CN107359804B - 一种lcl型三电平并网逆变器的无差拍控制方法 - Google Patents

一种lcl型三电平并网逆变器的无差拍控制方法 Download PDF

Info

Publication number
CN107359804B
CN107359804B CN201710575253.5A CN201710575253A CN107359804B CN 107359804 B CN107359804 B CN 107359804B CN 201710575253 A CN201710575253 A CN 201710575253A CN 107359804 B CN107359804 B CN 107359804B
Authority
CN
China
Prior art keywords
current
inverter
voltage
formula
follows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710575253.5A
Other languages
English (en)
Other versions
CN107359804A (zh
Inventor
黄骏翅
杨林
曾江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201710575253.5A priority Critical patent/CN107359804B/zh
Publication of CN107359804A publication Critical patent/CN107359804A/zh
Application granted granted Critical
Publication of CN107359804B publication Critical patent/CN107359804B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

本发明为LCL型三电平并网逆变器的无差拍控制方法,定义I(k)和C(k),并对其进行初始化;然后计算电容误差电压、电容误差电流以及逆变桥侧误差电流,依次计算逆变器参考电压、I(k)和C(k);选取PWM的极性sign,当C(k)大于等于零时sign为1,反之sign为‑1;求取无差拍方程的解x(k),用x(k)求解调制信号ur(k)。本发明减小了因谐波电容的分流作用所造成的电流控制误差,同时大大提高了LCL型三电平并网逆变器电流跟踪的动态性能。

Description

一种LCL型三电平并网逆变器的无差拍控制方法
技术领域
本发明涉及一种应用于LCL型三电平并网逆变器的电流控制策略,特别是一种LCL型三电平并网逆变器的无差拍控制方法。
背景技术
为了抑制PWM整流器开关频率以上的入网电流谐波,可通过加大网侧滤波电感的值,但滤波电感量的增加将影响系统的动态性能。1995年,M.Lindgen和J.Svensson首先提出了用一个三阶LCL滤波器代替原有的单电感滤波器,来解决上述问题。LCL滤波器的阻抗值与流过的电流频率成反比,频率越高,阻抗越小,所以可以滤除高频谐波。然而,谐波电容的分流作用,使整流器的电流控制系统由一阶变为三阶,控制更为复杂。现有的电流控制策略有比例多谐振控制、重复控制和无差拍控制等。比例谐振控制器通过设定其谐振频率,能实现在固定频率处的环路增益无穷大,从而实现对谐振频率处的电流的跟踪,但实际上并网逆变器的公共并网点(point of common coupling,PCC)的电压频率会有波动,导致比例多谐振控制器无法准确跟踪PCC频率倍数关系的电流。重复控制为基于内模原理,根据每个开关周期给定与反馈信号的误差确定所需的校正信号,然后在下一基波周期同一时间将此信号叠加在原控制信号上,以消除以后各周期中将出现的重复性畸变,但其动态性能差,消除干扰对输出的影响至少要一个参考周期。20世纪60年代,Kalman最早提出了无差拍控制,在80年代中期开始将其用于逆变器控制。无差拍电流控制是数字控制特有的控制方式,在每个开关周期内根据被控对象的数学模型以及当前时刻的采样值,计算整流器在下一个开关周期的占空比,使被控电流在一拍内实现对指令电流的跟踪,其优点在于数学推导严密,跟踪无过冲、动态性能好、算法易于数字实现等。但现有的电流无差拍控制器都是基于单电感滤波器的,因三阶数学模型的复杂性,极少文献对LCL滤波的整流器电流无差拍控制进行研究。
发明内容
本发明的目的在于提供一种LCL型三电平并网逆变器的无差拍控制方法,以克服现有技术中存在的缺陷。
为实现上述目的,本发明的技术方案是:LCL型三电平并网逆变器的无差拍控制方法,包括以下步骤:
步骤S1:初始化,令k=1,I(0)=0,C(0)=0;其中,I(k)、C(k)的定义分别如下式:
Figure BDA0001350778900000021
Figure BDA0001350778900000022
式中,L1为逆变桥侧电感;L2为电网侧电感;C为滤波电容;E为逆变器直流侧电压值;△uC(k)为电容误差电压;△iC(k)为电容误差电流;△i1(k)为逆变桥侧误差电流;u1 *(k)为逆变器参考电压;Ts为开关周期;ω为LCL滤波器的谐振角频率,其表达式为:
Figure BDA0001350778900000026
步骤S2:计算电容误差电压△uC(k)、电容误差电流△iC(k)以及逆变桥侧误差电流△i1(k),按以下两步骤进行:
步骤S21:计算在当前电网电压us(k)下,电网侧电流i2(k)等于参考电流i2ref(k)时,滤波电容C上的电容参考电压uCref(k)、电容参考电流iCref(k)以及逆变桥侧参考电流i1ref(k),其计算公式如下:
Figure BDA0001350778900000023
Figure BDA0001350778900000024
Figure BDA0001350778900000025
式中,us为电网电压瞬时值;i2ref为频谱已知的参考电流,其一阶微分瞬时值和二阶微分瞬时值均由i2ref频谱处理后经逆傅里叶变换所得;
步骤S22:计算电容误差电压△uC(k)、电容误差电流△iC(k)以及逆变桥侧误差电流△i1(k),其计算公式如下:
ΔuC(k)=uC(k)-uCref(k) (7)
ΔiC(k)=iC(k)-iCref(k) (8)
Δi1(k)=i1(k)-i1ref(k) (9)
式中,uC(k)为采样的实际电容电压,iC(k)为采样的实际电容电流,i1(k)为采样的实际逆变桥侧电流;
步骤S3:依次计算u1 *(k)、I(k)和C(k),I(k)和C(k)分别按式(1)、(2)计算,u1 *(k)的计算公式如下:
Figure BDA0001350778900000031
步骤S4:选取PWM的极性sign,其公式如下:
Figure BDA0001350778900000032
步骤S5:求解调制信号ur(k),分为以下两步骤:
步骤S51:求取无差拍方程的解x(k),方程如下:
Figure BDA0001350778900000033
式中,
Figure BDA0001350778900000034
步骤S52:用x(k)求解调制信号ur(k),其公式如下:
Figure BDA0001350778900000035
式中,UTm是单极性三角载波的幅值;
步骤S6:k=k+1;返回步骤S2。
相对于现有技术,本发明具有以下有益效果:所提出的LCL型三电平并网逆变器无差拍控制方法,是根据LCL型三电平并网逆变器的数学模型来设计的,减小了因谐波电容的分流作用所造成的电流控制误差,同时大大提高了LCL型三电平并网逆变器电流跟踪的动态性能。
附图说明
图1为LCL型三电平并网逆变器的无差拍控制流程图;
图2是逆变桥侧误差电流图;
图3为传统PI控制的电流幅值阶跃响应波形图;
图4为无差拍控制的电流幅值阶跃响应波形图;
图5为传统PI控制在参考信号基波与谐波叠加时的输出波形图;
图6为无差拍控制在参考信号基波与谐波叠加时的输出波形图。
具体实施方式
下面将结合附图和具体实施方式对本发明做进一步说明,但本发明的实施方式不限于此。
并网逆变器用一个三阶LCL滤波器代替原有的单电感滤波器,具有以下优点:可用较小的电感和电容代替单电感滤波器中的大电感,既可节省成本,又可增大高频谐波增益的衰减速度,同时可大大提高系统的动态性能。然而,谐波电容的分流作用,使整流器的电流控制系统由一阶变为三阶,控制更为复杂。本发明提出一种LCL型三电平并网逆变器无差拍控制方法,是根据LCL型三电平并网逆变器的数学模型来设计的,减小了因谐波电容的分流作用所造成的电流控制误差,同时大大提高了LCL型三电平并网逆变器电流跟踪的动态性能。
本发明所提出的一种LCL型三电平并网逆变器的无差拍控制方法,如图1所示,包括以下步骤:
步骤S1:初始化,令k=1,I(0)=0,C(0)=0;其中,I(k)、C(k)的定义分别如下式子:
Figure BDA0001350778900000041
Figure BDA0001350778900000042
式中,L1为逆变桥侧电感;L2为电网侧电感;C为滤波电容;E为逆变器直流侧电压值;△uC(k)为电容误差电压;△iC(k)为电容误差电流;△i1(k)为逆变桥侧误差电流;u1 *(k)为逆变器参考电压;Ts为开关周期;ω为LCL滤波器的谐振角频率,其表达式为:
Figure BDA0001350778900000043
步骤S2:计算电容误差电压△uC(k)、电容误差电流△iC(k)以及逆变桥侧误差电流△i1(k),按以下两步骤进行:
步骤S21:计算在当前电网电压us(k)下,电网侧电流i2(k)等于参考电流i2ref(k)时,滤波电容C上的电压(电容参考电压)uCref(k)、电容电流(电容参考电流)iCref(k)以及逆变桥侧电流(逆变桥侧参考电流)i1ref(k),其计算公式如下:
Figure BDA0001350778900000044
Figure BDA0001350778900000045
Figure BDA0001350778900000046
式中,us为电网电压瞬时值,dus/dt可由跟踪微分器算出;i2ref为频谱已知的参考电流(在有源滤波器中可由负载电流经傅里叶变换求得),其一阶微分瞬时值和二阶微分瞬时值均可由i2ref频谱处理后经逆傅里叶变换所得。
步骤S22:计算电容误差电压△uC(k)、电容误差电流△iC(k)以及逆变桥侧误差电流△i1(k),其计算公式如下:
ΔuC(k)=uC(k)-uCref(k) (7)
ΔiC(k)=iC(k)-iCref(k) (8)
Δi1(k)=i1(k)-i1ref(k) (9)
式中,uC(k)为采样的实际电容电压,iC(k)为采样的实际电容电流,i1(k)为采样的实际逆变桥侧电流。
步骤S3:依次计算u1 *(k)、I(k)和C(k),I(k)和C(k)分别按式(1)、(2)计算,u1 *(k)的计算公式如下:
Figure BDA0001350778900000051
步骤S4:选取PWM的极性sign,其公式如下:
Figure BDA0001350778900000055
步骤S5:求解调制信号ur(k),分为以下两步骤:
步骤S51:求取无差拍方程的解x(k),方程如下:
Figure BDA0001350778900000052
式中,
Figure BDA0001350778900000053
步骤S52:用x(k)求解调制信号ur(k),其公式如下:
Figure BDA0001350778900000054
式中,UTm是单极性三角载波的幅值。
步骤S6:k=k+1;返回步骤S2。
在MATLAB环境下,利用Simulink中的功能模块,建立LCL型三电平单相并网逆变器系统仿真模型,直流侧电压取为350V,IGBT Bridge设置为全桥逆变形式,逆变桥侧电感L1=0.75mH,网侧电感L2=55uH,滤波电容C=6.6uF,交流电压(220V)源作为电网电压。
图2是某三个开关周期时间段的逆变桥侧误差电流波形图,其中21为逆变桥侧误差电流波形,22为PWM波形。由图可见,逆变桥侧误差电流Δi1在相邻两个PWM波的中点处大小都为零,说明了每个开关周期的起点或末点逆变桥侧误差电流都为零,即Δi1(k)=0,从而验证了该无差拍算法的有效性。
以下用传统PI控制与本文所提的无差拍控制分别在动态性能和稳态精度上进行对比分析。
图3、4是电流幅值阶跃响应波形,在实验中,电流幅值给定值在0.005s时刻由10A突加到20A,图3为传统PI控制系统的电流幅值阶跃响应波形,其中31为传统PI控制系统的参考电流波形,32为传统PI控制系统的实际电流波形,动态响应时间为2.46ms;图4为本发明所提出的无差拍控制系统的电流幅值阶跃响应波形,其中41为无差拍控制系统的参考电流波形,42为无差拍控制系统的实际电流波形,动态响应时间为0.27ms。实验结果说明,本发明所提的无差拍控制与传统PI控制相比,动态性能有了极大的提高。
图5、6分别是传统PI控制系统和无差拍控制系统在参考信号幅值为10A的基波和幅值为5A的25次谐波(相位均为0°)的叠加时的输出波形图。图5中,实际输出电流波形52与参考电流波形51相差很大,经Simulink的FFT模块分析可得,输出电流的基波幅值为10.22A,相位为-0.163°,25次谐波的幅值为1.643A,相位为-94.88°;图6中,实际输出电流波形62基本与参考电流波形61重合,经Simulink的FFT模块分析可得,输出电流的基波幅值为9.946A,相位为0.7255°,25次谐波的幅值为5.554A,相位为-3.673°。实验结果说明,本发明所提出的无差拍控制与传统PI控制相比,高次谐波电流的稳态误差大大减小。对于有源滤波器而言,谐波电流的跟踪精度越高,谐波补偿就越精确。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (3)

1.一种LCL型三电平并网逆变器的无差拍控制方法,其特征在于,包括以下步骤:
步骤S1:初始化,令k=1,I(0)=0,C(0)=0;其中,I(k)、C(k)的定义分别如下式:
Figure FDA0002316462640000011
Figure FDA0002316462640000012
式中,L1为逆变桥侧电感;L2为电网侧电感;C为滤波电容;E为逆变器直流侧电压值;△uC(k)为电容误差电压;△iC(k)为电容误差电流;△i1(k)为逆变桥侧误差电流;u1 *(k)为逆变器参考电压;Ts为开关周期;ω为LCL滤波器的谐振角频率,其表达式为:
Figure FDA0002316462640000013
步骤S2:计算电容误差电压△uC(k)、电容误差电流△iC(k)以及逆变桥侧误差电流△i1(k),按以下两步骤进行:
步骤S21:计算在当前电网电压us(k)下,电网侧电流i2(k)等于参考电流i2ref(k)时,滤波电容C上的电容参考电压uCref(k)、电容参考电流iCref(k)以及逆变桥侧参考电流i1ref(k),其计算公式如下:
Figure FDA0002316462640000014
Figure FDA0002316462640000015
Figure FDA0002316462640000016
式中,us为电网电压瞬时值;i2ref为频谱已知的参考电流,其一阶微分瞬时值和二阶微分瞬时值均由频谱已知的参考电流i2ref频谱处理后经逆傅里叶变换所得;
步骤S22:计算电容误差电压△uC(k)、电容误差电流△iC(k)以及逆变桥侧误差电流△i1(k),其计算公式如下:
ΔuC(k)=uC(k)-uCref(k) (7)
ΔiC(k)=iC(k)-iCref(k) (8)
Δi1(k)=i1(k)-i1ref(k) (9)
式中,uC(k)为采样的实际电容电压,iC(k)为采样的实际电容电流,i1(k)为采样的实际逆变桥侧电流;
步骤S3:依次计算u1 *(k)、I(k)和C(k),I(k)和C(k)分别按式(1)、(2)计算,u1 *(k)的计算公式如下:
Figure FDA0002316462640000021
步骤S4:选取PWM的极性sign,其公式如下:
Figure FDA0002316462640000022
步骤S5:求解调制信号ur(k),分为以下两步骤:
步骤S51:求取无差拍方程的解x(k),方程如下:
Figure FDA0002316462640000023
式中,
Figure FDA0002316462640000024
步骤S52:用x(k)求解调制信号ur(k),其公式如下:
Figure FDA0002316462640000025
式中,UTm是单极性三角载波的幅值;
步骤S6:k=k+1;返回步骤S2。
2.根据权利要求1所述的LCL型三电平并网逆变器的无差拍控制方法,其特征在于,式(5)、(6)中的dus/dt由跟踪微分器算出。
3.根据权利要求1所述的LCL型三电平并网逆变器的无差拍控制方法,其特征在于,步骤S21中频谱已知的参考电流i2ref在有源滤波器中由负载电流经傅里叶变换求得。
CN201710575253.5A 2017-07-14 2017-07-14 一种lcl型三电平并网逆变器的无差拍控制方法 Active CN107359804B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710575253.5A CN107359804B (zh) 2017-07-14 2017-07-14 一种lcl型三电平并网逆变器的无差拍控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710575253.5A CN107359804B (zh) 2017-07-14 2017-07-14 一种lcl型三电平并网逆变器的无差拍控制方法

Publications (2)

Publication Number Publication Date
CN107359804A CN107359804A (zh) 2017-11-17
CN107359804B true CN107359804B (zh) 2020-05-22

Family

ID=60293382

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710575253.5A Active CN107359804B (zh) 2017-07-14 2017-07-14 一种lcl型三电平并网逆变器的无差拍控制方法

Country Status (1)

Country Link
CN (1) CN107359804B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113517844A (zh) * 2021-05-27 2021-10-19 南京航空航天大学 一种高速永磁电机电流谐波抑制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103944428B (zh) * 2014-05-13 2016-08-17 湖南大学 一种适用于电网波形畸变的三相pwm整流器的控制方法
CN106385194A (zh) * 2016-11-26 2017-02-08 温州大学 微网离网模式下逆变器分数阶电压和频率高效控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9729085B2 (en) * 2014-09-26 2017-08-08 Majid Pahlevaninezhad Observer-based control system for grid-connected DC/AC converters with LCL-filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103944428B (zh) * 2014-05-13 2016-08-17 湖南大学 一种适用于电网波形畸变的三相pwm整流器的控制方法
CN106385194A (zh) * 2016-11-26 2017-02-08 温州大学 微网离网模式下逆变器分数阶电压和频率高效控制方法

Also Published As

Publication number Publication date
CN107359804A (zh) 2017-11-17

Similar Documents

Publication Publication Date Title
CN103560690B (zh) 一种单相lcl型并网逆变器谐波阻尼控制方法
CN108023352B (zh) 抑制分布式发电谐振的电网高频阻抗重塑装置及方法
CN111371337B (zh) 二极管箝位型三电平逆变器的中性点电位平衡控制方法
CN111917131A (zh) 一种基于pi和mpr的光伏lcl并网逆变器谐波抑制方法
CN107611971B (zh) 针对网压谐波畸变的网侧逆变器谐振全阶滑模控制方法
CN103684027A (zh) 基于纹波功率转移的单相光伏并网逆变器及调制控制方法
CN105811748A (zh) 一种模块化多电平换流器环流谐波抑制方法
CN110429603B (zh) 六开关七电平有源电力滤波器及补偿方法
CN114142751B (zh) 一种不平衡电网电压下三相csr比例积分谐振控制方法
CN106130351A (zh) 一种电动汽车直流充电器输出电压波纹抑制系统及方法
CN107359804B (zh) 一种lcl型三电平并网逆变器的无差拍控制方法
CN116979535A (zh) 一种用于有源电力滤波器的双重谐波电流检测方法
CN105140924A (zh) 一种混合型有源滤波器的非线性控制器设计方法
CN109039043A (zh) 抑制三电平变流器母线中点电位波动的零序分量寻优方法
CN110445409B (zh) 一种具有中点电位控制能力的变换器最优序列调制方法
CN109995260B (zh) 一种基于准z源三电平逆变器的电网控制方法
KR20110072838A (ko) 인버터의 모델전류추종 적응제어방법
CN112152488A (zh) 一种三相三电平维也纳整流器控制系统及控制方法
CN110995032A (zh) 加入死区补偿的pwm整流器无差拍控制方法
CN118174582B (zh) 一种无差拍预测控制方法
Choi et al. A Simple Modulated Model Predictive Control of Single-Phase HERIC Active Power Filter
CN111769563B (zh) 一种lcl有源电力滤波器模型及其预测控制方法
Kazemi et al. An adaptive noise canceling method for single-phase unified power quality conditioner
CN110380630B (zh) 基于占空比单相pwm整流器的观测器精度提高方法
Zhao et al. MATLAB Simulation Research on Harmonic Elimination Algorithm of Active Power Filter Based on Cascaded Multilevel Inverter Technology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant