CN107356648A - 一种用于测定乙醇的气敏传感器元件及其制备方法和应用 - Google Patents

一种用于测定乙醇的气敏传感器元件及其制备方法和应用 Download PDF

Info

Publication number
CN107356648A
CN107356648A CN201710601706.7A CN201710601706A CN107356648A CN 107356648 A CN107356648 A CN 107356648A CN 201710601706 A CN201710601706 A CN 201710601706A CN 107356648 A CN107356648 A CN 107356648A
Authority
CN
China
Prior art keywords
micro
gas sensor
flowers
ethanol
interdigital electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710601706.7A
Other languages
English (en)
Other versions
CN107356648B (zh
Inventor
王榆成
朱沛华
李珊珊
姚顺成
齐裙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinan Hengtai Keling automatic control equipment Co.,Ltd.
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201710601706.7A priority Critical patent/CN107356648B/zh
Publication of CN107356648A publication Critical patent/CN107356648A/zh
Application granted granted Critical
Publication of CN107356648B publication Critical patent/CN107356648B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明涉及一种用于测定乙醇的气敏传感器元件,该气敏元件包含ITO导电玻璃和叉指电极,所述叉指电极刻蚀在ITO导电玻璃上,在叉指电极表面设置5,15‑对二茂铁乙炔基‑10,20‑对苯基镍卟啉(FcDPPNi)微米花气敏材料。本发明制备的气敏元件具有FcDPPNi微米花气敏材料,在室温下对100‑1000 ppm范围内乙醇具有良好的响应,且乙醇浓度与灵敏度之间具有良好的线性规律,同时对乙醇的检测限低、重现性较好及选择性较强。本发明的优势在于制备工艺简单、成本较低、易于批量生产。

Description

一种用于测定乙醇的气敏传感器元件及其制备方法和应用
技术领域
本发明涉及一种用于测定乙醇的气敏传感器元件及其制备方法和应用,属于有机半导体气敏元件技术领域。
背景技术
近年来,随着科学技术的飞速发展,给人们的生产生活带来极大的便利。然而,科技给人类带来便利的同时,自然环境及人类生活空间正受到不同程度的破坏。如随着汽车工业的蓬勃发展,人们生活水平的迅速提高,家用汽车已然成为各家各户的代步工具,给人们的出行带来了极大的方便。然而,却也埋下了安全隐患。据统计,接近一半以上的交通事故与酒后驾车有关。不仅如此,乙醇在生物医药、化学和食品工业都有一定的需求,特别是乙醇作为一种可燃性气体,遇明火、高温能够引起燃烧爆炸。因此,对其进行有效检测、监控和预警具有十分重要的意义。而乙醇气敏传感器可以灵敏的检测乙醇气体的含量,在酒后驾车、 煤矿开采、火警预防、气体泄漏检测、环境监测等方面发挥着不可替代的作用。
目前对乙醇及大多数有机气体的检测主要以金属氧化物半导体气敏传感器为主,如:ZnO、SnO2、TiO2等,但是这些传统的气敏元件存在检测灵敏度较低、工作温度相对较高、选择性较差等不足。然而,有机化合物半导体气敏传感器的工作温度相对较低,而且制作成本低,更重要的是对包括乙醇在内的挥发性有机化合物(VOCs)具有较高的灵敏度、重现性及选择性等特性而受到广泛的应用,其中以卟啉酞菁类有机大分子半导体气敏传感器最具代表性。特别是卟啉分子具有特殊的二维共轭π电子结构,有利于电荷在其平面进行离域化,受到研究者的青睐。此外,大量实验证明各种形貌的微米材料能够提供较大的比表面积(与气体接触面积)及较多的活性位点,有利于促进有机气体分子与纳米材料表面及内部之间的相互作用,从而提高气敏性能。故制备以卟啉类有机半导体微米材料的气敏传感器是未来气敏传感器的发展趋势。
发明内容
本发明的目的在于提供一种用于测定乙醇的气敏传感器元件及其制备方法和应用。
本发明的具体内容如下:
一种用于测定乙醇的气敏传感器元件,包括ITO(氧化铟锡)导电玻璃和叉指电极,所述叉指电极刻蚀在ITO导电玻璃上,在叉指电极表面设置5, 15-对二茂铁乙炔基-10, 20-对苯基镍卟啉(FcDPPNi)微米花气敏材料。
上述气敏传感器元件的制备方法,其特征在于,制备步骤如下:
(1) 将刻蚀在ITO导电玻璃基底上的叉指电极用甲苯、丙酮、无水乙醇和蒸馏水在内的不同极性的溶剂依次清洗3次,每次5 min;
(2)将5, 15-对二茂铁乙炔基-10, 20-对苯基镍卟啉用良溶剂溶解,制备成 0.003-0.005 mmol/mL的溶液;
所述5, 15-对二茂铁乙炔基-10, 20-对苯基镍卟啉,简称FcDPPNi,其结构式如式1所示;
所述良溶剂为三氯甲烷或者二氯甲烷;
(3)将步骤 (2) 制备好的溶液小心滴在清洗好的放置在带有真空阀的密闭容器里面的叉指电极上,同时把盛有30-100 mL二氯甲烷的烧杯也放到带有真空阀的密闭容器里;
(4)打开旋塞,抽真空3次,每次5 min,关闭旋塞,使蒸汽充满带有真空阀的密闭容器空间,放置 24 h,取出干燥备用。
式1:
上述制备步骤,其中步骤(2)中溶液浓度是制备FcDPPNi微米花的关键。若配制的溶液浓度大于0.005 mmol/mL,则不能形成FcDPPNi微米花,而是形成无序的聚集体结构;若配制的溶液浓度小于0.003 mmol/mL,同样也不能形成FcDPPNi微米花,而是形成无序的纳米颗粒;由此可以得出结论,一定的溶液浓度 (0.003-0.005 mmol/mL) 是形成FcDPPNi微米花的关键。
上述制备步骤,步骤 (3)“步骤 (2) 制备好的溶液小心滴在清洗好的叉指电极上”中,为了防止溶液溢出叉指电极,优选的,采取“用滴管吸取0.25-0.50 mL滴在清洗好的叉指电极上”。
上述制备步骤,步骤 (3)“同时把盛有30 -100 mL二氯甲烷的烧杯也放到干燥器里”的过程中,为了得到一定形貌、均匀分布的FcDPPNi微米花,保持带有真空阀的密闭容器位置不动;这样会减少FcDPPNi微米花的形成以及无序排列。因此,优选的,采取“在带有真空阀的密闭容器里将溶液滴在叉指电极上”的办法尽量减少对形貌形成过程的扰动。
上述制备步骤,步骤(4)中干燥温度为50-60 ℃,干燥时间为12-24 h。
本发明所制得的气敏传感器元件,其中叉指电极表面的FcDPPNi微米花直径为7-9μm。
本发明还提供了上述气敏传感器元件在检测乙醇气体中的应用。
本发明的气敏传感器元件用于检测乙醇气体时,在室温下对100-1000 ppm乙醇具有较好的气敏响应,这是由于(1)当5, 15-对二茂铁乙炔基-10, 20-对苯基镍卟啉纳米花暴露在乙醇气体分子中时,乙醇作为电子给予者,FcDPPNi作为电子接受者,二者之间发生电子间的转移,使FcDPPNi表面的电子浓度增加,从而导致半导体电流增加;(2)5, 15-对二茂铁乙炔基-10, 20-对苯基镍卟啉具有特殊的二维共轭π电子结构,分子间具有较强的π-π相互作用,有利于形成有序的三维微米花状结构,从而加快电子的传输速率;(3)FcDPPNi微米花对乙醇具有较好的选择性,同时能抵抗其它气体(如苯、甲醛和丙酮)的干扰。
进一步地,所述气敏传感器元件对浓度为100-1000 ppm乙醇的响应时间为80 s,恢复时间为160 s。
本发明制备的5, 15-对二茂铁乙炔基-10, 20-对苯基镍卟啉气敏传感器的主要性能指标如下:
(1)检测范围:100-1000 ppm乙醇;
(2)检测灵敏度:灵敏度为0.93, 1000 ppm乙醇;
(3)器件工作温度:25 °C;
(4)选择性:在各气体浓度下对苯、甲醛和丙酮的灵敏度≤ 0.32;
(5)元件响应时间:80 s;元件恢复时间:160 s。
与现有技术相比,本发明的气敏传感器具有如下优点:
(1)本发明气敏传感器能够在常温下进行,且无安全隐患。
(2)本发明气敏传感器对乙醇的最低响应浓度为100 ppm,响应和恢复时间快速,灵敏度较高,对乙醇表现出较好的稳定性。
(3)本发明结构及制备工艺简单,成本较低,便于批量生产。
附图说明
图1气敏传感器的结构示意图;
图2气敏传感器元件的横截面示意图;
图3 FcDPPNi微米花的制备过程示意图;
图4 FcDPPNi微米花的SEM图;
图5 FcDPPNi溶液及微米花的电子吸收光谱;实线为FcDPPNi溶液,虚线为FcDPPNi 微米花;
图6 FcDPPNi 微米花的XRD图谱;
图7 FcDPPNi粉末及微米花的红外图谱;(其中A为FcDPPNi粉末,B为FcDPPNi微米花);
图8 FcDPPNi 微米花的EDS图谱;
图9气敏传感器的电流-电压曲线;
图10气敏传感器对乙醇的电流-时间曲线;
图11气敏传感器对1000 ppm 乙醇的动态响应曲线;
图12气敏传感器对乙醇的灵敏度-浓度曲线;
图13气敏传感器对不同气体的选择性曲线;
图1、2中,1为ITO透明玻璃基底,2为叉指电极,3为FcDPPNi微米花的涂层。
具体实施方式
以下通过特定的具体实施例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。还应当理解,本发明实施例中使用的术语是为了描述特定的具体实施方案,而不是为了限制本发明的保护范围。下列实施例中未注明具体条件的试验方法,通常按照常规条件,或者按照各制造商所建议的条件。
当实施例给出数值范围时,应理解,除非本发明另有说明,每个数值范围的两个端点以及两个端点之间任何一个数值均可选用。除非另外定义,本发明中使用的所有技术和科学术语与本技术领域的技术人员对现有技术的掌握及本发明的记载,还可以使用与本发明实施例中所述的方法、设备、材料相似或等同的现有技术的任何方法、设备和材料来实现本发明。
本发明中性能测试所采用的仪器为:德国 Bruker 公司MALDI-TOF-MS质谱仪、德国 Bruker 公司BrukerDPX400核磁共振仪、德国 Bruker 公司Vertex70红外光谱仪、日本JEOL 公司JEOL JSM-6700F扫描电子显微镜、德国 Bruker 公司D/max-γB 型X 射线衍射仪、日本 Shimadzu 公司Hitachi U-4100紫外可见分光光度计。
下面结合附图对本发明具体实施方式进行进一步说明。
实施例1
本实施例为制备金属卟啉配合物微米花气敏传感器元件的实施例。
(1)将叉指电极刻蚀在ITO导电玻璃基底上,并依次经过甲苯、丙酮、无水乙醇、水不同溶剂分别清洗3次,每次5 min;
(2)称取化合物FcDPPNi 3 mg于2 mL离心管中,加入1 mL三氯甲烷,配制成0.003mmol/mL的溶液;
(3)将直径为9 cm,高为1.5 cm的表面皿放置在带有真空阀的密闭容器里面,同时把清洗干净的叉指电极也放置到表面皿里,用滴管将步骤(2)制备好的溶液小心滴在叉指电极上,滴加0.25 mL,同时把盛有30 mL二氯甲烷的烧杯也放到带有真空阀的密闭容器里;
(4)打开旋塞,抽真空3次,每次5 min,关闭旋塞,使蒸汽充满带有真空阀的密闭容器空间,放置24 h,取出气敏传感器元件50℃干燥24 h,即获得叉指电极表面为5, 15-对二茂铁乙炔基-10, 20-对苯基镍卟啉微米花的金属卟啉配合物气敏传感器元件;
其中,图1为所制得的气敏传感器元件的结构示意图;图2为气敏传感器元件的横截面示意图;图3为制备过程示意图。
实施例2
本实施例为制备金属卟啉配合物微米花气敏传感器元件的实施例。
(1)将叉指电极刻蚀在ITO导电玻璃基底上,并依次经过甲苯、丙酮、无水乙醇、水不同溶剂分别清洗3次,每次5 min;
(2)称取化合物FcDPPNi 4 mg于2 mL离心管中,加入1 mL三氯甲烷,配制成0.004mmol/mL的溶液;
(3)将直径为9 cm,高为1.5 cm的表面皿放置在带有真空阀的密闭容器里面,同时把清洗干净的叉指电极也放置到表面皿里,用滴管将步骤(2)制备好的溶液小心滴在叉指电极上,滴加0.5 mL,同时把盛有50 mL二氯甲烷的烧杯也放到带有真空阀的密闭容器里;
(4)打开旋塞,抽真空3次,每次5 min,关闭旋塞,使蒸汽充满带有真空阀的密闭容器空间,放置24 h,取出在60 ℃下干燥12 h,即获得叉指电极表面为5, 15-对二茂铁乙炔基-10, 20-对苯基镍卟啉微米花的金属卟啉配合物FcDPPNi的气敏传感器元件。
实施例3
本实施例为制备金属卟啉配合物微米花气敏传感器元件的实施例。
(1)将叉指电极刻蚀在ITO导电玻璃基底上,并依次经过甲苯、丙酮、无水乙醇、水不同溶剂分别清洗3次,每次5 min;
(2)称取化合物FcDPPNi 5 mg于2 mL离心管中,加入1 mL三氯甲烷,配制成0.005mmol/mL的溶液;
(3)将直径为9 cm,高为1.5 cm的表面皿放置在带有真空阀的密闭容器里面,同时把清洗干净的叉指电极也放置到表面皿里,用滴管将步骤(2)制备好的溶液小心滴在叉指电极上,滴加0.4 mL,同时把盛有100 mL二氯甲烷的烧杯也放到带有真空阀的密闭容器里;
(4)打开旋塞,抽真空3次,每次5 min,关闭旋塞,使蒸汽充满带有真空阀的密闭容器空间,放置24 h,取出在55 ℃干燥20 h,即获得叉指电极表面为5, 15-对二茂铁乙炔基-10,20-对苯基镍卟啉微米花的金属卟啉配合物FcDPPNi的气敏传感器元件。
实施例4
本实施例为制备金属卟啉配合物微米花气敏传感器元件的实施例。
其制备方法同实施例1相同,与实施例1不同的是:在步骤(2)中配制FcDPPNi溶液选用的溶剂是二氯甲烷。
实施例5
本实施例为制备金属卟啉配合物微米花气敏传感器元件的实施例。
其制备方法同实施例2相同,与实施例2不同的是:在步骤(2)中配制FcDPPNi溶液选用的溶剂是二氯甲烷。
实施例6
本实施例为制备金属卟啉配合物微米花气敏传感器元件的实施例。
其制备方法同实施例3相同,与实施例3不同的是:在步骤(2)中配制FcDPPNi溶液选用的溶剂是二氯甲烷。
性能测试
1、SEM形貌表征
按照实施例1中按照溶剂蒸汽退火(即实施例中步骤4的处理方法)的方法, 将叉指电极替换成SiO2/Si基片,制得在SiO2/Si基片上自组装的5,15-对二茂铁 乙炔基-10,20-对苯基镍卟啉微米花,并对其进行SEM形貌测试,测试结果如图 4所示,化合物FcDPPNi在SiO2/Si基片上自组装为直径为7-9μm的高度有序的 3D花状结构。
2、电子吸收光谱表征
选取实施例1获得5, 15-对二茂铁乙炔基-10, 20-对苯基镍卟啉微米花,对比例选取5, 15-对二茂铁乙炔基-10, 20-对苯基镍卟啉的氯仿溶液,分别对5, 15-对二茂铁乙炔基-10, 20-对苯基镍卟啉微米花、5, 15-对二茂铁乙炔基-10, 20-对苯基镍卟啉的氯仿溶液进行电子吸收光谱的测试,测试结果如图5所示,从图5中可以看出,当FcDPPNi溶液组装成微米花时,所有的带明显变宽,这是分子自组装的结果。
3、X射线衍射表征
对实施例2经过溶剂蒸汽退火的方法得到的FcDPPNi微米花进行X射线衍射的测试,其XRD图谱如图6所示。从图6中可以看出,FcDPPNi微米花在不同的方向都有衍射峰,证明分子排列的有序性。
4、红外表征和EDS表征
将实施例1制得的FcDPPNi微米花以及FcDPPNi粉末分别进行红外表征,结果如图7所示,从图7可以看出,FcDPPNi粉末的红外图谱与其微米花的相似,说明微米花的成分是相应的卟啉化合物。
将实施例1制得的FcDPPNi微米花进行EDS表征,如图8所示。从图8可以观察到C、N、Fe和Ni元素的存在,证明微米花是由FcDPPNi组成的。
5、I-V性能测试
将实施例1得到的FcDPPNi微米花并对其进行I-V性能测试,所得结果如图9所示。从图9可以计算出FcDPPNi微米花的电导率为3.07×10-4 S•cm-1,说明本发明制备的FcDPPNi气敏元件具有较高的导电性质。
6、气敏传感器对乙醇的电流-时间曲线
将实施例1制得的气敏传感器元件利用气敏测试装置进行检测,其中,气敏测试装置是根据现有的常规装置由实验室构建的,气敏测试过程是在室温条件及两个电极间固定偏压为5 V下进行的。使用测试仪器型号:安捷伦B290a精密源/测量单元。结果如图10所示。
如图10所示,在室温下,本发明制备的FcDPPNi微米花气体传感器元件对不同浓度的乙醇具有良好的响应,检测限可以达到100 ppm,响应/恢复时间分别为80 s 和160 s。
7、气敏传感器对1000 ppm乙醇的动态响应曲线
将实施例1制得的气敏传感器元件利用气敏测试装置进行检测,其中,气敏测试装置是根据现有的常规装置由实验室构建的,气敏测试过程是在室温条件及两个电极间固定偏压为5 V下进行的。使用测试仪器型号:安捷伦B290a精密源/测量单元。结果如图11所示。
如图11所示,在室温下,本发明的制备的FcDPPNi微米花气体传感器对1000 ppm乙醇的重复响应性基本一致,说明该气敏传感器元件的稳定性较好。
8、气敏传感器对乙醇的灵敏度-浓度曲线
将实施例2制得的气敏传感器元件利用气敏测试装置进行检测,其中,气敏测试装置是根据现有的常规装置由实验室构建的,气敏测试过程是在室温条件及两个电极间固定偏压为5 V下进行的。使用测试仪器型号:安捷伦B290a精密源/测量单元。
气敏传感器的灵敏度(S)是衡量测试元件对被测气体敏感程度的一个重要指标。S的计算公式如下:
S =|Ig-Ia|/Ia
其中,Ig是乙醇与敏感层接触时的电流值,Ia是敏感层在未接触气体时的电流值。
如图12所示,在室温下,本发明的制备的FcDPPNi微米花气体传感器在100-500ppm浓度范围内乙醇浓度与响应灵敏度呈现出良好的线性关系,这将有利于定性分析乙醇的浓度。
9、气敏传感器对不同气体的选择性曲线
将实施例2制得的气敏传感器元件利用气敏测试装置进行检测,其中,气敏测试装置是根据现有的常规装置由实验室构建的,气敏测试过程是在室温条件及两个电极间固定偏压为5 V下进行的。使用测试仪器型号:安捷伦B290a精密源/测量单元。
如图13所示,在室温下,本发明的制备的FcDPPNi微米花气体传感器对苯、甲醛和丙酮的响应性较好,对乙醇具有良好的选择性。
综上可知,本发明制备的FcDPPNi微米花气体传感器在室温下对乙醇具有响应极限低、响应/恢复时间快、重现性好、灵敏度高以及选择性强等特点,在气体检测领域具有潜在的应用前景。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (8)

1.一种用于测定乙醇的气敏传感器元件,其特征在于:包括ITO导电玻璃和叉指电极,所述叉指电极刻蚀在ITO导电玻璃上,在叉指电极表面设置5, 15-对二茂铁乙炔基-10,20-对苯基镍卟啉(FcDPPNi)微米花气敏材料。
2.根据权利要求1所述气敏传感器元件的制备方法,其特征在于,包括以下步骤:
(1) 将刻蚀在ITO导电玻璃基底上的叉指电极清洗;
(2)将5, 15-对二茂铁乙炔基-10, 20-对苯基镍卟啉用良溶剂溶解,制备成溶液;
(3)将步骤 (2) 制备好的溶液小心滴在清洗好的放置在带有真空阀的密闭容器里面的叉指电极上,同时把盛有二氯甲烷的烧杯也放到步骤(3)的带有真空阀的密闭容器里;
(4)打开旋塞,抽真空3次,每次5 min,关闭旋塞,使蒸汽充满带有真空阀的密闭容器空间,放置24 h,取出干燥备用,即获得5, 15-对二茂铁乙炔基-10, 20-对苯基镍卟啉微米花的气敏传感器元件。
3.根据权利要求2所述的方法,其特征在于,还包括如下特征的任一项或多项:
a. 步骤(1)中依次经过甲苯、丙酮、无水乙醇、水的不同溶剂分别清洗3次,每次5 min;
b. 步骤(2)中的良溶剂选自三氯甲烷或二氯甲烷;5, 15-对二茂铁乙炔基-10, 20-对苯基镍卟啉溶液的浓度为0.003-0.005 mmol/mL;
c. 步骤(3)中滴加到叉指电极上方的5, 15-对二茂铁乙炔基-10, 20-对苯基镍卟啉溶液的量为0.25-0.50 mL;
d. 步骤(4)中干燥温度为50-60 ℃,干燥时间为12-24 h。
4.根据权利要求2或3所述金属卟啉配合物微米花,其特征在于,其直径为7-9 μm。
5.根据权利要求4所述金属卟啉配合物微米花,其特征在于,在室温下对乙醇气体的检测。
6.根据权利要求5所述金属卟啉配合物微米花的用途,其特征在于,对乙醇的最低响应浓度为100 ppm。
7.根据权利要求5所述金属卟啉配合物微米花的用途,其特征在于,对100-1000 ppm乙醇的响应时间和恢复时间分别为80 s和160 s。
8.一种利用权利要求1-7任意一项所述金属卟啉配合物微米花组装而成的气敏传感器元件在制备用于测定乙醇的气敏传感器方面的应用。
CN201710601706.7A 2017-07-21 2017-07-21 一种用于测定乙醇的气敏传感器元件及其制备方法和应用 Active CN107356648B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710601706.7A CN107356648B (zh) 2017-07-21 2017-07-21 一种用于测定乙醇的气敏传感器元件及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710601706.7A CN107356648B (zh) 2017-07-21 2017-07-21 一种用于测定乙醇的气敏传感器元件及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN107356648A true CN107356648A (zh) 2017-11-17
CN107356648B CN107356648B (zh) 2020-10-16

Family

ID=60284357

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710601706.7A Active CN107356648B (zh) 2017-07-21 2017-07-21 一种用于测定乙醇的气敏传感器元件及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN107356648B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108572199A (zh) * 2018-05-28 2018-09-25 辽宁科技大学 基于SnO2基气敏传感器实现同性质气体浓度同时定量的方法
CN109164144A (zh) * 2018-06-26 2019-01-08 深圳大学 一种乙醇气敏材料及其制备方法和应用
CN109916965A (zh) * 2018-10-22 2019-06-21 山东理工大学 一种以FTO导电玻璃为电极元件的ZnO纳米簇气敏传感器
CN110274936A (zh) * 2019-07-09 2019-09-24 济南大学 用于检测三乙胺的有机无机复合薄膜及气敏传感器
CN112730533A (zh) * 2021-01-14 2021-04-30 福州大学 一种Ni修饰的五氧化二铌气敏元件及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101059443A (zh) * 2007-05-31 2007-10-24 重庆大学 一种光纤气体传感器
CN102382147A (zh) * 2011-09-19 2012-03-21 济南大学 具有非线性光学活性的二茂铁炔基卟啉分子的制备及应用
CN104865292A (zh) * 2015-04-27 2015-08-26 济南大学 一种基于邻氨基苯基取代卟啉纳米材料的二氧化氮气敏传感器
CN104897733A (zh) * 2015-04-27 2015-09-09 济南大学 一种基于对氨基苯基取代卟啉聚集体材料的二氧化氮气敏传感器
CN104977296A (zh) * 2015-06-30 2015-10-14 江苏大学 一种新型的酒精度的检测方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101059443A (zh) * 2007-05-31 2007-10-24 重庆大学 一种光纤气体传感器
CN102382147A (zh) * 2011-09-19 2012-03-21 济南大学 具有非线性光学活性的二茂铁炔基卟啉分子的制备及应用
CN104865292A (zh) * 2015-04-27 2015-08-26 济南大学 一种基于邻氨基苯基取代卟啉纳米材料的二氧化氮气敏传感器
CN104897733A (zh) * 2015-04-27 2015-09-09 济南大学 一种基于对氨基苯基取代卟啉聚集体材料的二氧化氮气敏传感器
CN104977296A (zh) * 2015-06-30 2015-10-14 江苏大学 一种新型的酒精度的检测方法及装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108572199A (zh) * 2018-05-28 2018-09-25 辽宁科技大学 基于SnO2基气敏传感器实现同性质气体浓度同时定量的方法
CN109164144A (zh) * 2018-06-26 2019-01-08 深圳大学 一种乙醇气敏材料及其制备方法和应用
CN109164144B (zh) * 2018-06-26 2021-09-21 深圳大学 一种乙醇气敏材料及其制备方法和应用
CN109916965A (zh) * 2018-10-22 2019-06-21 山东理工大学 一种以FTO导电玻璃为电极元件的ZnO纳米簇气敏传感器
CN110274936A (zh) * 2019-07-09 2019-09-24 济南大学 用于检测三乙胺的有机无机复合薄膜及气敏传感器
CN110274936B (zh) * 2019-07-09 2021-10-26 济南大学 用于检测三乙胺的有机无机复合薄膜及气敏传感器
CN112730533A (zh) * 2021-01-14 2021-04-30 福州大学 一种Ni修饰的五氧化二铌气敏元件及其制备方法与应用
CN112730533B (zh) * 2021-01-14 2021-11-30 福州大学 一种Ni修饰的五氧化二铌气敏元件及其制备方法与应用

Also Published As

Publication number Publication date
CN107356648B (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
CN107356648A (zh) 一种用于测定乙醇的气敏传感器元件及其制备方法和应用
Duy et al. Flexible transparent reduced graphene oxide sensor coupled with organic dye molecules for rapid dual‐mode ammonia gas detection
Kim et al. The role of NiO doping in reducing the impact of humidity on the performance of SnO2‐Based gas sensors: synthesis strategies, and phenomenological and spectroscopic studies
CN105445335A (zh) 一种用于电力变压器绝缘状态监测的湿度传感系统
CN111307876B (zh) 一种用于检测二氧化氮的气体传感器及其制备方法
Lin et al. Using a PEDOT: PSS modified electrode for detecting nitric oxide gas
TW201415024A (zh) 揮發性有機化合物偵測系統及其形成方法與應用
Yari et al. Sol–gel derived highly selective optical sensor for sensitive determination of the mercury (II) ion in solution
CN104897733B (zh) 一种基于对氨基苯基取代卟啉聚集体材料的二氧化氮气敏传感器
CN205484657U (zh) 用于变压器绝缘监测的湿度检测装置
CN105842287B (zh) 用于检测二氧化氮的纳米材料及气敏传感器元件
Jiang et al. Flexible relative humidity sensor based on reduced graphene oxide and interdigital electrode for smart home
CN110208323A (zh) 用于检测二氧化氮的有机无机复合材料及气敏传感器
Tu et al. Humidity-sensitive property of Fe2+ doped polypyrrole
ur Rehman et al. Investigating sensing properties of poly-(dioctylfluorene) based planar sensor
CN103343000B (zh) 基于多孔氧化硅的金属离子并行检测材料、制法及应用
Karimov et al. Resistive humidity sensor based on vanadium complex films
CN112255272A (zh) 一种气体传感器及其制备方法
Wang et al. Novel electrochemiluminescent platform based on gold nanoparticles functionalized Ti doped BiOBr for ultrasensitive immunosensing of NT-proBNP
CN104897739B (zh) 一种有机半导体纳米材料及其制备方法与用途和一种二氧化氮气敏传感器
CN109030484B (zh) 一种比色湿度传感器
Sun et al. Time‐Resolved and Self‐Adjusting Hybrid Functional Fabric Sensor for Decoupling Multiple Stimuli from Bending
CN107219280A (zh) 一种金属卟啉配合物气敏传感器元件及其制备方法和应用
Li et al. High Data Dimensionality of Virtual Sensor Array Based on QCM and MXene for Selective VOC Detection
Chani et al. Fabrication and characterization of organic-inorganic (orange dye-vanadium oxide) composite based humidity sensors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220107

Address after: 250118 No. 17, 3rd Street, Xinsha Industrial Park, soshan Road, Huaiyin District, Jinan City, Shandong Province

Patentee after: Jinan Hengtai Keling automatic control equipment Co.,Ltd.

Address before: 250022 No. 336, South Xin Zhuang West Road, Shizhong District, Ji'nan, Shandong

Patentee before: University of Jinan