CN107400852A - 一种硅碳氮蓝光发光薄膜及其制备方法 - Google Patents

一种硅碳氮蓝光发光薄膜及其制备方法 Download PDF

Info

Publication number
CN107400852A
CN107400852A CN201710643110.3A CN201710643110A CN107400852A CN 107400852 A CN107400852 A CN 107400852A CN 201710643110 A CN201710643110 A CN 201710643110A CN 107400852 A CN107400852 A CN 107400852A
Authority
CN
China
Prior art keywords
silicon
film
nitroblue
carbon
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710643110.3A
Other languages
English (en)
Inventor
彭银桥
雷桂斌
甘元驹
陈月峰
王淑青
吴英才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Ocean University
Original Assignee
Guangdong Ocean University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Ocean University filed Critical Guangdong Ocean University
Priority to CN201710643110.3A priority Critical patent/CN107400852A/zh
Publication of CN107400852A publication Critical patent/CN107400852A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0664Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Luminescent Compositions (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及一种硅碳氮蓝光发光薄膜及其制备方法;该蓝光发光薄膜的化学通式为SiCxNy,x取值0.3~0.4,y取值0.8~0.9。本发明采用磁控溅射镀膜设备制备硅碳氮蓝光发光薄膜;该硅碳氮薄膜经退火后,其发光光谱出现了较强的451nm和490 nm的蓝光发光。

Description

一种硅碳氮蓝光发光薄膜及其制备方法
技术领域
本发明涉及光致发光薄膜领域,更具体地,涉及一种硅碳氮蓝光发光薄膜及其制备方法。
背景技术
硅基发光材料的制造技术与超大规模集成电路完善的硅平面工艺具备兼容性,因而成为光电集成的光电子器件的首选材料,但是,硅是间接带隙材料,其发光效率低,硅的带隙仅为1.12 eV,单晶硅只能在红外区发射微弱的光,限制了它在发光器件中的应用。氮化镓(GaN)蓝光发射二极管是可形成基于红、绿、蓝三色的全色显示器件,但其在工艺上与硅平面工艺不兼容,因而不能被高度发展的微电子集成技术容纳。因此,人们一直在研究探索能在硅基材料的基础上制备宽带隙、发光效率高、适应恶劣环境的蓝色发光材料。碳化硅(SiC)作为一种宽带隙的半导体材料,其带隙在2.2~3.2 eV间,是一种有希望在高温和恶劣环境种作为蓝光、紫外光发光器件。但是,由于SiC是一种间接带隙结构,导致其发光效率低,因此SiC在光电子器件中的应用也受到限制。
三元化合物硅碳氮(SiCN)具有优良的光、电和力学性能,是一种新兴的宽带隙半导体,其带隙在宽范围内可调,宽带隙的SiCN具有直接光学带隙,发光效率高,因此SiCN在蓝光和紫外发光方面具有广阔的应用前景,同时其与硅集成电路工艺兼容特点使其成为光电集成电路的优选材料。目前,有报道提及等离子体增强化学气相沉积(PECVD)技术制备SiCN薄膜,获得了蓝光发光(V.I. Ivashchenko, A.O. Kozak, O.K. Porada, L.A.Ivashchenko, O.K. Sinelnichenko, O.S. Lytvyn, T.V. Tomila, V.J. Malakhov.Characterization of SiCN thin films: Experimental andtheoreticalinvestigations [J]. Thin Solid Films, 2014, 569 : 57–63),或利用C+离子注入到低压化学气相沉积的非晶SiNx薄膜,热处理后获得蓝光发光(Yuzhen Liu, Xia Zhang, ChaoChen, Guobin Zhang, Pengshou Xu, Dapeng Chen, Lijun Dong. Thephotoluminescence of SiCN thin films prepared by C+ implantation into α-SiNx:H [J]. Thin Solid Films,2010, 518 :4363–4366 ),它们共同的缺点是在化学气相沉积过程中要使用很高的衬底温度,不利于光互连集成电路的制造。
发明内容
本发明的目的在于提供一种在氮气和氩气气氛中反应溅射SiC靶制备蓝光发光的硅碳氮薄膜。本发明的目的还在于提供所述硅碳氮蓝光发光薄膜的制备方法,
本发明的硅碳氮蓝光发光薄膜的化学通式是SiCxNy:其中,x取值0.3~0.4,y取值0.8~0.9。
x优选0.36,y优选0.85。
本发明所述的硅碳氮蓝光发光薄膜的制备方法,包括如下步骤:
(1)将SiC靶材和Si衬底装入磁控溅射镀膜设备的真空腔内,将真空腔内的真空抽至1.0×10-3~1×10-5Pa之间;
(2)调整磁控溅射镀膜工艺参数为:基靶间距为50~70mm,优选60mm氮气与氩气(N2/Ar)的流量比为0.1~0.4:1,磁控溅射工作压强为1.0~2.0Pa,溅射功率为200~400W,衬底温度为常温,进行磁控溅射制备硅碳氮薄膜;
(3)将步骤(2)制备的硅碳氮薄膜置于退火炉中在氮气保护下400℃~800℃退火3~10分钟,得到蓝光发光的硅碳氮薄膜。
作为优选
步骤(1)中,采用机械泵和分子泵将真空腔体内的真空抽至5×10-4Pa。
步骤(2)中氮气与氩气(N2/Ar)的流量比为0.16,磁控溅射工作压强为1.4Pa,溅射功率为300W,基靶间距为60mm。
步骤(3)中,退火温度优选600℃,时间优选5分钟。
得到的硅碳氮发光薄膜在电致发光谱中出现了较强的451nm和490 nm的蓝光发光。
步骤(1)中,所述靶材和衬底可使用市售商品,本发明优选下述方法制备得到。
制备靶材:将粒度范围为0~1000微米的SiC粉末在真空或氩气中进行烧结,烧结温度为1000~1800℃,烧结后得到SiC靶材。
制备衬底:使用单晶Si作为衬底,先用5%浓度的氢氟酸清洗Si片去除其表面氧化层,然后用去离子水清洗Si衬底,再在超声波容器中依次用丙酮、无水乙醇对Si衬底进行清洗10分钟去除其表面油脂,最后用去离子水冲洗并烘干得到Si衬底。
本发明与现有技术相比,具有如下优点:
1、硅碳氮发光薄膜化学通式SiCxNy中,x取值0.3~0.4,y取值0.8~0.9; x优选0.36,y优选0.85,其蓝光发光强度比较强,经创造性探索试验分析认为所述通式的 Si-C-N网络结构可获得较强蓝光发光。
2、在氮气和氩气气氛中反应溅射SiC靶制备蓝光发光的硅碳氮薄膜,不必使用很高的衬底温度,设备投资小、成本低;而PECVD制备需要高衬底温度,如450℃~900℃,设备投资大、成本高,对气体的纯度要求高。因此本发明有利于硅碳氮蓝光发光薄膜的制备及其在光互连、光电子器件中广泛的应用。
3、步骤(1)中将真空腔体内的真空抽至5×10-4Pa。步骤(2)中氮气与氩气(N2/Ar)的流量比为0.16,磁控溅射工作压强为1.4Pa,溅射功率为300W。经创造性探索试验分析获得该工艺参数制备的薄膜具有最强蓝光发光强度。
4、退火温度降低,退火时间大大缩短,相比于文献PECVD制备的蓝光发光薄膜通常在800℃~1200℃下退火2小时。本发明有利电子器件制备及成本降低。
附图说明
图1为实施例1制备的硅碳氮蓝光发光薄膜的发光谱;
图2为实施例2制备的硅碳氮蓝光发光薄膜的发光谱图。
具体实施方式
制备靶材:将粒度范围为0~1000微米的SiC粉末在真空或氩气中进行烧结,烧结温度为1000~1800℃,烧结后得到纯度为99.95%的烧结SiC靶材,靶材的直径为100mm、厚度为5mm。
制备衬底:使用单晶Si作为衬底,先用5%浓度的氢氟酸清洗Si片去除其表面氧化层,然后用去离子水清洗Si衬底,再在超声波容器中依次用丙酮、无水乙醇对Si衬底进行清洗10分钟去除其表面油脂,最后用去离子水冲洗并烘干得到Si衬底。
实施例1
(1)将上述SiC靶材装入磁控溅射设备的靶架上;将上述Si衬底装入磁控溅射设备的真空腔内的衬底架上,基靶间距为60mm,用机械泵和分子泵把磁控溅射镀膜设备的真空腔内的真空抽至5×10-4Pa;
(2)调整磁控溅射镀膜工艺参数为:将N2气和Ar气通过气体流量计引入镀膜真空腔内,其N2/Ar流量比为0.16,磁控溅射工作压强为1.4Pa,溅射功率为300W,衬底温度为室温;制备硅碳氮薄膜,其化学式为SiC0.36N0.85
(3)将薄膜在RTP–600快速热处理炉中退火5分钟,退火温度为600℃,保护气体为N2,得到蓝光发光硅碳氮薄膜。
得到的硅碳氮蓝光发光薄膜的发光谱如图1所示,使用Hitachi F–2500荧光分光光度计测量,激发光波长为260nm,扫描速度为300 nm/min,光电倍增管电压为700 V,从图中可以看到较强的451nm和490 nm的蓝光发光。
实施例2
(1)将上述SiC靶材装入磁控溅射设备的靶架上;将上述Si衬底装入磁控溅射设备的真空腔内的衬底架上,基靶间距为70mm,用机械泵和分子泵把磁控溅射镀膜设备的真空腔内的真空抽至1.0×10-3
(2)调整磁控溅射镀膜工艺参数为:将N2气和Ar气通过气体流量计引入镀膜真空腔内,其N2/Ar流量比为0.4,磁控溅射工作压强为1.0Pa,溅射功率为400W,衬底温度为室温;制备硅碳氮薄膜,其化学式为SiC0.3N0.9
(3)将薄膜在RTP–600快速热处理炉中退火3分钟,退火温度为800℃,保护气体为N2,得到蓝光发光硅碳氮薄膜。
得到的硅碳氮蓝光发光薄膜的发光谱如图2所示,使用Hitachi F–2500荧光分光光度计测量,激发光波长为260nm,扫描速度为300 nm/min,光电倍增管电压为700 V,从图中可以看到较强的451nm和490 nm的蓝光发光。其发光强度比实施例1得到薄膜的发光谱(图1)所示的发光强度稍弱。
实施例3
(1)将上述SiC靶材装入磁控溅射设备的靶架上;将上述Si衬底装入磁控溅射设备的真空腔内的衬底架上,基靶间距为50mm,用机械泵和分子泵把磁控溅射镀膜设备的真空腔内的真空抽至1×10-5
(2)调整磁控溅射镀膜工艺参数为:将N2气和Ar气通过气体流量计引入镀膜真空腔内,其N2/Ar流量比为0.1:1,磁控溅射工作压强为2.0Pa,溅射功率为200W,衬底温度为室温;制备硅碳氮薄膜,其化学式为SiC0.4N0.8
(3)将薄膜在RTP–600快速热处理炉中退火10分钟,退火温度为400℃,保护气体为N2,得到蓝光发光硅碳氮薄膜,其在451nm和490 nm由较强的蓝光发光,发光强度比实施例1得到薄膜的发光强度稍弱。

Claims (6)

1.一种硅碳氮蓝光发光薄膜,其特征在于其化学通式是SiCxNy:其中,x的取值0.3~0.4,y取值0.8~0.9。
2.根据权利要求1所述的一种硅碳氮蓝光发光薄膜,其特征在于x取值0.36,y取值0.85。
3.权利要求1或2所述硅碳氮蓝光发光薄膜的制备方法,其特征在于包括如下步骤:
(1)将SiC靶材和衬底装入磁控溅射镀膜设备的真空腔体内,将真空腔体内
的真空抽至1.0×10-3~1×10-5Pa之间;
(2)调整磁控溅射镀膜工艺参数为:基靶间距为50~70mm,优选60mm氮气与氩气(N2/Ar)的流量比为0.1~0.4:1,磁控溅射工作压强为1.0~2.0Pa,溅射功率为200~400W,衬底温度为常温,进行磁控溅射制备硅碳氮薄膜;
(3)将步骤(2)制备的硅碳氮薄膜置于退火炉中在氮气保护下400℃~800℃退火3~10分钟,得到蓝光发光的硅碳氮薄膜。
4.根据权利要求3所述的方法,其特征在于步骤(1)中,采用机械泵和分子泵将真空腔内的真空抽至5×10-4Pa;步骤(2)中氮气与氩气(N2/Ar)的流量比为0.16:1,磁控溅射工作压强为1.4Pa,溅射功率为300W,基靶间距为60mm;步骤(3)中,退火温度600℃,时间5分钟。
5.根据权利要求4所述的方法,其特征在于步骤(1)中,所述SiC靶材由下述方法制备得到:将粒度范围为0~1000微米的SiC粉末在真空或氩气中进行烧结,烧结温度为1000~1800℃,烧结后制成SiC靶材。
6.根据权利要求5所述的方法,其特征在于步骤(1)中,所述衬底为单晶Si作为衬底,由下述方法制备得到:先用5%浓度的氢氟酸清洗Si片去除其表面氧化层,然后用去离子水清洗Si衬底,再在超声波容器中依次用丙酮、无水乙醇对Si衬底进行清洗10分钟去除其表面油脂,最后用去离子水冲洗并烘干得到Si衬底。
CN201710643110.3A 2017-07-31 2017-07-31 一种硅碳氮蓝光发光薄膜及其制备方法 Pending CN107400852A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710643110.3A CN107400852A (zh) 2017-07-31 2017-07-31 一种硅碳氮蓝光发光薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710643110.3A CN107400852A (zh) 2017-07-31 2017-07-31 一种硅碳氮蓝光发光薄膜及其制备方法

Publications (1)

Publication Number Publication Date
CN107400852A true CN107400852A (zh) 2017-11-28

Family

ID=60401894

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710643110.3A Pending CN107400852A (zh) 2017-07-31 2017-07-31 一种硅碳氮蓝光发光薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN107400852A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110273125A (zh) * 2019-04-29 2019-09-24 武汉理工大学 一种采用磁控溅射制备荧光碳化硅薄膜的方法
CN114107890A (zh) * 2021-11-29 2022-03-01 湖北久之洋红外系统股份有限公司 一种用于红外光学窗口表面的高硬度SiCN增透保护薄膜及其制备方法
CN115247064A (zh) * 2021-01-18 2022-10-28 浙江理工大学 铽掺杂氧化锡薄膜及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3560364A (en) * 1968-10-10 1971-02-02 Ibm Method for preparing thin unsupported films of silicon nitride
CN106229156A (zh) * 2016-08-29 2016-12-14 郝逸展 一种用于能量存储的二维硅碳氮纳米材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3560364A (en) * 1968-10-10 1971-02-02 Ibm Method for preparing thin unsupported films of silicon nitride
CN106229156A (zh) * 2016-08-29 2016-12-14 郝逸展 一种用于能量存储的二维硅碳氮纳米材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
彭银桥: ""硅碳氮薄膜的结构及光学特性研究"", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110273125A (zh) * 2019-04-29 2019-09-24 武汉理工大学 一种采用磁控溅射制备荧光碳化硅薄膜的方法
CN110273125B (zh) * 2019-04-29 2021-07-06 武汉理工大学 一种采用磁控溅射制备荧光碳化硅薄膜的方法
CN115247064A (zh) * 2021-01-18 2022-10-28 浙江理工大学 铽掺杂氧化锡薄膜及其制备方法
CN114107890A (zh) * 2021-11-29 2022-03-01 湖北久之洋红外系统股份有限公司 一种用于红外光学窗口表面的高硬度SiCN增透保护薄膜及其制备方法

Similar Documents

Publication Publication Date Title
US11139170B2 (en) Apparatus and method for bonding substrates
García-Valenzuela et al. Main properties of Al2O3 thin films deposited by magnetron sputtering of an Al2O3 ceramic target at different radio-frequency power and argon pressure and their passivation effect on p-type c-Si wafers
CN107400852A (zh) 一种硅碳氮蓝光发光薄膜及其制备方法
CN109023251A (zh) 一种层数可控的稀土铒掺杂二硫化钨薄膜材料制备方法
CN101339906A (zh) 新型环境半导体光电子材料β-FeSi2薄膜的制备工艺
CN106024971A (zh) 单根硒微米管光电探测器及其制备方法和响应度增强方法
CN101096594B (zh) 室温下发射蓝光和紫光的氧化锌薄膜及其制备方法
Zhang et al. Process control of reactive sputter deposition of AlO x and improved surface passivation of crystalline silicon
CN110777356A (zh) 稀土掺杂的硫化钼单分子层薄膜及制备方法
CN109628900B (zh) 一种采用磁控溅射制备的Sr3Al2O6薄膜及其方法
CN108930019B (zh) 一种tsc陶瓷薄膜的制备方法及其产品和应用
WO2017215150A1 (zh) 半导体设备的成膜方法以及半导体设备的氮化铝成膜方法
KR20030025354A (ko) 청색발광 ZnO 박막형광체의 제조방법
CN101510664A (zh) 电抽运硅基MgxZn1-xO薄膜紫外随机激光器及其制备方法
CN113355650B (zh) AlN-金刚石热沉、制备方法和应用以及半导体激光器封装件
CN109449224B (zh) 一种硅基光电材料及其制备方法
CN100369202C (zh) 制备纳米硅基发光复合薄膜的方法
JP6638031B2 (ja) 基板をボンディングする装置および方法
WO2020135297A1 (zh) 反射结构、反射结构的制备方法及波长转换装置
CN109781670B (zh) 一种上转换荧光增强衬底及其制备方法
CN107615442A (zh) 紫外光产生用靶及其制造方法
CN111697116B (zh) 一种表面内嵌微纳结构增透层的可见光led芯片及制备方法
CN106756825B (zh) 一种波长可调的荧光涂层及其制备方法和应用
JP5344474B2 (ja) Er添加Si複合粒子の製造方法
CN111354628B (zh) 一种氮化镓生长衬底的制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171128

RJ01 Rejection of invention patent application after publication