CN107413391B - 用于烷烃异构化催化剂的核-壳结构载体及其制备方法 - Google Patents

用于烷烃异构化催化剂的核-壳结构载体及其制备方法 Download PDF

Info

Publication number
CN107413391B
CN107413391B CN201710659594.0A CN201710659594A CN107413391B CN 107413391 B CN107413391 B CN 107413391B CN 201710659594 A CN201710659594 A CN 201710659594A CN 107413391 B CN107413391 B CN 107413391B
Authority
CN
China
Prior art keywords
core
catalyst
zro
drying
shell structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710659594.0A
Other languages
English (en)
Other versions
CN107413391A (zh
Inventor
宋华
李盛楠
姜楠
胡云峰
陈彦广
牛瑞霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Petroleum University
Original Assignee
Northeast Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Petroleum University filed Critical Northeast Petroleum University
Priority to CN201710659594.0A priority Critical patent/CN107413391B/zh
Publication of CN107413391A publication Critical patent/CN107413391A/zh
Application granted granted Critical
Publication of CN107413391B publication Critical patent/CN107413391B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1081Alkanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明涉及一种核‑壳结构催化剂载体及其制备方法,制备方法包括步骤:采用氨水为活化剂,去离子水为介质,对催化剂载体X表面进行预活化,然后进行干燥;其中,催化剂载体X选自HZSM‑5、Al2O3和SiO2中的一种;在正丁醇溶液中加入干燥后的催化剂载体X,再加入去离子水,搅拌,得到悬浮液;然后加入正丁醇锆,搅拌,再转移至高压反应釜进行水热合成;冷却后离心分离,将收集得到的固体干燥,得到核壳结构ZrO2@X催化剂载体。本发明通过采用水热法制备氧化锆包覆的氧化铝复合材料,合成具有膜层连续的核‑壳催化剂载体,并通过正丁醇的疏水性,增加ZrO2颗粒在载体表面负载的稳定性,从而增强核‑壳催化剂载体的稳定性。

Description

用于烷烃异构化催化剂的核-壳结构载体及其制备方法
技术领域
本发明涉及石油化工使用的异构化催化剂技术领域,具体涉及一种用于烷烃异构化催化剂的核-壳结构载体及其制备方法。
背景技术
过去十年,中国汽车产销量及增长速度跃居世界前列并将继续保持高增长态势。与此同时,汽车尾气排放已成为对环境的重要污染源之一。使用清洁燃油越来越受到人们的重视。欧洲相继推出了欧II、欧III、欧IV、欧-V标准,更高的标准正在酝酿中;美国、日本、韩国目前也推行了与欧-V相近的标准。中国已于2015年在全国范围内实行与欧-IV接近的国-IV标准,在2018年全面实行与欧-V接近的国-V标准。汽油无铅、低芳烃、低烯烃、高辛烷值、高氧含量是发展的必然趋势。烷烃异构化不仅油品收率高,且异构化油的硫含量很低,不含烯烃、芳烃和苯,能提高汽油的前端辛烷值,使汽油的馏程和辛烷值有合理的分布,能够改善发动机的启动性能。此外,异构烷烃对于烯烃和芳烃具有正调合效应,在MMT被禁止、MTBE被限制添加的情况下,可以为汽油辛烷值调合提供极大的贡献。因此,烷烃异构化油是理想的汽油调和组分之一,是我国实现国-V汽油生产的有效途径。
目前,烷烃异构化工艺主要包括低温异构化工艺和中温异构化工艺。低温异构化工艺的催化剂为含氯的Pt/Al2O3-Cl催化剂,异构化产物的辛烷值高。但催化剂对进料中的杂质(如硫、水、氟和氧)的含量十分敏感,致使对原料油和氢气质量的要求达到了十分苛刻的程度,且在反应过程中需要不断地补充有机氯成分,容易造成设备的腐蚀和环境污染等问题。中温异构化工艺采用Pt/分子筛型催化剂,异构化产物中多支链烷烃相对较少,产物辛烷值相对较低。SO4 2-/ZrO2(SZ)固体超强酸催化剂具有低温活性好、异构化产物辛烷值高、环境友好等优点,受到人们广泛关注。虽然SZ催化剂具有诸多优点,但短时间内严重失活大大影响了其工业应用。因此,如何提高SZ催化剂的稳定性和异构化活性成为该领域研究的热点问题。载体ZrO2中添加少量Al,制备的ZrO2-Al2O3复合氧化物载体制备的SO4 2-/ZrO2-Al2O3催化剂的稳定性得到一定程度的提高,但异构化活性和稳定性依然不够理想。向SO4 2-/ZrO2-Al2O3催化剂引入贵金属Pt或Pd能提高催化剂的活性和稳定性,但催化剂的成本会大大提高。引入其他非贵金属如Ni、Zn、Mn等,能提高催化剂的活性,但稳定性不好。
具有核-壳结构的复合材料作为催化剂及催化载体时,其独特的结构可以改善传统催化材料的物理与化学性能,是传统催化剂改性和新型催化剂设计的一种新方法,可获得性质特异的核-壳结构催化剂。如Al2O3载体具有大比表面积,特殊的多孔结构,较高的力学性能和热稳定性,以及价格低廉等特点,广泛应用于工业催化剂载体。基于ZrO2载体的高活性和特殊孔结构Al2O3的大比表面积、大孔径,如果能将两种载体以包覆形式进行复合,构成具有核-壳结构的载体,然后用于制备非贵金属异构化催化剂,将是一项具有重要意义的研究工作。
发明内容
针对现有技术中的缺陷,本发明目的在于提供一种用于烷烃异构化催化剂的核-壳结构载体及其制备方法,通过采用水热法制备氧化锆包覆的氧化铝复合材料,合成具有膜层连续的核-壳催化剂载体,并通过正丁醇的疏水性,增加ZrO2颗粒在载体表面负载的稳定性,从而增强核-壳催化剂载体的稳定性。
为实现上述目的,本发明提供的技术方案为:
本发明提供了一种核-壳结构催化剂载体的制备方法,包括如下步骤:S1:采用氨水为活化剂,去离子水为介质,对催化剂载体X表面进行预活化,然后进行干燥;其中,催化剂载体X选自HZSM-5、Al2O3和SiO2中的一种;S2:在正丁醇溶液中加入步骤S1中干燥后的催化剂载体X,然后加入去离子水,搅拌,得到X悬浮液;S3:在步骤S2得到的X悬浮液中加入正丁醇锆,然后搅拌,再转移至高压反应釜,于40~200℃下水热合成10~72h;S4:将步骤S3得到的产物冷却后离心分离,将收集得到的固体干燥,得到核壳结构ZrO2@X催化剂载体。
在本发明的进一步实施方式中,在步骤S4后,还包括步骤S5:将核壳结构ZrO2@X催化剂载体在(NH4)2S2O8溶液中浸渍,然后离心分离,将收集得到的固体干燥,得到核壳结构S2O8 2--X@ZrO2
在本发明的进一步实施方式中,步骤S5中,浸渍的时间为3~48h,干燥的温度为60~90℃,干燥的时间为12~48h。
在本发明的进一步实施方式中,在步骤S5后,还包括步骤S6:在S2O8 2--X@ZrO2中加入Ni(NO3)2溶液,等体积浸渍,然后烘干,得到Ni-S2O8 2--X@ZrO2催化剂前驱体;将Ni-S2O8 2--X@ZrO2催化剂前驱体于650℃焙烧3~6h,制得Ni质量分数为0.01~5.0wt%的核壳Ni-S2O8 2--X@ZrO2催化剂。
在本发明的进一步实施方式中,步骤S6中,等体积浸渍的时间为6h,烘干的温度为80℃,烘干的时间为3~12h。
在本发明的进一步实施方式中,步骤S1中,氨水的摩尔分数为6%~10%,预活化时间为12~48h,预活化温度为80~120℃,干燥温度为40~100℃,干燥时间为4~12h。
在本发明的进一步实施方式中,步骤S2中,搅拌的时间为12~24h,使催化剂载体X完全分散,并使水分子充分吸附在催化剂载体X分子表面。
在本发明的进一步实施方式中,步骤S3中,搅拌的时间为5~60min。
在本发明的进一步实施方式中,步骤S4中,干燥的温度为60~90℃,干燥的时间为12~48h。
本发明还保护制备得到的ZrO2@X催化剂载体、核壳结构S2O8 2--X@ZrO2和核壳Ni-S2O8 2--X@ZrO2催化剂;其中,X代表HZSM-5、Al2O3和SiO2中的一种。当然,ZrO2@X催化剂载体、核壳结构S2O8 2--X@ZrO2和核壳Ni-S2O8 2--X@ZrO2催化剂(其中,X代表HZSM-5、Al2O3和SiO2中的一种)在制备催化剂中的应用,也应该在本发明的保护范围之内。
本发明提供的技术方案,具有如下的有益效果:
1、本发明中,加入去离子水有利于Al2O3良好的分散在正丁醇中,由于正丁醇是一种疏水醇,水分子会吸附在Al2O3表面,在Al2O3外层均匀形成所需的H-O键网状结构。随后,预先吸附在Al2O3表面的水会引发正丁醇锆水解,Zr-O键取代H-O键,无定形的锆沉淀在网状框架上,从而实现ZrO2壳层的均匀包覆。
2、本发明通过选择大孔径、大孔容、大比表面积、高机械强度的核心材料,制备出大孔径、大孔容、大比表面积、高机械强度的核-壳结构ZrO2包覆的催化剂载体,使用该载体制备的固体超强酸异构化催化剂,具有如下优点:(1)因载体具有大孔道和大孔容结构,有利于形成带有支链的异构体,且异构化产物能够在大孔道中快速扩散,大大降低了产物在催化剂表面上的停留时间,改善了催化剂的抗积碳性能,从而提高了催化剂的稳定性;(2)大的比表面积有利于催化剂活性组分的分散,大大提高了催化剂的活性;(3)四方晶相的ZrO2是形成固体超强酸的必要条件,核-壳结构的Al2O3@ZrO2复合载体中,ZrO2主要分布在载体的表面,有利于形成固体超强酸结构,能够形成更多更强的固体超强酸活性中心,从而提高催化剂的活性;(4)传统ZrO2-Al2O3复合载体中Al含量过高时(>5%),表面ZrO2量过少,固体超强酸的形成受到限制,催化剂的活性大幅度降低,所以Al添加量一般低于5%;对于核壳结构的载体,在ZrO2含量较低的时,仍能够保证载体表面上的ZrO2量,以确保S与Zr相互作用形成固体超强酸,所以添加Al的量不受严格限制(≤70%);因此,可以通过具有高机械强度的核心材料,获得高机械强度的二氧化锆包覆的核-壳结构催化剂。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1为本发明实施例一中的核壳结构Ni-SA@Z-50催化剂的红外光谱图;
图2为本发明实施例一中的核壳结构Ni-SA@Z-50催化剂的异构化反应稳定性变化图;
图3为本发明实施例一中的核-壳结构的Al2O3@ZrO2复合载体构建示意图;
图4为本发明实施例二中的不同Al2O3含量的核壳结构Ni-SA@Z-x催化剂的红外光谱图;
图5为本发明实施例三中的不同核心材料制备的核壳结构催化剂的红外光谱图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。以下实施例仅用于更加清楚地说明本发明的技术方案,因此只是作为示例,而不能以此来限制本发明的保护范围。
下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施例中所用的试验材料,如无特殊说明,均为自常规商店购买得到的。以下实施例中的定量试验,均设置三次重复实验,数据为三次重复实验的平均值或平均值±标准差。
实施例一:以Al2O3为核制备的核-壳结构的催化剂载体的制备
本实施例提供一种核-壳结构催化剂载体的制备方法,包括如下步骤:
S1:采用摩尔分数为6%的氨水为活化剂,去离子水为介质,在80℃对催化剂载体Al2O3表面进行预活化48h,然后于100℃烘箱内干燥12h;
S2:在正丁醇溶液中加入步骤S1中干燥后的催化剂载体Al2O3,然后添加少量去离子水,搅拌12h,确保Al2O3完全分散,并使水分子充分吸附在Al2O3分子表面,得到Al2O3悬浮液;
S3:在步骤S2得到的Al2O3悬浮液中加入正丁醇锆,然后搅拌5min,再转移至高压反应釜,于100℃下水热合成48h;
S4:将步骤S3得到的产物冷却后离心分离,将收集得到的固体置于90℃的烘箱内干燥12h,得到核壳结构ZrO2@Al2O3催化剂载体;核壳结构ZrO2@Al2O3催化剂载体中,Al2O3的质量百分数为50%,记为A@Z-50;
S5:将核壳结构ZrO2@Al2O3催化剂载体在(NH4)2S2O8溶液中浸渍12h,然后离心分离,将收集得到的固体置于90℃的烘箱内干燥12h,得到核壳结构S2O8 2--Al2O3@ZrO2,记为SA@Z-50;
S6:在S2O8 2--Al2O3@ZrO2中加入计算量的Ni(NO3)2溶液,等体积浸渍6h,然后80℃烘干12h,得到Ni-S2O8 2--Al2O3@ZrO2催化剂前驱体;将Ni-S2O8 2--Al2O3@ZrO2催化剂前驱体于650℃焙烧6h,制得Ni质量分数为0.05wt%的核壳Ni-S2O8 2--Al2O3@ZrO2催化剂,记为Ni-SA@Z-50。
结果检测:1、比表面积和孔结构表征结果
A@Z-50载体及Ni-SA@Z-50催化剂的比表面积和孔结构表征结果如表1所示(表1中,a表示非核壳载体ZrO2-Al2O3;b表示非核壳载体ZrO2-Al2O3制备的Ni-S2O8 2-/ZrO2-Al2O3催化剂)。为了进行对比,表1中列出了非核壳载体ZrO2-Al2O3和Ni-S2O8 2-/ZrO2-Al2O3催化剂的相关数据。由表1可以看出,非核壳ZrO2-Al2O3载体的比表面、孔容和孔径分别为90.6m2g-1、12.4nm和0.101cm3g-1。载体A@Z-50的比表面、孔容和孔径分别为132.5m2g-1、12.4nm和0.469cm3g-1。核壳A@Z-50载体的比表面和孔容分别是ZrO2-Al2O3载体的1.46倍和4.64倍,而孔径是ZrO2-Al2O3载体的3.64倍。
表1不同Al含量催化剂的表面积和孔结构
Figure BDA0001370189980000061
Figure BDA0001370189980000071
图1为核壳结构Ni-SA@Z-50催化剂的红外光谱。由图1可知,Ni-SA@Z-50催化剂在1076cm-1、1180cm-1和1244cm-1处出现了明显的固体超强酸的特征峰,表明由核壳A@Z-50载体制备的Ni-SA@Z-50催化剂上形成了固体超强酸。
2、Ni-SA@Z-50催化剂的稳定性测试
测试方法:催化剂在固定床反应器中进行异构化反应稳定性测试。采用正戊烷(99%)作为原料,控制反应温度220℃,压力2MPa,氢油比为4,空速1.0h-1的条件下进行异构化稳定性实验。
实验结果:图2为核壳结构Ni-SA@Z-50催化剂的异构化反应稳定性变化图。为了进行对比,图2中列出了由非核壳载体制备的Ni-S2O8 2-/ZrO2-Al2O3(Ni-SZA)催化剂的相关数据。由图2可知,由非核壳载体制备的Ni-SZA催化剂的活性低(只有60%),且稳定性很差,在1500min内从60%下降至20%。而与Ni-SZA相比,核壳结构Ni-SA@Z-50催化剂表现出良好的正戊烷异构化活性(65%),且稳定性非常好,异戊烷收率在5000min内基本维持稳定,未见下降趋势。核壳结构Ni-SA@Z-50催化剂表面出良好的异构化性能的原因有3点:(1)因载体具有大孔道和大孔容结构,有利于形成带有支链的异构体,且异构化产物能够在大孔道中快速扩散,大大降低了产物在催化剂表面上的停留时间,改善了催化剂的抗积碳性能,从而提高了催化剂的稳定性;(2)大的比表面积有利于催化剂活性组分的分散,大大提高了催化剂的活性;(3)四方晶相的ZrO2是形成固体超强酸的必要条件,核-壳结构的Al2O3@ZrO2复合载体中,ZrO2主要分布在载体的表面,有利于形成固体超强酸结构,能够形成更多、更强的固体超强酸活性中心,从而提高催化剂的活性(见图3)。
实施例二:不同Al2O3含量的核-壳结构固体超强催化剂的制备
本实施例分别制备四种不同Al2O3含量的核-壳结构催化剂载体,具体包括如下步骤:
S1:采用摩尔分数为6%的氨水为活化剂,去离子水为介质,在80℃对催化剂载体Al2O3表面进行预活化48h,然后于100℃烘箱内干燥12h;
S2:在正丁醇溶液中加入步骤S1中干燥后的催化剂载体Al2O3,然后添加少量去离子水,搅拌12h,确保Al2O3完全分散,并使水分子充分吸附在Al2O3分子表面,得到Al2O3悬浮液;
S3:在步骤S2得到的Al2O3悬浮液中加入正丁醇锆,然后搅拌5min,再转移至高压反应釜,于100℃下水热合成48h;
S4:将步骤S3得到的产物冷却后离心分离,将收集得到的固体置于90℃的烘箱内干燥12h,得到Al2O3含量不同的核壳结构ZrO2@Al2O3催化剂载体;
S5:将Al2O3含量不同的核壳结构ZrO2@Al2O3催化剂载体在(NH4)2S2O8溶液中浸渍12h,然后离心分离,将收集得到的固体置于90℃的烘箱内干燥12h,得到核壳结构S2O8 2--Al2O3@ZrO2
S6:在S2O8 2--Al2O3@ZrO2中加入计算量的Ni(NO3)2溶液,等体积浸渍6h,然后80℃烘干12h,得到Ni-S2O8 2--Al2O3@ZrO2催化剂前驱体;将Ni-S2O8 2--Al2O3@ZrO2催化剂前驱体于650℃焙烧3h,制得Ni质量分数为0.1wt%的Al2O3含量不同的核壳Ni-S2O8 2--Al2O3@ZrO2催化剂,记为Ni-SA@Z-x,x为载体中Al2O3的质量百分数,%。
结果检测:不同Al2O3含量的Ni-SA@Z-x催化剂的比表面积和孔结构表征结果如表2所示。由表2可以看出,不同Al2O3含量的核壳结构Ni-SA@Z-x催化剂的比表面随着铝含量的增加而增加,而孔容和孔径分别先增大后减小。不同Al2O3含量的核壳结构Ni-SA@Z-x催化剂的比表面、孔容和孔径均比非核壳结构的Ni-SZA高很多。传统ZrO2-Al2O3复合载体中Al2O3含量过高时(>5%),表面ZrO2量过少,固体超强酸的形成受到限制,催化剂的活性大幅度降低,所以Al添加量一般低于5%。对于核壳结构的载体,在ZrO2含量较低的时,仍能够保证载体表面上的ZrO2量,以确保S与Zr相互作用形成固体超强酸。实验结果证明,载体中Al2O3的含量高达70%时,仍能获得固体超强酸结构的催化剂,表明这个特殊结构中Al2O3含量可以大大提高。因此,可以通过具有高机械强度的核心材料,获得高机械强度的二氧化锆包覆的核-壳结构催化剂。
表2不同Al2O3含量催化剂的表面积和孔结构
样品 比表面积(m<sup>2</sup>g<sup>-1</sup>) 平均孔径(nm) 孔容(cm<sup>3</sup>g<sup>-1</sup>)
Ni-SA@Z-2.5 99.5 5.6 0.103
Ni-SA@Z-30 122.1 6.9 0.214
Ni-SA@Z-50 135.1 12.0 0.429
Ni-SA@Z-70 155.5 8.6 0.318
图4为不同Al2O3含量的核壳结构Ni-SA@Z-x催化剂的红外光谱。由图4可知,Ni-SA@Z-x催化剂在1076cm-1、1180cm-1和1244cm-1处出现了明显的固体超强酸的特征峰,表明由核壳A@Z-x载体制备的Ni-SA@Z-x催化剂上形成了固体超强酸。
实施例三:以不同材料为核心制备的核-壳结构固体超强催化剂的制备
本实施例分别以HZSM-5、Al2O3和SiO2为催化剂载体,来制备不同的核-壳结构催化剂载体,具体包括如下步骤:
S1:采用摩尔分数为6%的氨水为活化剂,去离子水为介质,在80℃分别对催化剂载体HZSM-5、Al2O3和SiO2表面进行预活化48h,然后于100℃烘箱内干燥12h;
S2:在正丁醇溶液中分别加入步骤S1中干燥后的催化剂载体HZSM-5、催化剂载体Al2O3和催化剂载体SiO2,然后添加少量去离子水,搅拌12h,确保HZSM-5、Al2O3和SiO2完全分散,并使水分子充分吸附在HZSM-5、Al2O3和SiO2分子表面,得到HZSM-5、Al2O3和SiO2悬浮液;
S3:在步骤S2得到的HZSM-5、Al2O3和SiO2悬浮液中加入正丁醇锆,然后搅拌5min,再转移至高压反应釜,于100℃下水热合成48h;
S4:将步骤S3得到的产物冷却后离心分离,将收集得到的固体置于90℃的烘箱内干燥12h,分别得到核壳结构HZSM-5@ZrO2、Al2O3@ZrO2和SiO2@ZrO2催化剂载体;其中HZSM-5、Al2O3和SiO2的质量百分数为30%;
S5:将核壳结构HZSM-5@ZrO2、Al2O3@ZrO2和SiO2@ZrO2催化剂载体分别在(NH4)2S2O8溶液中浸渍12h,然后离心分离,将收集得到的固体置于90℃的烘箱内干燥12h,得到核壳结构S2O8 2-/HZSM-5@ZrO2、S2O8 2-/Al2O3@ZrO2和S2O8 2-/SiO2@ZrO2
S6:在核壳结构S2O8 2-/HZSM-5@ZrO2、S2O8 2-/Al2O3@ZrO2和S2O8 2-/SiO2@ZrO2中加入计算量的Ni(NO3)2溶液,等体积浸渍6h,然后80℃烘干12h,得到Ni-S2O8 2-/ZrO2@Al2O3、Ni-S2O8 2-/Al2O3@ZrO2和Ni-S2O8 2-/SiO2@ZrO2催化剂前驱体;将Ni-S2O8 2-/ZrO2@Al2O3、Ni-S2O8 2-/Al2O3@ZrO2和Ni-S2O8 2-/SiO2@ZrO2催化剂前驱体分别于650℃焙烧6h,制得Ni质量分数为1.0wt%的核壳Ni-S2O8 2-/HZSM-5@ZrO2、Ni-S2O8 2-/Al2O3@ZrO2和Ni-S2O8 2-/SiO2@ZrO2催化剂,分别记为Ni-SH@Z-30、Ni-SA@Z-30和Ni-SS@Z-30),其中30为载体中HZSM-5、Al2O3和SiO2的质量百分数,%。
实验结果:不同核心材料的核壳催化剂的比表面积和孔结构表征结果如表3所示。由表3可以看出,由不同核心材料制备的核壳结构催化剂的比表面、孔容和孔径均比非核壳结构的Ni-SZA高很多。以HZSM-5核心时,催化剂的比表面积、孔容和孔径均最大,分别为169.9m2·g-1、0.228mL·g-1和7.7nm。而以SiO2为核心时,不仅催化剂的比表面积和孔容低(118.3m2·g-1和0.202mL·g-1),孔径也明显小。
表3由不同核心材料制备的核壳催化剂的表面积和孔结构
样品 比表面积(m<sup>2</sup>g<sup>-1</sup>) 平均孔径(nm) 孔容(cm<sup>3</sup>g<sup>-1</sup>)
Ni-SA@Z-30 122.1 6.9 0.214
Ni-SH@Z-30 169.6 7.7 0.228
Ni-SS@Z-30 118.3 5.4 0.202
图5为不同核心材料制备的核壳结构催化剂的红外光谱。由图5可知,Ni-SH@Z-30、Ni-SA@Z-30和Ni-SS@Z-30催化剂均在1076cm-1、1180cm-1和1262cm-1处出现了明显的固体超强酸的特征峰,表明由不同核心材料制备的核壳结构催化剂上均形成了固体超强酸。
需要注意的是,除非另有说明,本申请使用的技术术语或者科学术语应当为本发明所属领域技术人员所理解的通常意义。除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对步骤、数字表达式和数值并不限制本发明的范围。在这里示出和描述的所有示例中,除非另有规定,任何具体值应被解释为仅仅是示例性的,而不是作为限制,因此,示例性实施例的其他示例可以具有不同的值。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的保护范围当中。

Claims (2)

1.一种核-壳结构催化剂载体的制备方法,其特征在于,包括如下步骤:
S1:采用氨水为活化剂,去离子水为介质,对催化剂载体X表面进行预活化,然后进行干燥;其中,所述催化剂载体X为HZSM-5;
S2:在正丁醇溶液中加入步骤S1中干燥后的催化剂载体X,然后加入去离子水,搅拌,得到X悬浮液;
S3:在步骤S2得到的X悬浮液中加入正丁醇锆,然后搅拌,再转移至高压反应釜,于40~200℃下水热合成10~72h;
S4:将步骤S3得到的产物冷却后离心分离,将收集得到的固体干燥,得到核壳结构ZrO2@X催化剂载体;
S5:将核壳结构ZrO2@X催化剂载体在(NH4)2S2O8溶液中浸渍,然后离心分离,将收集得到的固体干燥,得到核壳结构S2O8 2--X@ZrO2
S6:在S2O8 2--X@ZrO2中加入Ni(NO3)2溶液,等体积浸渍,然后烘干,得到Ni-S2O8 2--X@ZrO2催化剂前驱体;将所述Ni-S2O8 2--X@ZrO2催化剂前驱体于650℃焙烧3~6h,制得Ni质量分数为0.01~5.0wt%的核壳Ni-S2O8 2--X@ZrO2催化剂;
步骤S1中,氨水的摩尔分数为6%~10%,预活化时间为12~48h,预活化温度为80~120℃,干燥温度为40~100℃,干燥时间为4~12h;
步骤S2中,搅拌的时间为12~24h,使催化剂载体X完全分散,并使水分子充分吸附在催化剂载体X分子表面;
步骤S3中,搅拌的时间为5~60min;
步骤S4中,干燥的温度为60~90℃,干燥的时间为12~48h;
步骤S5中,浸渍的时间为3~48h,干燥的温度为60~90℃,干燥的时间为12~48h;
步骤S6中,等体积浸渍的时间为6h,烘干的温度为80℃,烘干的时间为3~12h。
2.权利要求1所述的制备方法制备得到的核-壳结构催化剂载体。
CN201710659594.0A 2017-08-04 2017-08-04 用于烷烃异构化催化剂的核-壳结构载体及其制备方法 Expired - Fee Related CN107413391B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710659594.0A CN107413391B (zh) 2017-08-04 2017-08-04 用于烷烃异构化催化剂的核-壳结构载体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710659594.0A CN107413391B (zh) 2017-08-04 2017-08-04 用于烷烃异构化催化剂的核-壳结构载体及其制备方法

Publications (2)

Publication Number Publication Date
CN107413391A CN107413391A (zh) 2017-12-01
CN107413391B true CN107413391B (zh) 2020-11-03

Family

ID=60436418

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710659594.0A Expired - Fee Related CN107413391B (zh) 2017-08-04 2017-08-04 用于烷烃异构化催化剂的核-壳结构载体及其制备方法

Country Status (1)

Country Link
CN (1) CN107413391B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110586933B (zh) * 2019-10-31 2021-08-31 福州大学 一种二氧化锆包覆FeCo吸收剂的耐高温改性方法
CN115282988B (zh) * 2022-10-08 2023-01-13 浙江晟格生物科技有限公司 一种应用于制备生物糖的固体酸催化剂及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101013620A (zh) * 2006-12-14 2007-08-08 复旦大学 一种三重核壳结构的磁性纳米粒子及其制备方法
CN101362200A (zh) * 2008-09-20 2009-02-11 大连理工大学 金属氧化物包覆异质金属“核/壳”型纳米粒子的合成方法
CN102698812A (zh) * 2012-06-04 2012-10-03 大连理工大学 一种固体超强酸-离子液体复合固载催化剂及其制备方法
CN103240088A (zh) * 2013-05-07 2013-08-14 中国石油大学(北京) 大孔氧化物担载核壳结构纳米颗粒的催化剂及其制备方法
CN103962142A (zh) * 2014-04-27 2014-08-06 东北石油大学 用于甲烷制甲醇的核壳钙钛矿型催化剂制备方法
CN104923196A (zh) * 2015-05-12 2015-09-23 东北石油大学 一种用于制备加氢脱氧催化剂的核-壳结构载体的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101013620A (zh) * 2006-12-14 2007-08-08 复旦大学 一种三重核壳结构的磁性纳米粒子及其制备方法
CN101362200A (zh) * 2008-09-20 2009-02-11 大连理工大学 金属氧化物包覆异质金属“核/壳”型纳米粒子的合成方法
CN102698812A (zh) * 2012-06-04 2012-10-03 大连理工大学 一种固体超强酸-离子液体复合固载催化剂及其制备方法
CN103240088A (zh) * 2013-05-07 2013-08-14 中国石油大学(北京) 大孔氧化物担载核壳结构纳米颗粒的催化剂及其制备方法
CN103962142A (zh) * 2014-04-27 2014-08-06 东北石油大学 用于甲烷制甲醇的核壳钙钛矿型催化剂制备方法
CN104923196A (zh) * 2015-05-12 2015-09-23 东北石油大学 一种用于制备加氢脱氧催化剂的核-壳结构载体的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
("Comparison of Ni-S2O82--/ZrO2–Al2O3 catalysts preparedby microemulsion and impregnation methods and theirperformance for isomerisation";Hua Songet.al;《Progress in Reaction Kinetics and Mechanism》;20161231;第357第4段-358第1段 *
"Design of SiO2/ZrO2 core–shell particles using the sol–gel process";Jong Min Kimet.al;《Ceramics International》;20091231;第35卷;第1244页左栏第1-2段 *

Also Published As

Publication number Publication date
CN107413391A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
US7815792B2 (en) Selective naphtha desulfurization process and catalyst
CN101052467B (zh) 烷基化催化剂、及其制备和用途
CN102068990B (zh) 基于纳米覆炭氧化铝载体的脱氢用催化剂制备工艺
CN107413391B (zh) 用于烷烃异构化催化剂的核-壳结构载体及其制备方法
CN106391098B (zh) 一种石脑油重整催化剂及其制备方法
CN103418421A (zh) 一种用于焦化苯与甲醇烷基化合成对二甲苯的催化剂及其制备方法
US11358135B2 (en) Method for preparing hydrocracking catalyst
CN104492481B (zh) 一种复合分子筛催化剂的制备方法
CN109046445B (zh) 一种Hβ/MCM-22复合结构分子筛的制备方法及制备叔丁基苯酚的方法
WO2021110083A1 (zh) 适用于烃类转化反应的催化剂、其制备方法和应用
CN111215068A (zh) 一种制备Cu/SiO2催化剂的方法
CN101172248B (zh) 一种c7~c20烷烃异构化催化剂及异构化方法
CN101357876B (zh) 一种c9+重质芳烃轻质化的方法
CN107335469A (zh) 适于生产低凝生物柴油的加氢催化剂及其制备方法和应用
CN105983424B (zh) 一种双金属石脑油重整催化剂及制备方法
CN111298791B (zh) 一种草酸二甲酯加氢制乙二醇的复合载体催化剂的制备方法
CN112047808B (zh) 巴豆醛液相催化选择性加氢的方法
CN111097500B (zh) 负载型催化剂及其制备方法和应用以及一种临氢处理柴油馏分的方法
CN102247879A (zh) 一种用于碳四及以上烷烃混合物脱氢制备同碳数烯烃的催化剂、制备方法和应用
JP7014720B2 (ja) 混合酸化物またはメソポーラス担体に担持した塩基性酸化物と、エッチングした金属担持型ゼオライトとを含む二成分触媒系を用いた、アルコールから炭化水素への変換
CN105983423B (zh) 一种多金属石脑油重整催化剂及制备方法
CN114479924B (zh) 一种临氢降凝方法
CN114653395B (zh) 一种石脑油重整催化剂及其制备方法和应用
CN101862672A (zh) 一种贵金属负载型烷基芳烃异构化催化剂的制备方法
WO2018236709A1 (en) COMPOSITION FOR OPENING POLYCYCLIC RINGS IN HYDROCRACKING

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201103

Termination date: 20210804

CF01 Termination of patent right due to non-payment of annual fee