700 nm, 750 nm, 800 nm, 900 nm, 1µm, 2µm, 5µm, 7 µm, 10 µm,12 µm, 15 µm, 20 µm, 25µm, 30 µm, 35 µm, 50 µm, 75 µm, 100 µm, 150 µm或200 µm的线间距。
在本发明的此新方面的另外的实施方案中,可在阵列上产生任意合适数量的线。线的数量可主要取决于数量和/或长度和/或将放置在阵列上的捕获分子的复杂性,阵列基片的类型,设想的阵列的总尺寸等。在约1000µm2的预定的示例性阵列面积上可放置约2至30.000数量的线,优选5.000至25.000数量的线,更优选10.000至23.000数量的线。
在本发明的此新方面的另外的实施方案中,如本文上面定义的线可结合不同的沉积形式,例如点、细长点、圆形线、矩形线、螺线等排列。也可使用圆形线、矩形线、螺线或任意其他弯曲或连接的线的形式作为唯一的布局类型。如本文使用的术语“点”和“细长点”分别指圆盘形元件或短的宽线。
在使用不同的沉积形式的组合作为布局的情况下,不同形式的元件可为分散的,或将相似的元件保留在区域中,后接下一个元件类型等。可选地,元件可随机分布在阵列上。此外,可根据阵列上的流径沉积元件,例如与流径相交的线,线间的或在流径的交界处的点等。
可在本领域技术人员已知的任意合适技术的帮助下产生根据本发明的此新方面的线,例如使用涉及喷墨技术的点阵(spotting)技术,使用蘸水笔平版印刷术,使用基于激光的生成技术或微接触印刷,或使用印刻或光刻技术。这样的技术及其实现将是本领域技术人员已知的。例如,可使用如Affymetrix Inc.提供的平版印刷术方法。
在本发明的优选实施方案中,如本文上述的设备可包含以点、细长点或线的形式组织的固定的捕获探针。特别优选以如本文上面定义的包含线的布局的形式组织捕获探针。此外,可以不同布局形式的混合,优选地如本文上面定义的混合形式组织固定的捕获探针。
在另外的优选实施方案中,根据本发明的设备可包含固定的探针,所述探针以相对流径约20°和90°之间的角度的线排列。进一步优选以相对流径约45°和90°之间的角度。特别优选相对流径约90°的角度,即相对流径垂直方向的线。线可还具有相对流径不同的角度,特别是在阵列布局方面的上下文中如本文上面定义的角度。
在另外的优选实施方案中,根据本发明的设备可包含具有约300 nm和30 µm之间的宽度的线。优选300nm的宽度。也优选0.5 µm, 1 µm和10 µm的宽度。此外,线可以约50 nm至100 µm的线间距排列。特别优选2 µm的线间距。另外,线可具有在阵列布局方面的上下文中如本文上面定义的任意宽度。
在另外的方面,本发明涉及特异性选择靶分子的方法,其包括以下步骤:(a)在如本文上面定义的任意设备的区域中引入含有一种或多种靶分子的介质;(b)在所述靶分子和在反应区中固定的捕获分子之间进行相互作用反应;(c)将未相互作用的或未结合的靶分子运输至包含一个或多个温度控制和/或调节单元的非反应区;(d)在包含一个或多个温度控制和/或调节单元的非反应区中再活化所述靶分子;和(e)将再活化的靶分子运输至反应区,因而允许所述靶分子和根据步骤(b)的固定的捕获分子之间的进一步相互作用。如本文使用的术语“含有一种或多种靶分子的介质”指包含如本文上面定义的靶分子的介质,例如在介质中包含核酸,蛋白质,肽,任意形式和格式的配体,抗体,抗原,小分子如有机或无机结构或有机或无机结构的混合,例如碳水化合物或糖,聚合物,实体如细胞或细胞碎片或细胞亚部分,例如细菌细胞或其碎片,真核细胞或其碎片,病毒颗粒或病毒,或上述任意衍生物或组合。优选地,所述靶分子是核酸,更优选DNA,甚至更优选基因组DNA,最优选人基因组DNA。
在介质中包含的核酸可事先被处理以允许与捕获分子的相互作用。这样的处理可包括,首先,核酸分子,例如基因组DNA的剪切。例如,可根据本领域技术人员已知的合适程序(例如引自WO 2008/097887的)进行物理剪切。一般的剪切方法包括使用声处理、雾化或二者的组合。随后,可修复核酸分子。示例性合适修复方法是基于本领域技术人员已知的平末端和磷酸化反应的末端修复。另外或可选地,核酸分子可与允许随后的扩增反应的衔接分子连接。可根据本领域技术人员已知的任意合适方法将这样的衔接分子连接至核酸分子。这样的衔接子还可避免或减少由于衔接分子上的突出端的自身连接,其可相对靶分子是唯一的和/或与另一个衔接子互补(又见WO 2008/097887)。在任意上述步骤以后,可清洗核酸并与合适的介质混合。这样的介质的实例是如本文上面定义的杂交缓冲液或溶液。
可根据本领域技术人员已知的任意合适技术将介质引入设备。通常,可通过本文上述的一个或多个入口将介质引入设备。可选地,可将盖子举起并可将介质引入设备的全部区域;随后可再次关闭盖子。也可将设备连接至其他设备的网络,例如自动化检测仪器或仪器组(conjunction of appartuse)。相应地,可通过引入管或管道,优选地装备阀门和/或运输装置的引入管或管道将介质自动递送至设备。可将介质引入根据本发明的设备的任意区域。优选地,将介质引入包含一个或多个用于控制和/或调节区域内的温度的温度控制和/或调节单元的非反应区中。如果将介质引入所述区域,在继续下一步之前,可例如通过加热步骤,例如加热至约80至99℃的温度,优选加热至95℃活化介质。随后可将介质运输至反应室,优选地使用如本文上述的运输装置。
随后,可进行靶分子和固定的捕获分子之间的相互作用反应。在本发明的特定实施方案中,所述相互作用是核酸分子之间的相互作用。相应地,本发明特别设想进行杂交反应。可根据本领域技术人员已知的任何合适方案,优选地根据本文上面提供的细节进行这样的杂交反应。特别优选在约40℃至70℃的温度下进行杂交反应。例如,可在约40℃, 42℃, 44℃, 45℃, 50℃, 55℃, 60℃, 65℃等的温度下进行杂交。可使用任意上述捕获分子作为捕获分子,在核酸的情况下,可使用如本文上面定义的包含核酸的捕获分子。如描述的相互作用反应可导致一种或多种捕获分子和一种或多种靶分子的相互作用,例如核酸分子可与互补的捕获分子结合。核酸分子之间,例如靶分子和捕获分子之间的相互作用或结合能力的程度可通过若干参数调节,例如杂交温度,缓冲液中的盐和/或甲酰胺的量,反应区中的流量等。优选地,可达到约80%至100%的互补性,更优选地85%, 90%, 95%, 97%, 98%或99%的互补性。另外,可例如使用本领域技术人员已知的合适的控制设备,例如荧光信号的检测等控制相互作用过程的结果。
未与捕获分子相互作用的或未与捕获分子结合的靶分子,例如在核酸的情况下那些通过与另外的互补的单链核酸的相互作用成为双链,但未与捕获分子形成双链体的核酸可随后被运离反应区。可通过如本文上述的运输装置进行此运输。在特定的实施方案中,在设备中产生恒定的或连续的介质或材料流,其可导致在反应区中的介质或材料的交换或替换。所述介质或材料,例如包含未结合的靶分子或核酸的杂交缓冲液可到达包含一个或多个温度和/或调节单元的非反应区。在本发明的设备的上下文中如本文上述的,这样的区域可在与反应区在空间上分离,或可被整合在反应区中。所述区域的温度在特定的实施方案中可被设置在高于反应区中使用的温度上。
在到达包含一个或多个温度和/或调节单元的非反应区后,靶分子可被再活化。再活化可为允许产生原状,特别是允许靶分子与捕获分子相互作用的状态的本领域技术人员已知的任意合适方法。反应可取决于使用的靶分子的类型和/或捕获分子的类型。在核酸的情况下,再活化可包含导致双链体结构解链的温度的升高,即核酸的变性。在抗体或配体相互作用的情况下,可改变如温度、带电单元的存在、离子的存在、机械或剪力等的参数。例如,可形成电流,可改变pH,可产生强介质移动等。特别优选在约80℃至98℃,更优选约95℃的温度下变性核酸分子。再活化步骤可进行任意合适长度的时间,并可例如通过设备中的速度或流量控制。通常,可降低非反应区中或附近的流量,可非连续地,例如在约0.1秒至10分钟的特定间隔中使用运输装置,从而允许再活化过程进行。在核酸的情况下,再活化或变性过程可优选地导致约50%至100%,更优选地至少约70%,更优选地至少约85%和最优选地基本上所有双链靶分子的变性。还可通过本领域技术人员已知的合适的控制机制控制再活化过程的效果,例如使用插入分子,使用荧光检测等。
随后,再活化的,例如变性的靶分子可被运输至反应区,在那里可进行靶分子和捕获分子的相互作用。反应区可为在第一次相互作用计划中已经使用的相同区域,或可为不同的区域。例如,如果使用一系列反应区,例如通过变性区散布的反应区,再活化的靶分子可被运输至不同的反应区。通过使用如上所述的控制设备,还有可能检查在介质中存在的靶分子的量。取决于介质中存在的靶分子的量,在本发明的特定实施方案中,可控制介质的运输。通常,只要在介质中仍然存在至少多于0.01, 0.1, 0.5, 1, 2, 3, 4, 5, 10, 20,30, 40或50%的靶分子的初始量,就进行运输。如果未达到这样的阈值,可停止运输和/或可停止方法。可选地,如果未达到阈值,可设想过程的继续,例如通过产生到第一反应区或任意其他反应区的流动循环。可通过使用如本文上述的设备的阀门,可选的管或管道等实现这样的循环。
在本发明的特定实施方案中,可在其他步骤之外单独或分别地进行任意上述步骤。此外,可取消或忽视一个或多个步骤和/或以任意合适的方式颠倒或改变步骤的顺序。例如,在将含有一种或多种靶分子的介质引入设备的区域,在所述靶分子和反应区中固定的捕获分子之间进行了相互作用反应;和将未相互作用或未结合的靶分子运输至包含一个或多个温度控制和/或调节单元的区域后,可停止所述方法。可选地,可能不涉及运输步骤且介质可在原位,例如在温度梯度中再活化,例如变性。这样的方法可与如本文下面定义的通过热的洗脱组合。
在本发明的另外的优选实施方案中,进行相互作用反应的步骤,将未相互作用或未结合的靶分子运输至包含一个或多个温度控制和/或调节单元的区域的步骤,和在包含一个或多个温度控制和/或调节单元的非反应区中再活化靶分子的步骤,和/或将再活化的靶分子运输至反应区的步骤可重复1至若干次。可进行例如多达1000次,优选地多达100次的重复。还可以相继的顺序,即一个在另一个之后,或平行进行所述步骤,特别是如果使用一系列区域时。也可连续地进行所述步骤,例如以再循环的方式。当需要时也可组合2种变体。
在另外的特定实施方案中,可进行所述方法任意合适的时间。例如,可进行所述方法约0.5分钟至150小时,优选地约1分钟至72小时,更优选地约5分钟至20小时。甚至更优选地,可进行所述方法10分钟至2小时。例如,可依赖于捕获分子和/或靶分子的类型、结构、量、复杂性决定运行时间。
在运输、相互作用和/或再活化步骤终止后,可根据本领域技术人员已知的任意合适程序从微阵列中回收相互作用的或结合的靶分子。例如,在核酸的情况下,可例如根据WO2008/097887中,特别是所述文件的实施例3-13中提及的方案,从微阵列上洗脱结合的DNA片段。优选基于高温的,例如90-99℃,例如95℃的温度的核酸的洗脱。在蛋白质或配体相互作用的情况下,可使用相应的合适的回收或洗脱程序。这样的程序,例如使用高盐浓度、高温例如95℃或使用NaOH是本领域技术人员已知的,并可来自如Lottspeich, F.,和ZorbasH. (1998) Bioanalytik, Spektrum Akademischer Verlag, Heidelberg / Berlin,Germany的教科书。相应回收的分子可随后被进一步处理或分析。在核酸的情况下,所述分子可通过PCR进一步扩增和/或可直接用于测序程序。
在本发明的特定实施方案中,可使用如本文上面定义的用于控制和/或调节区域内的温度的单元进行基于高温的洗脱。例如,在反应区中存在的如本文上面定义的用于控制和/或调节区域内的温度的单元可被加热至约95℃的温度,导致相互作用成分,例如核酸的洗脱。这样的步骤通常在已经冲洗掉最初的未被靶向的分子,例如基因组DNA的部分后进行。这些成分可随后通过任意合适的装置,例如在运输装置的帮助下,通过储液器,接收单元,盆等回收。可在其他区域中的其他相互作用步骤的运行期间,或整个设备的运行期间,或在平行的测定反应终止后进行这样的洗脱。在另外的实施方案中,洗脱的分子也可用于在相同设备中的其他相互作用,例如使用相同的捕获分子或使用不同类型的捕获分子或微阵列。可使用这样的方法以在一类靶分子中选择2种或多种不同特征。
在另外的方面,本发明涉及本发明的设备在特异性选择靶分子,特别是如本文上述的靶分子中的用途。这样的靶分子的实例是核酸,蛋白质,肽,任意形式和格式的配体,抗体,抗原,小分子如有机或无机结构或有机或无机结构的混合,例如碳水化合物或糖,聚合物,实体如细胞或细胞碎片或细胞亚部分,例如细菌细胞或其碎片,真核细胞或其碎片,病毒颗粒或病毒,或上述任意衍生物或组合。特别优选的是根据本发明的设备在选择核酸,更优选地DNA分子,甚至更优选地基因组DNA分子,例如人或哺乳动物基因组DNA分子中的用途。可根据在捕获分子中存在的互补区选择这些基因组DNA分子。通常,可通过此方法选择基因组的一部分,例如基因组的约0.00001 %至约30%,例如生物的基因组,优选地哺乳动物基因组,更优选地人基因组的至少约0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0,005, 0.01, 0.02, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14,0.15, 0.16, 0.2, 0.3, 0.4, 0.5, 0.75, 0.8, 0.9, 1, 1.5, 2, 3, 4, 5, 10, 15,20,或30 %。这样的区域或百分比可包含,例如约2至5.000个基因,例如2, 3, 4, 5, 6, 7,8, 9, 10, 15, 20, 25, 30, 50, 100, 150, 200, 350, 500, 750, 1000, 1200, 1500,2000, 2500, 3000, 4000, 5000或多于5000个基因的组。这些基因可位于相邻的基因组区或区域,或可可选地散布在基因组各处。也设想基因的亚分组、组合、谱,例如来源于表达数据等的谱。可按照本领域已知的合适程序,例如根据基于微阵列的基因组选择(MGS)程序,如在WO 2008/097887中描述的靶捕获程序预测序富集程序进行预处理,靶分子的制备,捕获分子的制备,分子的洗脱,后处理等。在特别优选的实施方案中,本发明的设备或方法可用于靶富集,例如用于进行基于微阵列的基因组选择、靶捕获或测序前富集。
为了说明的目的提供以下实施例和图。因此应当理解,实施例和图不应被视为限制性的。本领域技术人员将无疑地能够设想本文展示的原则的进一步修改。
实施例
实施例1——在氨基硅烷表面的功能性玻璃基片上具有捕获寡核苷酸(ON)的点阵列上的ON的杂交。
通过以300 µm节距(pitch)的阵列样式打印在PBS中的寡核苷酸(ON)(19碱基)溶液产生约100微米直径的点。在干燥后,用紫外光辐射照射基片以将ON的多聚A部分交联至在表面上存在的氨基,接着是洗涤步骤。在激光切割压敏胶粘剂(PSA)层的辅助下,将玻璃盖置于基片上。这样选择PSA的形状,使得产生弯曲状通道,所述通道使盖子上的2个流体端口彼此连接。将这些设备置于具有6个可单独控制的3 x 6 mm面积的区域和整合的温度传感器的模式化的加热设备上。
具有与捕获探针序列互补的序列和装备不同浓度的荧光标记物(Atto 700)的单链(ss)和双链(ds)寡核苷酸溶液以6 µl/分钟的速度通过弯曲通道泵入,同时以如下温度设置加热具有6个加热区的设备:在30分钟期间在流动方向上,50/50/95/95/50/50℃。在此流过孵育结束时,在室温通过通道泵入PBS洗涤溶液5分钟。在干燥后,将设备置于共聚焦荧光扫描仪上并读出点的强度。图7显示了在10nM浓度的ds ON溶液情况下在弯曲通道中得到的强度的一般结果,指示了流动方向。荧光强度在曲流的入口区非常低,但在出口区,即在通过95℃的区域后非常高,在95℃的区域中ds ON变性,所以游离的ss ON可与表面上的互补ON捕获探针杂交。
图8显示了除了温度设置外,在与图7相同的条件下孵育后得到的荧光谱,其中使用50℃替代在中间区的95℃。在这些条件下没有发生变性,所以结合效率没有提高且荧光强度维持很低。
实施例2
在具有用Atto 700标记的PCR产物(114 bp)的氨基硅烷微阵列载片(Genorama)上在微通道中的流动状态(6 µl/分钟)和受控的温度下在补充0.1% SDS的SSC 3x缓冲液中进行杂交试验30分钟。
在杂交后,在具有0.2% SDS的SSC缓冲液中洗涤微通道5分钟以降低非特异性结合。
通过共聚焦扫描仪测量在捕获点和参考点上的荧光强度;对来自捕获点的信号进行背景扣除并相对参考点的强度标准化。
图13显示了通过在杂交通道中的流动状态下整合变性后得到的杂交效率的增加:
(A)在此实验设置中,样品流在100 µm通道中从入口至第一个杂交步骤维持在50℃;在流经90℃的变性区后,将样品引入第二个杂交区,其中在50℃下以更高的效率进行杂交,和最终通过出口离开。
(B)图指的是在(A)中的上行的捕获点;当在整合变性后进行杂交时,荧光信号提高了100的系数。
(C)通过在杂交通道设备中整合变性得到的杂交效率的增加:相比在95℃,10分钟的外部变性步骤后注入设备中的样品所产生的杂交信号,整合变性提高了150%的荧光信号强度。
Claims (15)
1.一种用于特异性选择靶分子的设备,其包含:
(a)至少一个包含微阵列的反应区,其中所述微阵列包含基片,其中一种或多种捕获分子被固定在所述基片上,所述反应区还包含一个或多个温度控制和/或调节单元用于控制和/或调节在所述反应区内的温度,
(b)至少一个非反应区,其包含一个或多个温度控制和/或调节单元用于控制和/或调节在所述非反应区内的温度,其中所述非反应区与所述反应区以流体连接;和
(c)至少一个运输装置,其能够在所述反应区(a)和包含一个或多个温度控制和/或调节单元的所述非反应区(b)之间产生和/或调节液流。
2.权利要求1的设备,其中所述用于控制和/或调节在所述反应区内的温度的所述单元被整合在所述非反应区中。
3.权利要求1或2的设备,其中所述反应区(a),所述非反应区(b),和所述运输装置(c)被排列在封闭环中。
4.权利要求3的设备,其中所述封闭环允许在所述反应区(a)和所述非反应区之间的连续的流体交换。
5.权利要求1至4中任一项的设备,其中所述设备另外包含混合装置,所述混合装置优选地在所述区域间的流体连接区中。
6.权利要求1至5中任一项的设备,其中所述设备包含弯曲的流径。
7.权利要求1至6中任一项的设备,其中所述反应区(a)是能够允许核酸与所述捕获分子杂交的杂交区。
8.权利要求1至7中任一项的设备,其中包含温度控制和/或调节单元(b)的所述非反应区是能够介导核酸变性的变性区。
9.权利要求1至8中任一项的设备,其中所述被固定的捕获分子以点、细长点和/或线的形式组织在所述微阵列中。
10.权利要求9的设备,其中所述线以相对流径约20°和90°之间的角度排列。
11.权利要求9或10的设备,其中所述线具有约300 nm和30 µm之间的宽度和/或以约500 nm至100 µm的线间距排列。
12.权利要求1至11中任一项的设备,其中所述捕获分子是选自核酸、肽、蛋白质、抗原、抗体、碳水化合物和/或其类似物的分子。
13.一种特异性选择靶分子的方法,其包括以下步骤:
(a)在如权利要求1至12的任一项中定义的设备的区域中引入含有一种或多种靶分子的介质;
(b)在所述靶分子和在反应区中固定的捕获分子之间进行相互作用反应;
(c)将未相互作用的或未结合的靶分子运输至包含一个或多个温度控制和/或调节单元的非反应区;
(d)在所述包含一个或多个温度控制和/或调节单元的区域中再活化所述靶分子;和
(e)将再活化的靶分子运输至反应区,因而允许所述靶分子和根据步骤(b)的固定的捕获分子之间的进一步相互作用。
14.权利要求13的方法,其中重复步骤(b)至(e)至少2次。
15.如权利要求1至12的任一项中定义的设备用于特异性选择靶分子的用途。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09169126 | 2009-09-01 | ||
EP09169126.1 | 2009-09-01 | ||
CN2010800389486A CN102482716A (zh) | 2009-09-01 | 2010-08-26 | 用于微阵列选择的设备和方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010800389486A Division CN102482716A (zh) | 2009-09-01 | 2010-08-26 | 用于微阵列选择的设备和方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107419002A true CN107419002A (zh) | 2017-12-01 |
Family
ID=42990169
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710188177.2A Pending CN107419002A (zh) | 2009-09-01 | 2010-08-26 | 用于微阵列选择的设备和方法 |
CN2010800389486A Pending CN102482716A (zh) | 2009-09-01 | 2010-08-26 | 用于微阵列选择的设备和方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010800389486A Pending CN102482716A (zh) | 2009-09-01 | 2010-08-26 | 用于微阵列选择的设备和方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US9493822B2 (zh) |
EP (1) | EP2473625B1 (zh) |
JP (1) | JP2013503605A (zh) |
KR (1) | KR20120089476A (zh) |
CN (2) | CN107419002A (zh) |
BR (1) | BR112012004382A2 (zh) |
RU (1) | RU2552215C2 (zh) |
WO (1) | WO2011027268A2 (zh) |
Families Citing this family (98)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080014589A1 (en) | 2006-05-11 | 2008-01-17 | Link Darren R | Microfluidic devices and methods of use thereof |
US9562837B2 (en) | 2006-05-11 | 2017-02-07 | Raindance Technologies, Inc. | Systems for handling microfludic droplets |
US8772046B2 (en) | 2007-02-06 | 2014-07-08 | Brandeis University | Manipulation of fluids and reactions in microfluidic systems |
US8592221B2 (en) | 2007-04-19 | 2013-11-26 | Brandeis University | Manipulation of fluids, fluid components and reactions in microfluidic systems |
US12038438B2 (en) | 2008-07-18 | 2024-07-16 | Bio-Rad Laboratories, Inc. | Enzyme quantification |
WO2010009365A1 (en) | 2008-07-18 | 2010-01-21 | Raindance Technologies, Inc. | Droplet libraries |
CA2735250A1 (en) * | 2008-07-30 | 2010-02-04 | Nippon Steel Kankyo Engineering Co., Ltd. | Universal nucleic acid probe set and method for utilization thereof |
US8835358B2 (en) | 2009-12-15 | 2014-09-16 | Cellular Research, Inc. | Digital counting of individual molecules by stochastic attachment of diverse labels |
US9399797B2 (en) | 2010-02-12 | 2016-07-26 | Raindance Technologies, Inc. | Digital analyte analysis |
WO2011100604A2 (en) | 2010-02-12 | 2011-08-18 | Raindance Technologies, Inc. | Digital analyte analysis |
EP4063518A1 (en) * | 2010-07-09 | 2022-09-28 | Cergentis B.V. | V3-d genomic region of interest sequencing strategies |
JP5871933B2 (ja) | 2010-09-10 | 2016-03-01 | バイオ−ラッド ラボラトリーズ インコーポレーティッド | Dna内のrna相互作用領域の検出 |
US20120208193A1 (en) | 2011-02-15 | 2012-08-16 | Bio-Rad Laboratories, Inc. | Detecting methylation in a subpopulation of genomic dna |
EP3736281A1 (en) | 2011-02-18 | 2020-11-11 | Bio-Rad Laboratories, Inc. | Compositions and methods for molecular labeling |
EP2714970B1 (en) | 2011-06-02 | 2017-04-19 | Raindance Technologies, Inc. | Enzyme quantification |
EP2532754A1 (en) * | 2011-06-07 | 2012-12-12 | Koninklijke Philips Electronics N.V. | Devices and methods for efficient capture of nucleic acids |
US8658430B2 (en) | 2011-07-20 | 2014-02-25 | Raindance Technologies, Inc. | Manipulating droplet size |
EP2761032B1 (en) * | 2011-09-29 | 2017-07-19 | Luminex Corporation | Hydrolysis probes |
EP2823303A4 (en) * | 2012-02-10 | 2015-09-30 | Raindance Technologies Inc | MOLECULAR DIAGNOSTIC SCREEN TYPE ASSAY |
CN104364392B (zh) | 2012-02-27 | 2018-05-25 | 赛卢拉研究公司 | 用于分子计数的组合物和试剂盒 |
CN104136611B (zh) * | 2012-02-27 | 2018-03-27 | 东丽株式会社 | 核酸的检测方法 |
US10273541B2 (en) | 2012-08-14 | 2019-04-30 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US11591637B2 (en) | 2012-08-14 | 2023-02-28 | 10X Genomics, Inc. | Compositions and methods for sample processing |
US10400280B2 (en) | 2012-08-14 | 2019-09-03 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
CN113528634A (zh) | 2012-08-14 | 2021-10-22 | 10X基因组学有限公司 | 微胶囊组合物及方法 |
US10323279B2 (en) | 2012-08-14 | 2019-06-18 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US9701998B2 (en) | 2012-12-14 | 2017-07-11 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US9951386B2 (en) | 2014-06-26 | 2018-04-24 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10752949B2 (en) | 2012-08-14 | 2020-08-25 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10221442B2 (en) | 2012-08-14 | 2019-03-05 | 10X Genomics, Inc. | Compositions and methods for sample processing |
EP3567116A1 (en) | 2012-12-14 | 2019-11-13 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10533221B2 (en) | 2012-12-14 | 2020-01-14 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
KR20200140929A (ko) | 2013-02-08 | 2020-12-16 | 10엑스 제노믹스, 인크. | 폴리뉴클레오티드 바코드 생성 |
US20140272959A1 (en) * | 2013-03-14 | 2014-09-18 | President And Fellows Of Harvard College | Methods of Hybridizing Probes to Genomic DNA |
KR102536833B1 (ko) | 2013-08-28 | 2023-05-26 | 벡톤 디킨슨 앤드 컴퍼니 | 대량의 동시 단일 세포 분석 |
US11901041B2 (en) | 2013-10-04 | 2024-02-13 | Bio-Rad Laboratories, Inc. | Digital analysis of nucleic acid modification |
US9582877B2 (en) | 2013-10-07 | 2017-02-28 | Cellular Research, Inc. | Methods and systems for digitally counting features on arrays |
CN105765080A (zh) * | 2013-11-26 | 2016-07-13 | 伯乐实验室公司 | 用于检测核酸相邻性的方法 |
US9944977B2 (en) | 2013-12-12 | 2018-04-17 | Raindance Technologies, Inc. | Distinguishing rare variations in a nucleic acid sequence from a sample |
AU2015243445B2 (en) | 2014-04-10 | 2020-05-28 | 10X Genomics, Inc. | Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same |
CN113249435B (zh) | 2014-06-26 | 2024-09-03 | 10X基因组学有限公司 | 分析来自单个细胞或细胞群体的核酸的方法 |
GB201413718D0 (en) * | 2014-08-01 | 2014-09-17 | Olink Ab | Method for selecting a target nucleic acid sequence |
US9975122B2 (en) | 2014-11-05 | 2018-05-22 | 10X Genomics, Inc. | Instrument systems for integrated sample processing |
CN107109398B (zh) * | 2014-12-19 | 2020-08-18 | 荣研化学株式会社 | 单核苷酸多态性检测用寡核苷酸探针及单核苷酸多态性检测方法 |
CN107109493A (zh) * | 2014-12-31 | 2017-08-29 | 皇家飞利浦有限公司 | 经由物理吸附将修饰的寡核苷酸固定至聚合物基体上 |
WO2016114970A1 (en) | 2015-01-12 | 2016-07-21 | 10X Genomics, Inc. | Processes and systems for preparing nucleic acid sequencing libraries and libraries prepared using same |
CN107208160B (zh) * | 2015-01-30 | 2023-02-17 | 哈佛学院院长及董事 | 无显微镜成像 |
EP3259371B1 (en) | 2015-02-19 | 2020-09-02 | Becton, Dickinson and Company | High-throughput single-cell analysis combining proteomic and genomic information |
US10697000B2 (en) | 2015-02-24 | 2020-06-30 | 10X Genomics, Inc. | Partition processing methods and systems |
EP3262192B1 (en) | 2015-02-27 | 2020-09-16 | Becton, Dickinson and Company | Spatially addressable molecular barcoding |
CN106148482B (zh) * | 2015-03-24 | 2019-12-03 | 深圳华大智造科技有限公司 | 一种适用于小型测序仪的测序方法 |
US11535882B2 (en) | 2015-03-30 | 2022-12-27 | Becton, Dickinson And Company | Methods and compositions for combinatorial barcoding |
US20160299129A1 (en) * | 2015-04-07 | 2016-10-13 | Xiaolei Qiu | Ultra Sensitive and Specific Multiplex Biosensor System Based on Multiple Cooperative Interactions |
WO2016172373A1 (en) * | 2015-04-23 | 2016-10-27 | Cellular Research, Inc. | Methods and compositions for whole transcriptome amplification |
WO2016196229A1 (en) | 2015-06-01 | 2016-12-08 | Cellular Research, Inc. | Methods for rna quantification |
US10619186B2 (en) | 2015-09-11 | 2020-04-14 | Cellular Research, Inc. | Methods and compositions for library normalization |
US11371094B2 (en) | 2015-11-19 | 2022-06-28 | 10X Genomics, Inc. | Systems and methods for nucleic acid processing using degenerate nucleotides |
CN114774529A (zh) * | 2015-11-19 | 2022-07-22 | 10X基因组学有限公司 | 可转化标记组合物、方法及结合其的过程 |
JP6703824B2 (ja) * | 2015-11-30 | 2020-06-03 | シスメックス株式会社 | 細胞選択方法、細胞検出方法、細胞選択装置、および細胞検出装置 |
WO2017096158A1 (en) | 2015-12-04 | 2017-06-08 | 10X Genomics, Inc. | Methods and compositions for nucleic acid analysis |
EP3452614B1 (en) | 2016-05-02 | 2023-06-28 | Becton, Dickinson and Company | Accurate molecular barcoding |
WO2017197338A1 (en) | 2016-05-13 | 2017-11-16 | 10X Genomics, Inc. | Microfluidic systems and methods of use |
US10301677B2 (en) | 2016-05-25 | 2019-05-28 | Cellular Research, Inc. | Normalization of nucleic acid libraries |
EP4407625A3 (en) | 2016-05-26 | 2024-10-23 | Becton, Dickinson and Company | Molecular label counting adjustment methods |
US10202641B2 (en) | 2016-05-31 | 2019-02-12 | Cellular Research, Inc. | Error correction in amplification of samples |
US10640763B2 (en) | 2016-05-31 | 2020-05-05 | Cellular Research, Inc. | Molecular indexing of internal sequences |
CN109923213B (zh) | 2016-09-20 | 2023-02-28 | 哈佛学院院长及董事 | 分子验证系统 |
CA3034924A1 (en) | 2016-09-26 | 2018-03-29 | Cellular Research, Inc. | Measurement of protein expression using reagents with barcoded oligonucleotide sequences |
JP2019537706A (ja) * | 2016-10-07 | 2019-12-26 | ベーリンガー インゲルハイム フェトメディカ ゲーエムベーハーBoehringer Ingelheim Vetmedica GmbH | サンプルを検査するための方法及び分析システム |
US10550429B2 (en) | 2016-12-22 | 2020-02-04 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10815525B2 (en) | 2016-12-22 | 2020-10-27 | 10X Genomics, Inc. | Methods and systems for processing polynucleotides |
US10722880B2 (en) | 2017-01-13 | 2020-07-28 | Cellular Research, Inc. | Hydrophilic coating of fluidic channels |
EP4310183A3 (en) | 2017-01-30 | 2024-02-21 | 10X Genomics, Inc. | Methods and systems for droplet-based single cell barcoding |
EP3577232A1 (en) | 2017-02-01 | 2019-12-11 | Cellular Research, Inc. | Selective amplification using blocking oligonucleotides |
US20180340169A1 (en) | 2017-05-26 | 2018-11-29 | 10X Genomics, Inc. | Single cell analysis of transposase accessible chromatin |
CN109526228B (zh) | 2017-05-26 | 2022-11-25 | 10X基因组学有限公司 | 转座酶可接近性染色质的单细胞分析 |
CA3059559A1 (en) | 2017-06-05 | 2018-12-13 | Becton, Dickinson And Company | Sample indexing for single cells |
CN111051523B (zh) | 2017-11-15 | 2024-03-19 | 10X基因组学有限公司 | 功能化凝胶珠 |
US10829815B2 (en) | 2017-11-17 | 2020-11-10 | 10X Genomics, Inc. | Methods and systems for associating physical and genetic properties of biological particles |
CN111492068A (zh) | 2017-12-19 | 2020-08-04 | 贝克顿迪金森公司 | 与寡核苷酸相关联的颗粒 |
WO2019195166A1 (en) | 2018-04-06 | 2019-10-10 | 10X Genomics, Inc. | Systems and methods for quality control in single cell processing |
US11365409B2 (en) | 2018-05-03 | 2022-06-21 | Becton, Dickinson And Company | Molecular barcoding on opposite transcript ends |
ES2945191T3 (es) | 2018-05-03 | 2023-06-29 | Becton Dickinson Co | Análisis de muestras multiómicas de alto rendimiento |
JP2020024202A (ja) * | 2018-08-06 | 2020-02-13 | 積水化学工業株式会社 | 分析用具及び洗浄方法 |
WO2020072380A1 (en) | 2018-10-01 | 2020-04-09 | Cellular Research, Inc. | Determining 5' transcript sequences |
WO2020097315A1 (en) | 2018-11-08 | 2020-05-14 | Cellular Research, Inc. | Whole transcriptome analysis of single cells using random priming |
WO2020123384A1 (en) | 2018-12-13 | 2020-06-18 | Cellular Research, Inc. | Selective extension in single cell whole transcriptome analysis |
WO2020150356A1 (en) | 2019-01-16 | 2020-07-23 | Becton, Dickinson And Company | Polymerase chain reaction normalization through primer titration |
WO2020154247A1 (en) | 2019-01-23 | 2020-07-30 | Cellular Research, Inc. | Oligonucleotides associated with antibodies |
WO2020167920A1 (en) | 2019-02-14 | 2020-08-20 | Cellular Research, Inc. | Hybrid targeted and whole transcriptome amplification |
US11965208B2 (en) | 2019-04-19 | 2024-04-23 | Becton, Dickinson And Company | Methods of associating phenotypical data and single cell sequencing data |
EP4004231A1 (en) | 2019-07-22 | 2022-06-01 | Becton, Dickinson and Company | Single cell chromatin immunoprecipitation sequencing assay |
US11287422B2 (en) | 2019-09-23 | 2022-03-29 | Element Biosciences, Inc. | Multivalent binding composition for nucleic acid analysis |
WO2021092386A1 (en) | 2019-11-08 | 2021-05-14 | Becton Dickinson And Company | Using random priming to obtain full-length v(d)j information for immune repertoire sequencing |
CN115244184A (zh) | 2020-01-13 | 2022-10-25 | 贝克顿迪金森公司 | 用于定量蛋白和rna的方法和组合物 |
WO2021231779A1 (en) | 2020-05-14 | 2021-11-18 | Becton, Dickinson And Company | Primers for immune repertoire profiling |
US11932901B2 (en) | 2020-07-13 | 2024-03-19 | Becton, Dickinson And Company | Target enrichment using nucleic acid probes for scRNAseq |
CN116635533A (zh) | 2020-11-20 | 2023-08-22 | 贝克顿迪金森公司 | 高表达的蛋白和低表达的蛋白的谱分析 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2242898Y (zh) * | 1996-01-31 | 1996-12-18 | 复旦大学 | 动态杂交仪 |
CN1882382A (zh) * | 2003-11-24 | 2006-12-20 | 生物概念股份有限公司 | 微阵列杂交器件 |
WO2007044071A2 (en) * | 2005-04-21 | 2007-04-19 | Exact Sciences Corporation | Analysis of heterogeneous nucleic acid samples |
JP2009002913A (ja) * | 2007-06-25 | 2009-01-08 | Akita Prefecture | 核酸検出カセット |
WO2009016770A1 (en) * | 2007-08-02 | 2009-02-05 | Canon Kabushiki Kaisha | Hybridization method and apparatus |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2186340A1 (en) | 1994-03-24 | 1995-09-28 | Alec Mian | A dna meltometer and methods of use thereof |
EP1384022A4 (en) * | 2001-04-06 | 2004-08-04 | California Inst Of Techn | AMPLIFICATION OF NUCLEIC ACID USING MICROFLUIDIC DEVICES |
US7361310B1 (en) | 2001-11-30 | 2008-04-22 | Northwestern University | Direct write nanolithographic deposition of nucleic acids from nanoscopic tips |
JP2003315337A (ja) | 2002-02-22 | 2003-11-06 | Hitachi Ltd | 還流型生化学反応装置 |
US6946285B2 (en) * | 2002-04-29 | 2005-09-20 | Agilent Technologies, Inc. | Arrays with elongated features |
JP2004194652A (ja) * | 2002-12-06 | 2004-07-15 | Dainippon Ink & Chem Inc | 溶解性物質付着流路を有するマイクロ流体素子及びその使用方法 |
US20060210984A1 (en) * | 2003-03-03 | 2006-09-21 | Jeremy Lambert | Use of nucleic acid mimics for internal reference and calibration in a flow cell microarray binding assay |
WO2006039528A1 (en) * | 2004-10-01 | 2006-04-13 | 3M Innovative Properties Company | Method and apparatus for separating a target molecule from a liquid mixture |
WO2007122819A1 (ja) * | 2006-04-18 | 2007-11-01 | Ngk Insulators, Ltd. | 液体を媒体とする反応のための装置 |
US20080194414A1 (en) | 2006-04-24 | 2008-08-14 | Albert Thomas J | Enrichment and sequence analysis of genomic regions |
US20080044821A1 (en) | 2006-08-21 | 2008-02-21 | Gafur Zainiev | Nucleic acid array having fixed nucleic acid anti-probes and complementary free nucleic acid probes |
JP2008134188A (ja) * | 2006-11-29 | 2008-06-12 | Olympus Corp | プローブ固相化反応アレイおよび該アレイの製造方法 |
US20100093986A1 (en) | 2007-02-02 | 2010-04-15 | Zwick Michael E | Methods of direct genomic selection using high density oligonucleotide microarrays |
JP2008281381A (ja) * | 2007-05-09 | 2008-11-20 | Kazusa Dna Kenkyusho | 高密度マイクロアレイ及びその作製方法 |
US7955841B2 (en) * | 2007-08-23 | 2011-06-07 | Akonni Biosystems | Temperature control device with a flexible temperature control surface |
-
2010
- 2010-08-26 WO PCT/IB2010/053839 patent/WO2011027268A2/en active Application Filing
- 2010-08-26 JP JP2012526172A patent/JP2013503605A/ja active Pending
- 2010-08-26 US US13/393,255 patent/US9493822B2/en active Active
- 2010-08-26 BR BR112012004382A patent/BR112012004382A2/pt not_active Application Discontinuation
- 2010-08-26 CN CN201710188177.2A patent/CN107419002A/zh active Pending
- 2010-08-26 RU RU2012112511/10A patent/RU2552215C2/ru active
- 2010-08-26 KR KR1020127008447A patent/KR20120089476A/ko not_active Application Discontinuation
- 2010-08-26 CN CN2010800389486A patent/CN102482716A/zh active Pending
- 2010-08-26 EP EP10760014.0A patent/EP2473625B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2242898Y (zh) * | 1996-01-31 | 1996-12-18 | 复旦大学 | 动态杂交仪 |
CN1882382A (zh) * | 2003-11-24 | 2006-12-20 | 生物概念股份有限公司 | 微阵列杂交器件 |
WO2007044071A2 (en) * | 2005-04-21 | 2007-04-19 | Exact Sciences Corporation | Analysis of heterogeneous nucleic acid samples |
JP2009002913A (ja) * | 2007-06-25 | 2009-01-08 | Akita Prefecture | 核酸検出カセット |
WO2009016770A1 (en) * | 2007-08-02 | 2009-02-05 | Canon Kabushiki Kaisha | Hybridization method and apparatus |
Also Published As
Publication number | Publication date |
---|---|
BR112012004382A2 (pt) | 2016-03-22 |
US9493822B2 (en) | 2016-11-15 |
CN102482716A (zh) | 2012-05-30 |
WO2011027268A2 (en) | 2011-03-10 |
KR20120089476A (ko) | 2012-08-10 |
WO2011027268A3 (en) | 2011-06-16 |
EP2473625B1 (en) | 2018-03-07 |
US20120165219A1 (en) | 2012-06-28 |
RU2552215C2 (ru) | 2015-06-10 |
RU2012112511A (ru) | 2013-10-10 |
JP2013503605A (ja) | 2013-02-04 |
EP2473625A2 (en) | 2012-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107419002A (zh) | 用于微阵列选择的设备和方法 | |
CN110382752A (zh) | 具有受控化学计量的多核苷酸文库及其合成 | |
US6489159B1 (en) | Polymeric arrays and methods for their use in binding assays | |
EP1230395B1 (en) | Long oligonucleotide arrays | |
ES2538038T3 (es) | Análisis multiplexado de muestras de ensayo | |
US20050196760A1 (en) | Dual phase multiplex polymerase chain reaction | |
JP2009501938A (ja) | サンプルの調製および分析のための微小流動による方法および微小流動装置 | |
CN103228785A (zh) | 扩增核酸的检测方法和检测装置 | |
JP2009171969A (ja) | マイクロアレイハイブリダイゼーションアッセイ方法 | |
JP2008500047A (ja) | 核酸を配列決定するための方法およびデバイス | |
EP3009520A1 (en) | Site-specific immobilization of DNA origami structures on solid substrates | |
EP2235210A1 (en) | Systems and methods for nucleic acid sequencing | |
CZ20014582A3 (cs) | Vysoce výkonný testovací systém | |
JP2004004065A (ja) | 構造化プローブ及び非構造化プローブを備えたマイクロアレイ | |
CN108603180A (zh) | 聚合酶复合体的纯化 | |
CN110100010B (zh) | 单细胞中细胞内或表面分子靶标的多重检测 | |
CN102171368A (zh) | 在载体上固定化核酸的方法 | |
CN106467913A (zh) | 用于原位合成探针阵列的探针倒转方法 | |
WO2020243160A1 (en) | Methods and compositions for multiple-parameter single-cell analysis using spectrally encoded microbeads | |
Ng et al. | A spatially addressable bead-based biosensor for simple and rapid DNA detection | |
US20030099930A1 (en) | Novel method to enhance microarray surface density and hybridization efficiency | |
Peterson et al. | Super-Resolution Imaging of Competitive Unlabeled DNA Hybridization Reveals the Influence of Fluorescent Labels on Duplex Formation and Dissociation Kinetics | |
CN1995369A (zh) | 一种固相制备核酸分子克隆的方法 | |
Treasurer et al. | How Surfaces Affect Hybridization Kinetics | |
WO2021154648A2 (en) | Kit, system, and flow cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination |