CN106756825B - 一种波长可调的荧光涂层及其制备方法和应用 - Google Patents

一种波长可调的荧光涂层及其制备方法和应用 Download PDF

Info

Publication number
CN106756825B
CN106756825B CN201611040248.6A CN201611040248A CN106756825B CN 106756825 B CN106756825 B CN 106756825B CN 201611040248 A CN201611040248 A CN 201611040248A CN 106756825 B CN106756825 B CN 106756825B
Authority
CN
China
Prior art keywords
boron
fluoresent coating
silicon
target
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611040248.6A
Other languages
English (en)
Other versions
CN106756825A (zh
Inventor
李东升
刘国华
杨德仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201611040248.6A priority Critical patent/CN106756825B/zh
Publication of CN106756825A publication Critical patent/CN106756825A/zh
Application granted granted Critical
Publication of CN106756825B publication Critical patent/CN106756825B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/63Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing boron
    • C09K11/636Silicates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种波长可调的荧光涂层及其制备方法和应用,采用了磁控溅射法通过控制硅靶和硼靶的功率来调节荧光涂层的富硅量和掺硼量。掺硼量的变化在涂层中引入大量发光中心的同时,不同缺陷之间的比例也发生变化,从而实现荧光涂层的最大发射荧光波长在很大范围内变化,即可以通过调节硼含量可以得到理想的发光色彩。本发明制备工艺简单,工业兼容性好,在荧光粉以及光电子器件领域有广阔的应用前景。

Description

一种波长可调的荧光涂层及其制备方法和应用
技术领域
本发明涉及硅基光电子领域,具体涉及一种波长可调的荧光涂层及其制备方法和应用。
背景技术
富硅氧化硅为硅纳米晶镶嵌二氧化硅结构,由于硅纳米晶的量子限制效应在常温下具有良好的发光性能,并且与大规模集成电路的制造工艺相兼容,因而近年来一直被作为一个热门的研究对象。
富硅氧化硅由于其发光受到了广泛关注,有望在生物、照明及太阳电池等领域取得应用。但是由于富硅氧化硅薄膜的发光波段通常与硅纳米晶的尺寸分布有关,无法在同一个样品中得到不同波段的混合发光;而且,由于通常制备得到的富硅氧化硅材料由于导电性差达不到制备器件的要求,严重限制了其应用范围,特别是在电致发光方面的应用。
马丁.格林小组在室温下,通过磁控共溅射硅(Si)靶,石英(SiO2)靶,硼(B)靶,背底真空6.67×10-5Pa,引入高纯氩气(Ar)至工作气压为0.2Pa,研究了掺硼量及富硅量对掺硼的富硅氧化硅薄膜的发光性能的影响(Synthesis and characterization of boron-doped Si quantum dots for all-Si quantum dot tandem solar cells;X.J.Hao,E-C.Cho,C.Flynn,Y.S.Shen,S.C.Park,G.Conibeer,M.A.Green;Solar Energy Materials&Solar Cells;93(2009)273–279):A组实验为调节不同Si/O比率的掺硼的富硅氧化硅薄膜。固定加在SiO2靶上的射频功率为120W,加在B靶上的功率为30W,变化加在Si靶上的功率来调节Si/O比率;B组实验为相同Si/O比率但不同含B量的富硅氧化硅薄膜,固定加在SiO2靶上的功率为120W,加在Si靶上的功率为25W,变化加在B靶上的功率:0,9,15,30W。经过高温热处理后得到的薄膜在532纳米激光激发下,只得到了Si纳米晶相关的激子发光峰(近红外发光)随掺硼量的增加而淬灭的现象,不能实现波长可调。
发明内容
针对现有技术中富硅氧化硅在光致发光应用中存在的不足,本发明提供一种波长可调的荧光涂层的制备方法,该方法得到的荧光涂层可应用于荧光粉以及硅基光电子器件等。
一种波长可调的荧光涂层的制备方法,包括如下步骤:
(1)清洗衬底;
(2)在真空度为1×10-5~1×10-2Pa下,通入高纯Ar和高纯O2混合气体,利用射频溅射对硅靶和硼靶进行反应共溅射,在衬底上沉积薄膜;
(3)惰性气氛下,对步骤(2)得到的薄膜进行热处理,即得到掺硼的荧光涂层。
所述荧光涂层的硼含量为1~15.1at.%;所述荧光涂层在激发下会产生650nm~410nm荧光,最大发射荧光波长随硼含量的变化而变化。
本发明采用共溅射制备掺硼荧光涂层,然后通过高温热处理在氧化硅薄膜内生成掺硼的硅纳米晶。在磁控溅射过程中通过控制硅靶与硼靶的功率调解荧光涂层中的富硅量与掺硼量。由于硼原子在硅纳米晶中实现了电学活性掺杂,引起的俄歇复合导致了硅纳米晶的本征发光淬灭,同时硼的掺杂引起了界面与基体中的不同的发光中心之间的比例发生变化,最终导致掺硼量不同的荧光涂层的发光色彩不同。
步骤(1)中,用标准RCA溶液清洗所述的衬底。
所述衬底包括Si(100)衬底、石英衬底或单晶NaCl衬底。
作为优选,衬底清洗后加热至450~600℃。
磁控溅射过程中,高纯Ar作为工作气体,高纯O2作为反应气体,两者的比例需要保持在一定范围内,作为优选,步骤(2)中高纯Ar和高纯O2混合气体中高纯O2的质量百分含量为0.01%~10%。进一步优选,步骤(2)中高纯Ar和高纯O2混合气体中高纯O2的质量百分含量为0.1%~1%。
为保证制膜的纯度及荧光涂层的发光性能,作为优选,步骤(2)中硅靶和硼靶的纯度均大于或等于99.99%。
步骤(2)中共溅射时,硅靶的溅射功率为60~200W,硼靶的溅射功率为20~200W,溅射腔室的压强为0~10Pa。作为优选,硅靶的溅射功率为120~150W,硼靶的溅射功率为30~120W,溅射腔室的压强为1~5Pa。
本发明制备的荧光涂层中掺硼量对最终得到的薄膜的发光性能有着直接影响,掺硼引起了界面和基体中不同发光中心之间比例的变化,最终导致不同掺硼量的荧光涂层的发光色彩不同,其中发光中心包括WOB(415nm)、NOV(459nm)和Eδ’center(520nm)。当富硅量Si/O=0.67时,未掺杂样品为红光发光;硼含量B=2.17at%,荧光涂层发光为绿光;硼含量B=2.99at%,荧光涂层发光为白光;硼含量B=3.58at%,荧光涂层发光为蓝光,经过实验证明掺硼引起了WOB、NOV、Eδ’center三种发光中心之间的比例变化。因此说明掺硼量是影响荧光涂层发光颜色的因素,通过控制涂层中的硼含量来调节所述荧光涂层的最大发射荧光波长。
所述荧光涂层在紫外激光的照射下,最大发射波长随硼含量的增加蓝移。
作为优选,所述荧光涂层的硼含量为1.5~4.5at.%时,在325nm激发波长下,所述荧光涂层的最大发射波长随硼含量的增加从650nm逐渐移动到410nm。由于B原子掺杂位置位于Si纳米晶的压表面,并且B原子比Si原子的原子尺寸小21%,所以通过掺杂B原子能够引起Si纳米晶表面发光缺陷的变化,这样就导致了掺硼荧光涂层的发光波长随着硼含量的变化而变化。此外,富硅氧化硅由Si纳米晶、界面和基体组成,富硅量从界面到基体逐渐减小,B原子在界面和基体中主要与O原子结合,加剧了界面中的缺氧环境,促使非桥氧空穴键向缺氧中心转化。因此,随着硼含量的增加,所述荧光涂层的最大发射波长逐渐向低波长端移动。
进一步优选,所述荧光涂层的硼含量为2.17~3.58at.%时,在325nm激发波长下,所述荧光涂层的最大发射波长随硼含量的增加从520nm逐渐移动到459nm。
步骤(3)中热处理的条件为:在600~1200℃下热处理0~6小时。溅射镀膜后进行退火处理,能促进硅纳米晶在基体中分相和激活发光中心。作为优选,步骤(3)中热处理的条件为:在900~1100℃下热处理0.5~3小时。
本发明还提供了一种由上述制备方法得到的荧光涂层。
本发明还提供了一种由上述制备方法得到的荧光涂层在荧光粉以及光电子器件中的应用。
本发明在传统的制备富硅氧化硅薄膜的基础上,利用共溅射沉积引入硼元素,从而在后续热处理中使得硼掺杂进入纳米晶硅,或位于氧化硅基体中,或位于氧化硅基体和Si纳米晶的界面处,使得纳米晶硅及纳米晶硅镶嵌富硅氧化硅薄膜的导电性增强的同时,界面和基体中的发光中心之间的比例随着掺硼量发生变化,从而引起掺硼荧光涂层光致发光色彩的变化。生产工艺简单,技术成熟,并且工业兼容性好,具有广阔应用前景,特别是在荧光粉和硅基光电子器件方面的应用。
附图说明
图1为实施例1制得的不同硼含量的荧光涂层经过高斯分峰处理的光致发光谱;其中(a)、(b)、(c)、(d)分别代表样品Si130、Si130B30、Si130B50、Si130B80的光致发光谱;
图2为不同硼含量的荧光涂层的光致发光在CIE1931中的显示;
图3为实施例2制得的不同硼含量的未经热处理的荧光涂层的光致发光谱。
具体实施方式
为了更好的理解本发明,下面结合实施例进一步阐述本发明的方案,但本发明的内容不仅仅局限于下面的实施例。
实施例1
本实施例中,掺硼荧光涂层的制备采用(100)晶向的P型直拉单晶硅片,硅片单面抛光、电阻率ρ=10~20Ω.cm,溅射薄膜时衬底加热温度500℃,射频溅射设备背底真空度为2×10-3Pa,溅射气体为含1%O2的高纯Ar+O2混合气体,溅射压强1Pa,硅靶功率130瓦,溅射时施加于硼靶上的功率分别为0、30、50和80瓦,制备得到的样品分别标记为Si130、Si130B30、Si130B50和Si130B80。
具体制备方法如下;
(1)对硅片进行标准的RCA清洗,然后用稀氢氟酸去除硅片表面的氧化层后,将硅片放入射频溅射设备,然后抽真空至真空度为2×10-3Pa,并同时将作为衬底的硅片加热至500℃;在通入含O2的高纯Ar+O2混合气体、溅射压强1Pa条件下,利用高纯硅靶和高纯硼靶,在硅单晶衬底片上溅射沉积一层掺硼的荧光涂层;并通过对施加于硼靶上的溅射功率的变化,改变薄膜中掺硼量;
(2)通过真空管式炉,在高纯惰性气氛保护下对前述反应共溅射制备的荧光涂层进行随炉加热,然后进行1100℃高温保温1小时热处理,并随炉冷却,从而在薄膜中形成硼掺杂的纳米硅颗粒。
(3)将热处理后的薄膜在325nm紫外光激光照射下进行光致发光测试,结果如图1所示,其发射光范围在350~900nm。其中,将硅靶130瓦溅射1100度热处理的涂层标记为Si130;将硅靶130瓦硼靶30瓦溅射1100度热处理的涂层标记为Si130B30;将硅靶130瓦硼靶50瓦溅射1100度热处理的涂层标记为Si130B50;将硅靶130瓦硼靶80瓦溅射1100度热处理的涂层标记为Si130B80,样品中Si、O、B原子百分含量如表1所示。
表1
首先,从四个样品的外观可以看出未掺硼样品Si130的发光为红光,Si130B30为绿光,Si130B50为白光,Si130B80为蓝光,其次,通过对比未掺硼的样品与掺硼的样品的光致发光谱,可以发现掺硼样品的光致发光谱都出现了100nm左右的蓝移,并且在同一个发光谱中出现了多个发光峰,其中Si130B30和Si130B50出现了410nm、459nm和520nm三个发光峰,而Si130B80的光致发光谱中的410nm的发光峰消失,经过证明这三个发光峰分别来自WOB、NOV和Eδ’center三种发光中心。
(4)为了说明荧光涂层的发光随着掺硼量的变化,对四个样品的光致发光谱进行了高斯分峰,分峰分别对应410nm、459nm和520nm三个发光峰,为了更直观地说明这种变化,统计了不同的亚峰面积在光致发光谱中所占的比例随着掺硼量的变化,结果如表2所示。
表2
(5)为了说明掺硼量对荧光涂层发光的影响,将制备的Si130系列样品的光致发光谱在CIE1931图中进行了更直观地表示,如图2所示。其中(a)、(b)、(c)、(d)四个黑点分别代表了Si130、Si130B30、Si130B50和Si130B80;1~8八个点所代表的样品中Si、O、B原子百分含量如表3所示。随着掺硼量的增加,(a)、(b)、(c)、(d)四个黑点由红光区域逐渐向蓝光区域移动,这四个样品的最大发射荧光波长随硼含量的变化而在较大范围内变化,而样品1~8的最大发射荧光波长随硼含量的变化仅在很小的范围内变化。
表3
样品点 硅/氧原子比 硼含量(at.%)
1 1.1 0
2 0.52 0
3 0.52 0.5
4 0.52 0.66
5 1.1 0.53
6 1.1 0.71
7 1.1 0.85
8 0.52 0.91
本发明制备的荧光涂层表现出很强的发光,肉眼明显可见,可用于荧光粉或者硅基光电子器件。
实施例2
与实施例1类似,区别仅在于所述荧光涂层未经热处理,将未经热处理的薄膜在325nm紫外光激光照射下进行光致发光测试,结果如图3所示,其发射光范围在350~600nm。其中,将硅靶130瓦溅射的涂层标记为Si130*;将硅靶130瓦硼靶50瓦溅射的涂层标记为Si130B50*;样品中Si、O、B原子百分含量如表4所示。
表4
由图3可知,未经热处理的荧光涂层的最大发射荧光波长虽然也会随硼含量的变化而变化,但变化的范围较小,这是因为溅射镀膜后进行退火处理,能促进硅纳米晶在基体中分相和在界面中引入大量的发光中心,并且发光中心的比例随着硼含量的变化而在较大范围内变化。
需要说明的是,上述实施例仅用于说明本发明的技术方案,并不用于限制本发明的使用范围。此外,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,但这些修改同样包含在本发明的保护范围之内。

Claims (5)

1.一种波长可调的荧光涂层在荧光粉以及硅基光电子器件中的应用,其特征在于,所述荧光涂层的制备方法包括如下步骤:
(1)清洗衬底,衬底清洗后加热至450~600℃;
(2)在真空度为1×10-5~1×10-2Pa下,通入高纯Ar和高纯O2混合气体,利用射频溅射对硅靶和硼靶进行反应共溅射,在衬底上沉积薄膜;
(3)惰性气氛下,对步骤(2)得到的薄膜进行热处理,即得到掺硼的荧光涂层;
所述荧光涂层的硼含量为1~15.1at.%;所述荧光涂层在激发下会产生650nm~410nm的荧光,最大发射荧光波长随硼含量的变化而变化;
步骤(2)中共溅射时,硅靶的溅射功率为120~150W,硼靶的溅射功率为30~120W,溅射腔室的压强为1Pa。
2.根据权利要求1所述的应用,其特征在于,所述荧光涂层的硼含量为1.5~4.5at.%时,在325nm激发波长下,所述荧光涂层的最大发射波长随硼含量的增加从650nm逐渐移动到410nm。
3.根据权利要求1所述的应用,其特征在于,所所述荧光涂层的硼含量为2.17~3.58at.%时,在325nm激发波长下,所述荧光涂层的最大发射波长随硼含量的增加从520nm逐渐移动到459nm。
4.根据权利要求1所述的应用,其特征在于,步骤(2)中高纯Ar和高纯O2混合气体中高纯O2的质量百分含量为0.01%~10%。
5.根据权利要求1所述的应用,其特征在于,步骤(3)中热处理的条件为:在600~1200℃下热处理0~6小时。
CN201611040248.6A 2016-11-21 2016-11-21 一种波长可调的荧光涂层及其制备方法和应用 Active CN106756825B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611040248.6A CN106756825B (zh) 2016-11-21 2016-11-21 一种波长可调的荧光涂层及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611040248.6A CN106756825B (zh) 2016-11-21 2016-11-21 一种波长可调的荧光涂层及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN106756825A CN106756825A (zh) 2017-05-31
CN106756825B true CN106756825B (zh) 2019-06-25

Family

ID=58973872

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611040248.6A Active CN106756825B (zh) 2016-11-21 2016-11-21 一种波长可调的荧光涂层及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN106756825B (zh)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103422058B (zh) * 2013-07-01 2016-08-10 浙江大学 一种掺硼富硅氧化硅薄膜及其制备方法和应用

Also Published As

Publication number Publication date
CN106756825A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
Chao et al. Structural and luminescent properties of YAG: Ce thin film phosphor
Weingärtner et al. Thermal activation, cathodo-and photoluminescence measurements of rare earth doped (Tm, Tb, Dy, Eu, Sm, Yb) amorphous/nanocrystalline AlN thin films prepared by reactive rf-sputtering
CN109023251A (zh) 一种层数可控的稀土铒掺杂二硫化钨薄膜材料制备方法
JP5842701B2 (ja) 希土類元素が拡散された酸化物セラミック蛍光材料
Aguilar-Castillo et al. White light generation from HfO2 films co-doped with Eu3++ Tb3+ ions synthesized by pulsed laser ablation technique
Park et al. Fabrication and characterization of Bi-doped Y2O3 phosphor thin films by RF magnetron sputtering
Yang et al. The optimum sintering condition for KSrPO4: Eu3+ phosphors applied in WLEDs
WO2015127742A1 (zh) 一种基于Ce:YAG晶片的复合结构及制作方法
US8936732B2 (en) White light emitting glass-ceramic and production method thereof
CN106756825B (zh) 一种波长可调的荧光涂层及其制备方法和应用
Peng et al. Improving thermal stability of KSrPO4: Tb3+ phosphors prepared by microwave assisted sintering
CN109942193B (zh) 一种CsPb1-xTixI3红光微晶玻璃及其制备方法
Chawla et al. Enhancement of luminescence in ZnMgO thin‐film nanophosphors and application for white light generation
CN107400852A (zh) 一种硅碳氮蓝光发光薄膜及其制备方法
JP5793723B2 (ja) 薄膜蛍光体及びその成膜方法
Chen et al. Photoluminescence from β-SiC nanocrystals embedded in SiO2 films prepared by ion implantation
CN103422058B (zh) 一种掺硼富硅氧化硅薄膜及其制备方法和应用
CN109294568A (zh) 一种白光led用氮化物红色荧光粉及其制备方法
CN114671608A (zh) CsPbBr3量子点镶嵌氟磷酸盐玻璃及制备方法和应用
Li et al. Structural and optical properties of (Sr, Ba) 2SiO4: Eu2+ thin films grown by magnetron sputtering
CN109449224B (zh) 一种硅基光电材料及其制备方法
CN107615442A (zh) 紫外光产生用靶及其制造方法
Tang et al. Effect of perovskite composition regulation on its crystallization in SiO2–Al2O3–Li2CO3–AlF3–LiF glass system
JP2011213780A (ja) 光変換用セラミック複合体の製造方法
CN109761501A (zh) 一种可用于上转换激光固态照明的玻璃陶瓷及其制备方法与固态照明器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant