CN107353422A - 一种高无机物掺杂量的碱性阴离子交换复合膜的制备方法 - Google Patents

一种高无机物掺杂量的碱性阴离子交换复合膜的制备方法 Download PDF

Info

Publication number
CN107353422A
CN107353422A CN201710200524.9A CN201710200524A CN107353422A CN 107353422 A CN107353422 A CN 107353422A CN 201710200524 A CN201710200524 A CN 201710200524A CN 107353422 A CN107353422 A CN 107353422A
Authority
CN
China
Prior art keywords
preparation
montmorillonite
exchange composite
negative ion
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710200524.9A
Other languages
English (en)
Other versions
CN107353422B (zh
Inventor
何荣桓
叶妮雅
张登骥
徐鑫
徐一鑫
杨景帅
万瑞英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201710200524.9A priority Critical patent/CN107353422B/zh
Publication of CN107353422A publication Critical patent/CN107353422A/zh
Application granted granted Critical
Publication of CN107353422B publication Critical patent/CN107353422B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明属于膜制备技术领域,具体涉及一种高无机物掺杂量的碱性阴离子交换复合膜的制备方法,通过对蒙脱土粉末进行多次超声剥离并静置分离(或离心分离)的方法,得到具有纳米级片层结构的蒙脱土乳浊液,并采用冷冻干燥的方法得到了具有较好片层形貌的纳米级蒙脱土。采用季铵化的聚苯醚为有机成分,制备了高无机物掺杂量的碱性阴离子交换复合膜,所得的复合膜均匀透明,无机有机相相容性好。本发明实现具有较好片层形貌的纳米级蒙脱土的制备,实现均匀的、高无机物掺杂量的碱性阴离子交换复合膜的制备,所得阴离子交换复合膜的耐碱性能得到提高。

Description

一种高无机物掺杂量的碱性阴离子交换复合膜的制备方法
技术领域
本发明属于膜制备技术领域,具体涉及一种高无机物掺杂量的碱性阴离子交换复合膜的制备方法。
背景技术
燃料电池是一种通过电化学的方式将化学能转化为电能的新型绿色能源装置,这一装置若发展完善,可以取代火力发电站及汽车的动力系统等以化石燃料为基础的能源装置,将在缓解能源危机和保护环境方面有重要影响。碱性燃料电池是燃料电池的一种,因其可以使用非贵金属催化剂、氧气在碱性介质中还原动力学活性高等优点,具有较大的发展潜力。
阴离子交换膜在碱性燃料电池中起到传递OH-和隔离燃料(还原剂)与氧化剂(氧气或空气)的作用,其性能直接影响着碱性燃料电池的性能。目前,阴离子交换膜最主要的不足是电导率较低和耐碱稳定性较差。
为了改善阴离子交换膜的不足,设计具有更好传导性和耐碱性的聚合物材料与开发新型耐碱性好的季碱基团是常用的方法。除此之外,通过在阴离子膜中加入无机组分制备无机有机复合阴离子交换膜,以无机组分高硬度、耐腐蚀、高强度等优异的性能来提高阴离子交换膜性能的方法也有不少报道。如[X.Li et al.,ACS Appl.Mater.Interfaces,5(2013)1414],[T.Feng et al.,J.Membr.Sci.,508(2016)7]分别采用二氧化锆和带咪唑基团的硅烷为无机成分,制备了无机有机复合膜,提高了膜的吸水性、热稳定性等性能。中国发明专利(公开号CN104835932A)中以氯甲基化聚砜、氯甲基化聚芳醚砜、氯甲基化聚醚醚酮为基体材料,纳米二氧化锆、纳米二氧化钛、纳米二氧化锌为无机成分,制备了无机物掺杂量为2.5~10wt%的无机有机复合膜,制备的复合膜具有较好的保水性能,电导率有一定的提高。
制备无机有机复合膜的方法主要有共混法、溶胶凝胶法和原位聚合法等方法,共混法是操作最简便也最常用的方法,主要通过聚合物以溶液形式与无机纳米粒子进行共混再制备成膜。该方法的不足是,在共混过程中纳米颗粒易团聚,使制备的复合膜均匀性较差。
目前已报道的无机有机复合阴离子交换膜中无机物的加入量都较少,无机成分强耐碱性等优势体现得不是很明显。因此,通过技术改进,提高无机物在复合膜中的添加量和两者的相容性,有望得到性能更优异的无机有机复合膜。
发明内容
针对现有无机有机复合膜中无机物含量较少(一般少于20wt%)的情况,本发明的主要目的是提供一种高无机物掺杂量的碱性阴离子交换复合膜的制备方法。
本发明采取以下技术方案:
一种高无机物掺杂量的碱性阴离子交换复合膜的制备方法,包括如下步骤:
(1)纳米级蒙脱土的制备
(2)阴离子交换复合膜溶液的制备
①将溴化聚苯醚溶于有机溶剂中,超声至完全溶解,配置成3~10wt%的聚合物溶液,加入季铵化试剂,超声2~4h,季铵化试剂的物质的量为溴甲基物质的量的50~300%;
②将冷冻干燥后的纳米级蒙脱土颗粒分散于有机溶剂中,乳浊液浓度为0.5~3.5wt%,超声2~4h;
③将①和②的溶液混合,超声2~3h,其中纳米级蒙脱土的质量占聚合物质量的25~100wt%;
(3)阴离子交换复合膜的制备
将铸膜液倒入超平培养皿中,放入烘箱70℃烘膜24~48h;将制得的膜浸泡在摩尔浓度为1M的KOH溶液中24~48h,取出阴离子交换复合膜用去离子水洗涤去除多余碱液,并浸泡在去离子水中24~48h,期间换水5~10次,得到碱交换平衡的阴离子交换复合膜。
所述的高无机物掺杂量的碱性阴离子交换复合膜的制备方法,步骤(1)中,将原始的蒙脱土粉末2g,加入装有100mL去离子水的蓝盖试剂瓶中,在功率为700W的超声波清洗仪中初步超声剥离48h,室温下静置12h;取蓝盖试剂瓶内上层乳浊液,进行二次超声剥离60h,在室温下静置48h或在3500r/min离心机中离心1h;将上层的蒙脱土胶体溶液放入-24℃的冰箱中冷冻24h;将冷冻后的蒙脱土胶体溶液放入冷冻干燥机中冷冻干燥至恒重,即得到具有纳米级片层结构的蒙脱土。
所述的高无机物掺杂量的碱性阴离子交换复合膜的制备方法,步骤(2)之①中,有机溶剂为N-甲基吡咯烷酮、N,N-二甲基乙酰胺和N,N-二甲基甲酰胺的一种或两种以上,季铵化试剂为三甲胺或三乙胺,聚合物溶液浓度为3~10wt%。因为若聚合物溶液浓度太大,加入无机物溶液时,可能会聚沉。
所述的高无机物掺杂量的碱性阴离子交换复合膜的制备方法,步骤(2)之②中,有机溶剂为N,N-二甲基乙酰胺或N,N-二甲基甲酰胺,乳浊液浓度0.5~3.5wt%。若乳浊液浓度较大,超声分散时容易分散不均匀,且加入到聚合物溶液中时易产生聚沉现象。
本发明制备的无机有机阴离子交换复合膜具有以下优点及有益效果:
(1)本发明采用超声剥离的方法降低蒙脱土的颗粒尺寸,操作简便,对仪器要求低,且能明显降低无机物尺寸。
(2)本发明采用冷冻干燥蒙脱土乳浊液的方式,较好地保存了剥离后蒙脱土的片层结构,避免因加热蒸发去除去离子水时造成的层与层间结构的塌陷,得到粒径小且不易团聚的蒙脱土。
(3)本发明制备的无机有机阴离子交换复合膜均匀透明,无机物掺杂量高(25~100wt%),且复合膜的耐碱性有较明显地提高。
附图说明
图1(a)-图1(b)为实施例3纳米片层结构蒙脱土与未处理的蒙脱土的对比图片。其中,图1(a)蒙脱土原土;图1(b)冷冻干燥后片层结构蒙脱土。
图2为实施例3超声剥离并冷冻干燥后纳米级蒙脱土的AFM图。
具体实施方式
下面,通过实施例对本发明进一步详细阐述。
实施例1
本实施例中,高无机物掺杂量的碱性阴离子交换复合膜的制备方法,其具体的制备过程如下:
(1)纳米级蒙脱土的制备:
将原始的蒙脱土粉末2g,加入装有100mL去离子水的蓝盖试剂瓶中,在功率为700W的超声波清洗仪中初步超声剥离48h,室温下静置12h;取蓝盖试剂瓶内上层乳浊液,进行二次超声剥离60h,在室温下静置48h;将上层的蒙脱土胶体溶液放入-24℃的冰箱中冷冻24h;将冷冻后的蒙脱土胶体溶液放入冷冻干燥机中冷冻干燥至恒重,得到具有纳米级片层结构的蒙脱土。
(2)碱性阴离子交换复合膜溶液的制备:
称取两份0.33g溴化度为50.1%的溴化聚苯醚,分别溶于8mL N,N-二甲基甲酰胺(DMF)与2mL N-甲基吡咯酮(NMP)混合溶液中,超声至溴化聚苯醚完全溶解;然后,分别加入三乙胺116μL(三乙胺与溴甲基的摩尔比为0.5:1),超声2h;称取0.099g纳米片层结构的蒙脱土(30wt%,以溴化聚苯醚的质量为1),加入4mL DMF,超声分散2h,将超声分散好的蒙脱土-DMF溶液加入季铵化的聚苯醚溶液中;另一瓶作为对照,加入4mL DMF,超声2h。
(3)碱性阴离子交换复合膜的制备:
将铸膜液分别倒入两个超平培养皿中,放入烘箱70℃烘膜48h,得到完好平整的季铵化聚苯醚膜和季铵化聚苯醚复合膜;将制得的膜浸泡在1M KOH溶液中24h,取出阴离子交换复合膜用去离子水洗涤去除多余碱液,并浸泡在去离子水中48h,期间换水5次,得到碱交换平衡的阴离子交换复合膜。
实施例2
本实施例中,高无机物掺杂量的碱性阴离子交换复合膜的制备方法,其具体的制备过程如下:
(1)纳米级蒙脱土的制备:
将原始的蒙脱土粉末2g,加入装有100mL去离子水的蓝盖试剂瓶中,在功率为700W的超声波清洗仪中初步超声剥离48h,室温下静置12h;取蓝盖试剂瓶内上层乳浊液,进行二次超声剥离60h,在3500r/min离心机中离心1h;将上层的蒙脱土胶体溶液放入-24℃的冰箱中冷冻24h;将冷冻后的蒙脱土胶体溶液放入冷冻干燥机中冷冻干燥至恒重,得到具有纳米级片层结构的蒙脱土。
(2)碱性阴离子交换复合膜溶液的制备:
称取两份0.3g溴化度为30%的溴化聚苯醚,分别溶于5mL N,N-二甲基乙酰胺(DMAc)与1mL N-甲基吡咯酮(NMP)混合溶液中,超声至溴化聚苯醚完全溶解;然后,分别加入三甲胺/乙醇溶液(4.2mol/L)256μL(三甲胺与溴甲基的摩尔比为1:1),超声3h;称取0.15g纳米片层结构的蒙脱土(50wt%,以溴化聚苯醚的质量为1),加入5mL DMAc,超声分散3h,将超声分散好的蒙脱土-DMAc溶液加入季铵化的聚苯醚溶液中;另一瓶作为对照,加入5mL DMAc,超声2h。
(3)碱性阴离子交换复合膜的制备:
将铸膜液分别倒入两个超平培养皿中,放入烘箱70℃烘膜24h,得到完好平整的季铵化聚苯醚膜和季铵化聚苯醚复合膜;将制得的膜浸泡在1M KOH溶液中24h,取出阴离子交换复合膜用去离子水洗涤去除多余碱液,并浸泡在去离子水中48h,期间换水6次,得到碱交换平衡的阴离子交换复合膜。
实施例3
本实施例中,高无机物掺杂量的碱性阴离子交换复合膜的制备方法,其具体的制备过程如下:
(1)纳米级蒙脱土的制备:
将原始的蒙脱土粉末5g,加入装有250mL去离子水的蓝盖试剂瓶中,在功率为700W的超声波清洗仪中初步超声剥离48h,室温下静置12h;取蓝盖试剂瓶内上层乳浊液,进行二次超声剥离60h,在3500r/min离心机中离心1h;将上层的蒙脱土胶体溶液放入-24℃的冰箱中冷冻24h;将冷冻后的蒙脱土胶体溶液放入冷冻干燥机中冷冻干燥至恒重,得到具有纳米级片层结构的蒙脱土,见图1(a)-图1(b)和图2。
(2)碱性阴离子交换复合膜溶液的制备:
称取5份0.3g溴化度为18.3%的溴化聚苯醚,分别溶于2mL N,N-二甲基乙酰胺(DMAc)与1mL N-甲基吡咯酮(NMP)混合溶液中,超声至溴化聚苯醚完全溶解;然后,分别加入三乙胺307μL(三乙胺与溴甲基的摩尔比为3:1),超声4h;再分别称取0.075g、0.15g、0.225g、0.3g纳米片层结构的蒙脱土,加入10mL DMAc,超声分散4h,将超声分散好的蒙脱土-DMAc溶液加入季铵化的聚苯醚溶液中;另一瓶作为对照,加入10mL DMAc,超声3h。
(3)碱性阴离子交换复合膜的制备:
将铸膜液分别倒入五个超平培养皿中,放入烘箱70℃烘膜36h,得到完好平整的有机无机复合膜;将制得的膜浸泡在1M KOH溶液中24h,取出阴离子交换复合膜用去离子水洗涤去除多余碱液,并浸泡在去离子水中48h,期间换水10次,得到碱交换平衡的阴离子交换复合膜,记为QAPPO-x MMT(x为复合膜中蒙脱土质量分数)。
如表1所示,不同蒙脱土掺杂量的QAPPO-x MMT无机有机复合膜,在80℃的8M KOH溶液中耐碱5h前后的电导率与吸水率的变化。
表1
实施例结果表明,本发明通过对蒙脱土粉末进行多次超声剥离并静置分离(或离心分离)的方法,得到具有纳米级片层结构的蒙脱土乳浊液,并采用冷冻干燥的方法得到了具有较好片层形貌的纳米级蒙脱土。采用季铵化的聚苯醚为有机成分,制备了高无机物掺杂量的碱性阴离子交换复合膜,所得的复合膜均匀透明,无机有机相相容性好。本发明实现了具有较好片层形貌的纳米级蒙脱土的制备;实现了均匀的、高无机物掺杂量的碱性阴离子交换复合膜的制备,所得阴离子交换复合膜的耐碱性能得到了提高。

Claims (4)

1.一种高无机物掺杂量的碱性阴离子交换复合膜的制备方法,其特征在于,包括如下步骤:
(1)纳米级蒙脱土的制备
(2)阴离子交换复合膜溶液的制备
①将溴化聚苯醚(BPPO)溶于有机溶剂中,超声至完全溶解,配置成3~10wt%的聚合物溶液,加入季铵化试剂,超声2~4h,季铵化试剂的物质的量为溴甲基物质的量的50~300%;
②将冷冻干燥后的纳米级蒙脱土颗粒分散于有机溶剂中,乳浊液浓度为0.5~3.5wt%,超声2~4h;
③将①和②的溶液混合,超声2~3h,其中纳米级蒙脱土的质量占溴化聚苯醚质量的25~100wt%;
(3)阴离子交换复合膜的制备
将铸膜液倒入超平培养皿中,放入烘箱70℃烘膜24~48h;将制得的膜浸泡在摩尔浓度为1M的KOH溶液中24~48h,取出阴离子交换复合膜用去离子水洗涤去除多余碱液,并浸泡在去离子水中24~48h,期间换水5~10次,得到碱交换平衡的阴离子交换复合膜。
2.按照权利要求1所述的高无机物掺杂量的碱性阴离子交换复合膜的制备方法,其特征在于,步骤(1)中,将原始的蒙脱土粉末2g,加入装有100mL去离子水的蓝盖试剂瓶中,在功率为700W的超声波清洗仪中初步超声剥离48h,室温下静置12h;取蓝盖试剂瓶内上层乳浊液,进行二次超声剥离60h,在室温下静置48h或在3500r/min离心机中离心1h;将上层的蒙脱土胶体溶液放入-24℃的冰箱中冷冻24h;将冷冻后的蒙脱土胶体溶液放入冷冻干燥机中冷冻干燥至恒重,即得到具有纳米级片层结构的蒙脱土(MMT)。
3.按照权利要求1所述的高无机物掺杂量的碱性阴离子交换复合膜的制备方法,其特征在于,步骤(2)之①中,有机溶剂为N-甲基吡咯烷酮、N,N-二甲基乙酰胺和N,N-二甲基甲酰胺的一种或两种以上,季铵化试剂为三甲胺或三乙胺,聚合物溶液浓度为3~10wt%。
4.按照权利要求1所述的高无机物掺杂量的碱性阴离子交换复合膜的制备方法,其特征在于,步骤(2)之②中,有机溶剂为N,N-二甲基乙酰胺或N,N-二甲基甲酰胺,乳浊液浓度0.5~3.5wt%。
CN201710200524.9A 2017-03-29 2017-03-29 一种高无机物掺杂量的碱性阴离子交换复合膜的制备方法 Expired - Fee Related CN107353422B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710200524.9A CN107353422B (zh) 2017-03-29 2017-03-29 一种高无机物掺杂量的碱性阴离子交换复合膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710200524.9A CN107353422B (zh) 2017-03-29 2017-03-29 一种高无机物掺杂量的碱性阴离子交换复合膜的制备方法

Publications (2)

Publication Number Publication Date
CN107353422A true CN107353422A (zh) 2017-11-17
CN107353422B CN107353422B (zh) 2020-07-24

Family

ID=60271558

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710200524.9A Expired - Fee Related CN107353422B (zh) 2017-03-29 2017-03-29 一种高无机物掺杂量的碱性阴离子交换复合膜的制备方法

Country Status (1)

Country Link
CN (1) CN107353422B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109133077A (zh) * 2018-08-14 2019-01-04 同济大学 一种制备二维近单层蒙脱石的方法
CN113013548A (zh) * 2021-02-26 2021-06-22 武汉理工大学 一种蒙脱石改性锂电池隔膜及其制备方法
CN113013547A (zh) * 2021-02-26 2021-06-22 武汉理工大学 一种锂电池复合隔膜及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1677732A (zh) * 2005-01-04 2005-10-05 华南理工大学 一种有机-无机复合型质子交换膜及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1677732A (zh) * 2005-01-04 2005-10-05 华南理工大学 一种有机-无机复合型质子交换膜及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
XIAOFENGLIAO,LIREN,DONGZHICHEN,XIAOHONGLIU,HONGWEIZHANG: "Nanocomposite membranes based on quaternized polysulfone and functionalized montmorillonite for anion-exchange membranes", 《JOURNAL OF POWER SOURCES》 *
ZHU, H., LI, R., CHEN, N., WANG, F., WANG, Z., & HAN, K.: "Electrorheological effect induced quaternized poly(2,6-dimethyl phenylene oxide)-layered double hydroxide composite membranes for anion exchange membrane fuel cells", 《 RSC ADVANCES》 *
陈观文,许振良,曹义鸣主编: "《膜技术新进展与工程应用》", 31 August 2013 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109133077A (zh) * 2018-08-14 2019-01-04 同济大学 一种制备二维近单层蒙脱石的方法
CN113013548A (zh) * 2021-02-26 2021-06-22 武汉理工大学 一种蒙脱石改性锂电池隔膜及其制备方法
CN113013547A (zh) * 2021-02-26 2021-06-22 武汉理工大学 一种锂电池复合隔膜及其制备方法

Also Published As

Publication number Publication date
CN107353422B (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
Kim et al. Advanced performance and ultra-high, long-term durability of acid-base blended membranes over 900 hours containing sulfonated PEEK and quaternized poly (arylene ether sulfone) in H2/O2 fuel cells
CN101617427B (zh) 高分子电解质组合物、高分子电解质膜、膜电极接合体及固体高分子电解质型燃料电池
CN105355930B (zh) 一种磺化芳族聚合物‑改性碳纳米管复合质子交换膜及其制备方法
CN106543461A (zh) Mof‑so3h@go改性的聚合物杂化质子交换膜及其制备方法
CN102612780A (zh) 用于燃料电池的聚合物电解质膜及其制备方法
CN103304979B (zh) 磷酸化二氧化钛空心球填充磺化聚醚醚酮膜及制备和应用
WO2011066674A1 (zh) 聚合物共混质子交换膜及其制备方法
CN102945972A (zh) 一种全钒氧化还原液流电池用复合质子交换膜的制备方法
CN103840112A (zh) 一种pvdf-hfp基复合多孔聚合物隔膜及其制备方法
CN106046404B (zh) NafionTM修饰的二维层状材料纳米片-聚合物杂化质子交换膜及其制备方法
CN109390617A (zh) 交联型聚苯并咪唑碱性阴离子交换膜及其制备和应用
CN110305347A (zh) 改性壳聚糖基质子交换膜及其制备方法
CN107353422A (zh) 一种高无机物掺杂量的碱性阴离子交换复合膜的制备方法
CN102796274A (zh) 一种耐高温燃料电池的复合质子交换膜及其制备方法
CN103872282A (zh) 一种聚合物锂离子电池隔膜及其制备方法
CN102532572B (zh) 一种掺杂带正电聚苯乙烯乳液的季铵化壳聚糖阴离子复合膜的制备方法
CN109535457A (zh) 一种新型磺化聚醚醚酮/磺化氧化石墨烯复合质子交换膜的制备方法
CN108997599A (zh) 高强度二元交联碱性阴离子交换复合膜、制备方法及应用
CN104201402B (zh) 一种燃料电池质子交换膜材料及其应用
CN101938002B (zh) 全氟磺酸树脂/磺化SiO2分子筛复合质子交换膜及其制备方法
CN105597568A (zh) 氯甲基化聚醚醚酮/咪唑化碳纳米管杂化膜及制备和应用
CN101508792B (zh) 基于共辐射技术制备有机-无机杂化质子交换膜的方法
CN106519558B (zh) 咪唑鎓盐型聚醚醚酮/功能化介孔硅杂化膜制备及应用
CN105118684A (zh) 一种介孔钴/碳纳米复合材料的制备方法及其用途
CN103897335A (zh) 改性硅纳米管杂化膜及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200724

CF01 Termination of patent right due to non-payment of annual fee