CN107255910A - 圆筒光罩 - Google Patents

圆筒光罩 Download PDF

Info

Publication number
CN107255910A
CN107255910A CN201710546158.2A CN201710546158A CN107255910A CN 107255910 A CN107255910 A CN 107255910A CN 201710546158 A CN201710546158 A CN 201710546158A CN 107255910 A CN107255910 A CN 107255910A
Authority
CN
China
Prior art keywords
light shield
cylinder
substrate
light
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710546158.2A
Other languages
English (en)
Other versions
CN107255910B (zh
Inventor
加藤正纪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of CN107255910A publication Critical patent/CN107255910A/zh
Application granted granted Critical
Publication of CN107255910B publication Critical patent/CN107255910B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/24Curved surfaces
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • G03F7/704Scanned exposure beam, e.g. raster-, rotary- and vector scanning

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Liquid Crystal (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

提供一种能够以高生产性来生产高质量基板的基板处理装置、器件制造方法以及光罩。具备:光罩支承部件,其在照明区域内以沿着按规定曲率弯曲成圆筒面状的第一面的方式支承光罩的图案;基板支承部件,其在投影区域内以沿着规定的第二面的方式支承所述基板;以及驱动机构,其以使光罩的图案向规定的扫描曝光方向移动的方式使光罩支承部件旋转,且以使基板向扫描曝光方向移动的方式使基板支承部件移动,光罩支承部件在将第一面的直径设为φ、将第一面在与扫描曝光方向正交的方向上的长度设为L的情况下,满足1.3≤L/φ≤3.8。

Description

圆筒光罩
本发明申请是国际申请日为2014年3月26日、国际申请号为PCT/JP2014/058590、进入中国国家阶段的国家申请号为201480037519.5、发明名称为“基板处理装置、器件制造方法以及圆筒光罩”的发明申请的分案申请。
技术领域
本发明涉及将光罩的图案投影至基板,并在该基板上曝光出该图案的基板处理装置、器件制造方法以及用于此的圆筒光罩。
背景技术
有一种制造液晶显示器等显示器件、半导体等各种器件的器件制造系统。器件制造系统具备曝光装置等基板处理装置。专利文献l所记载的基板处理装置将配置在照明区域内的光罩上所形成的图案的像投影至配置在投影区域内的基板等,并在基板上曝光出该图案。用于基板处理装置的光罩有平面状光罩、圆筒状光罩等。
现有技术文献
专利文献
专利文献1:日本特开2007-299918号公报
基板处理装置通过将光罩做成圆筒形状并使光罩旋转,而能够连续在基板上进行曝光。另外,作为基板处理装置,还有一种将基板做成长条的薄片状并将其连续地送入至投影区域下的卷对卷(roll toroll)方式。这样,基板处理装置就能使圆筒形状的光罩旋转,并且,作为基板的搬送方法,通过使用卷对卷方式,能够连续输送基板和光罩双方。
在此,基板处理装置通常被要求高效地在基板上曝光出图案来提高生产性。使用圆筒光罩作为光罩的情况下也是这样。
发明内容
本发明的目的在于提供一种能够以高生产性来生产高质量基板的基板处理装置、器件制造方法以及圆筒光罩。
根据本发明的第一方式,提供一种基板处理装置,其具备:投影光学系统,其将来自配置于照明光的照明区域内的光罩的图案的光束投射至配置有基板的投影区域;光罩支承部件,其在照明区域内以沿着按规定曲率弯曲成圆筒面状的第一面的方式支承光罩的图案;基板支承部件,其在投影区域内以沿着规定的第二面的方式支承基板;以及驱动机构,其以使光罩的图案向规定的扫描曝光方向移动的方式使光罩支承部件旋转,且以使基板向所述扫描曝光方向移动的方式使基板支承部件移动,光罩支承部件在将第一面的直径设为φ、将第一面在与扫描曝光方向正交的方向上的长度设为L的情况下,满足1.3≤L/φ≤3.8。
根据本发明的第二方式,提供一种器件制造方法,其包括:使用第一方式所述的基板处理装置在所述基板上形成所述光罩的图案;以及向所述基板处理装置供给所述基板。
根据本发明的第三方式,提供一种圆筒光罩,其沿着圆筒状的外周面形成有电子器件用的光罩图案,且能够绕着中心线旋转,该圆筒光罩具有所述外周面的直径为φ、所述外周面在所述中心线的方向上的长度为La的圆筒基材,当将能够形成在所述圆筒基材的外周面上的光罩图案在所述中心线的方向上的最大长度设为L时,在L≤La的范围内,所述直径φ与所述长度L的比率L/φ设定为1.3≤L/φ≤3.8的范围。
根据本发明的第四方式,提供一种圆筒光罩,其沿着相对于规定的中心线具有固定半径的圆筒面形成有光罩图案,且以能够绕着所述中心线旋转的方式安装在曝光装置上,其中,在所述圆筒面上,以沿所述圆筒面的圆周方向隔开间隔Sx的方式排列形成有n个(n≥2)显示面板用的长方形的光罩区域,该光罩区域包括长边尺寸为Ld、短边尺寸为Lc、且长宽比Asp为Ld/Lc的显示画面区域、和与其周边相邻地设置的周边电路区域,当将所述光罩区域的长边方向的尺寸L设为所述显示画面区域的长边尺寸Ld的e1倍(e1≥1)、将所述光罩区域的短边方向的尺寸设为所述显示画面区域的短边尺寸Lc的e2倍(e2≥1)时,所述圆筒面的在所述中心线的方向上的长度设定为所述尺寸L以上,并且,当将所述圆筒面的直径设为φ、将圆周率设为π时,设定为πφ=n(e2·Lc+Sx),进一步地,以使所述尺寸L与所述直径φ的比率L/φ为1.3≤L/φ≤3.8的范围的方式设定所述直径φ、所述个数n、所述间隔Sx。
发明效果
根据本发明的方式,通过将由光罩支承部件保持的圆筒面状的光罩形状、或形成于光罩上的图案的圆筒面状形状的直径φ与长度L的关系设定成上述范围那样,能够以高生产性高效地进行器件图案的曝光及转印。另外,通过将直径φ与长度L的关系设定成上述范围那样,即使在将多个显示面板用的图案沿着圆筒光罩的圆周面排列配置多面的情况下,也能高效地配置各种显示尺寸的面板。
附图说明
图1是表示第一实施方式的器件制造系统的整体结构的图。
图2是表示第一实施方式的曝光装置(基板处理装置)的整体结构的图。
图3是表示图2所示的曝光装置的照明区域和投影区域的配置的图。
图4是表示图2所示的曝光装置的照明光学系统和投影光学系统的结构的图。
图5是表示照射于圆筒光罩上的照明光束的状态、和从圆筒光罩产生的投影光束的状态的图。
图6是表示构成圆筒光罩的圆筒轮与光罩的概要结构的立体图。
图7是表示在圆筒光罩的光罩面上将显示面板用的光罩配置一面的情况下的配置例的展开图。
图8是表示在圆筒光罩的光罩面上将相同尺寸的光罩三个排成一列而配置三面的配置例的展开图。
图9是表示在圆筒光罩的光罩面上将相同尺寸的光罩四个排成一列而配置四面的配置例的展开图。
图10是表示在圆筒光罩的光罩面上将相同尺寸的光罩以两行两列的方式配置四面的配置例的展开图。
图11是说明长宽比为2:1的显示面板用的光罩的配置两面的配置例的展开图。
图12是在特定的散焦容许量之下,模拟圆筒光罩的直径与曝光狭缝宽度的关系的图表。
图13是表示将60英寸显示面板用的光罩配置一面的情况下的具体例的展开图。
图14是表示光罩的配置两面的配置例的展开图。
图15是表示32英寸显示面板用的光罩的配置两面的第一配置例的展开图。
图16是表示32英寸显示面板用的光罩的配置两面的第二配置例的展开图。
图17是表示将32英寸显示面板用的光罩配置一面的情况下的具体例的展开图。
图18是表示32英寸显示面板用的光罩的配置三面的具体配置例的展开图。
图19是表示37英寸显示面板用的光罩的配置三面的具体配置例的展开图。
图20是表示第二实施方式的曝光装置(基板处理装置)的整体结构的图。
图21是表示第三实施方式的曝光装置(基板处理装置)的整体结构的图。
图22是表示由器件制造系统进行的器件制造方法的流程图。
具体实施方式
关于用以实施本发明的方式(实施方式),参照附图具体说明如下。本发明并不受以下实施方式所记载的内容的限定。另外,以下记载的构成要素中,当然包含本领域技术人员容易想到的要素、和实质上相同的要素。再者,以下记载的构成要素能够适当地进行组合。另外,在不脱离本发明要旨的范围内,能够进行构成要素的各种省略、置换或变更。例如,在以下实施方式中,作为器件虽然以制造柔性显示器的情况为例进行说明,但并不限于此。作为器件,还能制造形成有以铜箔等构成的布线图案的布线基板、形成有多个半导体器件(晶体管、二极管等)的基板等。
[第一实施方式]
第一实施方式中,对基板施以曝光处理的基板处理装置为曝光装置。另外,曝光装置组装在对曝光后的基板施以各种处理来制造器件的器件制造系统中。首先,对器件制造系统进行说明。
<器件制造系统>
图1是表示第一实施方式的器件制造系统的结构的图。图1所示的器件制造系统1是制造作为器件的柔性显示器的生产线(柔性显示器生产线)。作为柔性显示器,例如有有机EL显示器等。该器件制造系统1从将挠性基板P卷绕成卷筒状的供给用卷筒FR1送出该基板P,并在对所送出的基板P连续施以各种处理后,将处理后的基板P作为挠性器件卷绕到回收用卷筒FR2上,即所谓的卷对卷(Roll to Roll)方式。在第一实施方式的器件制造系统1中,示出了将薄膜状的片材即基板P从供给用卷筒FR1送出,且从供给用卷筒FR1送出的基板P依次经过n台处理装置U1、U2、U3、U4、U5、…Un而直到被卷绕至回收用卷筒FR2为止的例子。首先,对成为器件制造系统1的处理对象的基板P进行说明。
基板P例如使用树脂薄膜、由不锈钢等金属或合金构成的箔(foil)等。作为树脂薄膜的材质,例如包括聚乙烯树脂、聚丙烯树脂、聚酯树脂、乙烯基共聚物树脂、聚氯乙烯树脂、纤维素树醋、聚酰胺树脂、聚酰亚胺树脂、聚碳酸酯树脂、聚苯乙烯树脂、醋酸乙烯树脂中的一种或两种以上。
基板P优选选定例如热膨胀系数明显不大的材料,从而能够实质上忽视在对基板P实施的各种处理中因受热而产生的变形量。热膨胀系数例如还可以通过将无机填充物混合至树脂薄膜中,而被设定为比对应工艺温度等的阈值小。无机填充物可以是例如氧化钛、氧化锌、氧化铝、氧化硅等。另外,基板P可以是用浮制法等制造的厚度为100μm左右的极薄玻璃的单层体,也可以是在该极薄玻璃上贴合有上述的树脂薄膜、箔等的层叠体。
由此构成的基板P通过被卷绕成卷筒状而成为供给用卷筒FR1,且该供给用卷筒FR1被安装在器件制造系统1上。安装有供给用卷筒FR1的器件制造系统1对从供给用卷筒FR1送出的基板P反复执行用于制造一个器件的各种处理。由此,处理后的基板P成为多个器件相连的状态。也就是说,从供给用卷筒FR1送出的基板P成为配置多面用的基板。此外,基板P还可以是通过预先规定的预处理而将其表面改性并活性化的基板,或者是用压印法在表面上形成了用于精密图案化的微细间隔壁结构(凹凸结构)的基板。
处理后的基板P通过被卷绕成卷筒状而作为回收用卷筒FR2被回收。回收用卷筒FR2被安装在未图示的切割装置上。安装有回收用卷筒FR2的切割装置通过将处理后的基板P按每个器件进行分割(切割)而制成多个器件。关于基板P的尺寸,例如宽度方向(短边的方向)的尺寸为10cm~2m左右,长度方向(长边的方向)的尺寸为10m以上。此外,基板P的尺寸并不限于上述尺寸。
图1中形成有X方向、Y方向及Z方向正交的正交坐标系。X方向是在水平面内将供给用卷筒FR1及回收用卷筒FR2连结的方向,为图1中的左右方向。Y方向是在水平面内与X方向正交的方向,为图1中的前后方向。Y方向成为供给用卷筒FR1及回收用卷筒FR2的轴方向。Z方向是垂直方向,为图1中的上下方向。
器件制造系统1具备:供给基板P的基板供给装置2;对由基板供给装置2供给的基板P施以各种处理的处理装置U1~Un;回收由处理装置U1~Un施以处理后的基板P的基板回收装置4;以及控制器件制造系统1的各装置的上位控制装置5。
在基板供给装置2上以能够旋转的方式安装有供给用卷筒FR1。基板供给装置2具有从所安装的供给用卷筒FR1送出基板P的驱动辊DR1、和调整基板P在宽度方向(Y方向)上的位置的边缘位置控制器EPC1。驱动辊DR1一边夹持着基板P的表背两面一边旋转,并将基板P从供给用卷筒FR1往朝向回收用卷筒FR2的输送方向送出,从而将基板P供给到处理装置U1~Un。这时,边缘位置控制器EPC1以使基板P在宽度方向端部(边缘)的位置相对于目标位置落在±十几μm左右的范围至±几十μm左右的范围内的方式,使基板P在宽度方向上移动,从而修正基板P在宽度方向上的位置。
在基板回收装置4上以能够旋转的方式安装有回收用卷筒FR2。基板回收装置4具有将处理后的基板P拉向回收用卷筒FR2侧的驱动辊DR2、和调整基板P在宽度方向(Y方向)上的位置的边缘位置控制器EPC2。基板回收装置4一边由驱动辊DR2夹持着基板P的表背两面一边旋转,将基板P拉向输送方向,并使回收用卷筒FR2旋转,从而卷起基板P。这时,边缘位置控制器EPC2与边缘位置控制器EPC1结构相同,修正基板P在宽度方向上的位置,以避免基板P的宽度方向的端部(边缘)在宽度方向上不规则。
处理装置U1是在从基板供给装置2供给来的基板P的表面上涂敷感光性功能液的涂敷装置。作为感光性功能液,例如使用光致抗蚀剂、感光性硅烷偶联剂材料(感光性亲疏液性改性材料、感光性电镀还原材料等)、UV固化树脂液等。处理装置U1从基板P的输送方向的上游侧起依次设有涂敷机构Gp1和干燥机构Gp2。涂敷机构Gp1具有卷绕基板P的压辊R1、和与压辊R1相对的涂敷辊R2。涂敷机构Gp1在将所供给的基板P卷绕于压辊R1上的状态下,通过压辊R1及涂敷辊R2夹持基板P。然后,涂敷机构Gp1通过使压辊R1及涂敷辊R2旋转,而一边使基板P向输送方向移动一边以涂敷辊R2涂敷感光性功能液。干燥机构Gp2吹出热风或干燥空气等干燥用空气以除去感光性功能液中含有的溶质(溶剂或水),并使涂有感光性功能液的基板P干燥,从而在基板P上形成感光性功能层。
处理装置U2是为了使形成在基板P表面上的感光性功能层稳定,而将从处理装置U1输送出的基板P加热至规定温度(例如几10~120℃左右)的加热装置。处理装置U2从基板P的输送方向的上游侧起依次设有加热室HA1和冷却室HA2。加热室HA1在其内部设有多个辊和多个空气翻转杆(air turn bar),多个辊和多个空气翻转杆构成了基板P的输送路径。多个辊以与基板P背面滚动接触的方式设置,多个空气翻转杆以非接触状态设于基板P的表面侧。多个辊和多个空气翻转杆为了加长基板P的输送路径,而配置成折曲状的输送路径。从加热室HA1内通过的基板P一边沿着折曲状的输送路径被输送,一边被加热至规定温度。冷却室HA2为了使在加热室HA1内被加热的基板P的温度与后续工序(处理装置U3)的环境温度一致,而将基板P冷却至环境温度。冷却室HA2在其内部设有多个辊,多个辊与加热室HA1同样地为了加长基板P的输送路径而配置成折曲状的输送路径。从冷却室HA2内通过的基板P一边沿着折曲状的输送路径被输送一边被冷却。在冷却室HA2的输送方向的下游侧设有驱动辊DR3,驱动辊DR3一边夹持着通过冷却室HA2后的基板P一边旋转,从而将基板P朝向处理装置U3供给。
处理装置(基板处理装置)U3是对从处理装置U2供给来的、表面上形成有感光性功能层的基板(感光性基板)P投影并曝光显示器用电路或布线等的图案的曝光装置。具体详见后述,处理装置U3以照明光束对反射型的圆筒光罩M(圆筒轮21)进行照明,并将照明光束被光罩M反射而得到的投影光束投影并曝光于基板P。处理装置U3具有将从处理装置U2供给来的基板P送往输送方向下游侧的驱动辊DR4、和调整基板P在宽度方向(Y方向)上的位置的边缘位置控制器EPC3。驱动辊DR4一边夹持着基板P的表背两面一边旋转,并将基板P向输送方向下游侧送出,从而将基板P供给向在曝光位置对其进行稳定支承的旋转筒(基板支承筒)25。边缘位置控制器EPC3与边缘位置控制器EPC1结构相同,修正基板P在宽度方向上的位置,以使曝光位置上的基板P的宽度方向成为目标位置。
另外,处理装置U3具备缓冲部DL,该缓冲部DL具有在对曝光后的基板P付与松弛的状态下,将基板P送往输送方向下游侧的两组驱动辊DR6、DR7。两组驱动辊DR6、DR7在基板P的输送方向上隔开规定间隔地配置。驱动辊DR6夹持着被输送的基板P的上游侧旋转,而驱动辊DR7夹持着被输送的基板P的下游侧旋转,由此将基板P供给向处理装置U4。这时,基板P由于被付与了松弛,所以能够吸收与驱动辊DR7相比在输送方向下游侧产生的输送速度的变化,并能消除输送速度的变化对基板P的曝光处理造成的影响。另外,在处理装置U3内,为了使圆筒光罩M(以下也仅称为光罩M)的光罩图案的一部分的像与基板P相对地对位(对准、alignment),而设有检测预先形成在基板P上的对准标记、或形成在旋转筒(基板支承筒)25外周面的一部分上的基准图案等的准直显微镜AMG1、AMG2。
处理装置U4是对从处理装置U3输送来的曝光后的基板P进行湿式的显影处理、非电解浸镀处理等的湿式处理装置。处理装置U4在其内部具有沿垂直方向(Z方向)阶层化的三个处理槽BT1、BT2、BT3、和输送基板P的多个辊。多个辊以将三个处理槽BT1、BT2、BT3的内部形成为供基板P依次通过的输送路径的方式配置。在处理槽BT3的输送方向下游侧设有驱动辊DR8,驱动辊DR8一边夹持着通过处理槽BT3后的基板P一边旋转,从而将基板P供给向处理装置U5。
虽省略了图示,但处理装置U5是使从处理装置U4输送来的基板P干燥的干燥装置。处理装置U5除去在处理装置U4中经湿式处理而附着于基板P上的液滴,并调节基板P的水分含量。由处理装置U5干燥后的基板P在进一步经由若干个处理装置后被输送至处理装置Un。然后,在由处理装置Un加以处理后,基板P被卷绕到基板回收装置4的回收用卷筒FR2上。
上位控制装置5统筹控制基板供给装置2、基板回收装置4以及多个处理装置U1~Un。上位控制装置5控制基板供给装置2及基板回收装置4,将基板P从基板供给装置2向基板回收装置4输送。另外,上位控制装置5与基板P的输送同步地对多个处理装置U1~Un进行控制,使其执行对基板P的各种处理。
<曝光装置(基板处理装置)>
接着,参照图2至图5对作为第一实施方式的处理装置U3的曝光装置(基板处理装置)的结构进行说明。图2是表示第一实施方式的曝光装置(基板处理装置)的整体结构的图。图3是表示图2所示的曝光装置的照明区域和投影区域的配置的图。图4是表示图2所示的曝光装置的照明光学系统和投影光学系统的结构的图。图5是表示照射于光罩上的照明光束、和从光罩射出的投影光束的状态的图。
图2所示的曝光装置U3是所谓的扫描曝光装置,一边将基板P沿输送方向输送,一边将形成在圆筒状光罩M的外周面上的光罩图案的像投影并曝光至基板P的表面上。此外,图2中形成有X方向、Y方向及Z方向正交的正交坐标系,是与图1相同的正交坐标系。
首先,对用于曝光装置U3的光罩M(图1中的圆筒光罩M)进行说明。光罩M例如是使用金属制圆筒体的反射型光罩。光罩M的图案形成在圆筒基材上,该圆筒基材具有使以沿Y方向延伸的第一轴AX1为中心的曲率半径为Rm的外周面(圆周面)。光罩M的圆周面成为形成有规定的光罩图案的光罩面(第一面)P1。光罩面P1包括朝规定方向以高效率反射光束的高反射部、和不朝规定方向反射或以低效率反射光束的反射抑制部(低反射部)。光罩图案由高反射部和反射抑制部形成。在此,反射抑制部只要使朝规定方向反射的光减少即可。因此,反射抑制部能够由吸收光的材料、使光透过的材料、或除特定方向以外使光绕射的材料构成。作为上述结构的光罩M,曝光装置U3能够使用由铝或SUS等金属的圆筒基材制成的光罩。因此,曝光装置U3能够用价廉的光罩进行曝光。
此外,光罩M可以形成有与一个显示器件对应的面板用图案的整体或一部分,也可以形成有与多个显示器件对应的面板用图案。另外,光罩M还可以是在环绕第一轴AX1的圆周方向上反复形成有多个面板用图案的配置多面的光罩、或在与第一轴AX1平行的方向上反复形成有多个小型面板用图案的配置多面的光罩。再者,光罩M还可以是形成有第一显示器件的面板用图案、和尺寸等与第一显示器件不同的第二显示器件的面板用图案而成的异尺寸图案的配置多面的光罩。另外,光罩M只要具有使以第一轴AX1为中心的曲率半径为Rm的圆周面即可,并不限定于圆筒体的形状。例如,光罩M还可以是具有圆周面的圆弧状板材。另外,光罩M可以是薄板状,也可以使薄板状的光罩M弯曲以具有圆周面。
接着,对图2所示的曝光装置U3进行说明。曝光装置U3除具有上述的驱动辊DR4、DR6、DR7、基板支承筒25、边缘位置控制器EPC3及准直显微镜AMG1、AMG2外,还具有光罩保持机构11、基板支承机构12、照明光学系统IL、投影光学系统PL、以及下位控制装置16。曝光装置U3将从光源装置13射出的照明光经由照明光学系统IL和投影光学系统PL的一部分而照射至由光罩保持机构11的光罩保持筒21(以下也称为圆筒轮21)支承的光罩M的形成有图案的光罩面P1上,并将在光罩M的光罩面P1反射的投影光束(成像光)经由投影光学系统PL投射至由基板支承机构12的基板支承筒25支承的基板P上。
下位控制装置16控制曝光装置U3的各部分,并使各部分执行处理。下位控制装置16可以是器件制造系统1的上位控制装置5的一部分或全部。另外,下位控制装置16也可以是受上位控制装置5控制、且与上位控制装置5不同的另一装置。下位控制装置16例如包括计算机。
光罩保持机构11具有保持光罩M的圆筒轮21、和使圆筒轮21旋转的第一驱动部22。圆筒轮21将光罩M保持成以第一轴AX1为旋转中心的曲率半径为Rm的圆筒。第一驱动部22与下位控制装置16连接,并使圆筒轮21以第一轴AX1为旋转中心旋转。
此外,光罩保持机构11的圆筒轮21虽在其外周面上由高反射部和低反射部直接形成了光罩图案,但并不限于该结构。作为光罩保持机构11的圆筒轮21还可以顺着其外周面卷绕并保持薄板状的反射型光罩M。另外,作为光罩保持机构11的圆筒轮21也可以将预先以半径Rm弯曲成圆弧状的板状反射型光罩M能够装拆地保持在圆筒轮21的外周面上。
基板支承机构12具有:支承基板P的基板支承筒25;使基板支承筒25旋转的第二驱动部26;一对空气翻转杆ATB1、ATB2;以及一对导辊27、28。基板支承筒25形成为具有以沿Y方向延伸的第二轴AX2为中心的曲率半径为Rp的外周面(圆周面)的圆筒形状。在此,第一轴AX1与第二轴AX2相互平行,并将通过(包括)第一轴AX1及第二轴AX2的面设为中心面CL。基板支承筒25的圆周面的一部分成为支承基板P的支承面P2。也就是说,基板支承筒25通过将基板P卷绕到其支承面P2上,而使基板P弯曲成圆筒面状来稳定地加以支承。第二驱动部26与下位控制装置16连接,并使基板支承筒25以第二轴AX2为旋转中心旋转。一对空气翻转杆ATB1、ATB2与一对导辊27、28隔开基板支承筒25分别设置在基板P的输送方向的上游侧及下游侧。导辊27将从驱动辊DR4输送来的基板P经由空气翻转杆ATB1引导至基板支承筒25,而导辊28将经由基板支承筒25从空气翻转杆ATB2输送来的基板P引导至驱动辊DR6。
基板支承机构12通过由第二驱动部26使基板支承筒25旋转,而将导入至基板支承筒25的基板P边由基板支承筒25的支承面P2支承,边以规定速度沿长度方向(X方向)输送。
这时,与第一驱动部22及第二驱动部26连接的下位控制装置16通过使圆筒轮21与基板支承筒25以规定的旋转速度比同步旋转,而将形成在光罩M的光罩面P1上的光罩图案的投影像连续且反复地扫描曝光至卷绕在基板支承筒25的支承面P2上的基板P的表面(顺着圆周面弯曲的面)上。曝光装置U3、第一驱动部22及第二驱动部26成为本实施方式的移动机构。另外,在图2所示的曝光装置U3中,与导辊27相比位于基板P的输送方向上游侧的部分成为向基板支承筒25的支承面P2供给基板P的基板供给部。在基板供给部上,还可以直接设置图1所示的供给用卷筒FR1。同样地,与导辊28相比位于基板P的输送方向下游侧的部分成为从基板支承筒25的支承面P2回收基板P的基板回收部。在基板回收部上,还可以直接设置图1所示的回收用卷筒FR2。
光源装置13射出对光罩M进行照明的照明光束EL1。光源装置13具有光源31和导光部件32。光源31是射出规定波长的光的光源。光源31例如是水银灯等灯光源、准分子激光器等气体激光光源、激光二极管、发光二极管(LED)等固体激光光源。光源31射出的照明光例如在使用水银灯的情况下能够利用紫外区的亮线(g线、h线、i线),在使用准分子激光光源的情况下能够利用KrF准分子激光(波长248nm)或ArF准分子激光(波长193nm)等的远紫外光(DUV光)。在此,光源31优选射出包括比i线(365nm的波长)短的波长的照明光束EL1。作为这种照明光束EL1,还能使用作为YAG激光器的第三高次谐波射出的激光(波长355nm)、作为YAG激光器的第四高次谐波射出的激光(波长266nm)。
导光部件32将从光源31射出的照明光束EL1导向照明光学系统IL。导光部件32由光纤、或使用反射镜的继电器模块等构成。另外,导光部件32在设有多个照明光学系统IL的情况下,将来自光源31的照明光束EL1分割成多条,并将多条照明光束EL1导向多个照明光学系统IL。本实施方式的导光部件32使从光源31射出的照明光束EL1作为规定的偏振状态的光而射入至偏振分束器PBS。偏振分束器PBS为了对光罩M进行垂射照明而设置在光罩M与投影光学系统PL之间,将成为S偏振光的直线偏振光的光束反射,并使成为P偏振光的直线偏振光的光束透过。因此,光源装置13射出使射入至偏振分束器PBS的照明光束EL1成为直线偏振光(S偏振光)的光束的照明光束EL1。光源装置13向偏振分束器PBS射出波长及相位一致的偏振激光。例如,光源装置13在从光源31射出的光束为偏振光时,作为导光部件32使用保偏光纤,在维持从光源装置13输出的激光的偏振状态的情况下进行导光。另外,例如,还可以用光纤引导从光源31输出的光束,并由偏振片使从光纤输出的光偏振。也就是说,光源装置13在随机偏振的光束被引导时,还可以用偏振片对随机偏振的光束进行偏振。另外,光源装置13也可以通过使用透镜等的中继光学系统来引导从光源31输出的光束。
在此,如图3所示,第一实施方式的曝光装置U3是设想了所谓多透镜方式的曝光装置。此外,图3中示出了从-Z侧观察被保持于圆筒轮21的光罩M上的照明区域IR所得的俯视图(图3的左图)、和从+Z侧观察被支承于基板支承筒25的基板P上的投影区域PA所得的俯视图(图3的右图)。图3的附图标记Xs表示圆筒轮21及基板支承筒25的移动方向(旋转方向)。多透镜方式的曝光装置U3对光罩M上的多个(第一实施方式中例如为六个)照明区域IR1~IR6分别以照明光束EL1进行照明,将各照明光束EL1被各照明区域IR1~IR6反射所得到的多条投影光束EL2投影并曝光至基板P上的多个(第一实施方式中例如为六个)投影区域PA1~PA6。
首先,对通过照明光学系统IL照明的多个照明区域IR1~IR6进行说明。如图3所示,多个照明区域IR1~IR6隔开中心面CL,在旋转方向上游侧的光罩M上配置有第一照明区域IR1、第三照明区域IR3及第五照明区域IR5,在旋转方向下游侧的光罩M上配置有第二照明区域IR2、第四照明区域IR4及第六照明区域IR6。各照明区域IR1~IR6成为具有沿着光罩M的轴方向(Y方向)延伸的平行的短边及长边的细长梯形区域。这时,梯形的各照明区域IR1~IR6成为其短边位于中心面CL侧、其长边位于外侧的区域。第一照明区域IR1、第三照明区域IR3及第五照明区域IR5在轴方向上隔开规定间隔地配置。另外,第二照明区域IR2、第四照明区域IR4及第六照明区域IR6在轴方向上隔开规定间隔地配置。这时,第二照明区域IR2在轴方向上配置于第一照明区域IR1与第三照明区域IR3之间。同样地,第三照明区域IR3在轴方向上配置于第二照明区域IR2与第四照明区域IR4之间。第四照明区域IR4在轴方向上配置于第三照明区域IR3与第五照明区域IR5之间。第五照明区域IR5在轴方向上配置于第四照明区域IR4与第六照明区域IR6之间。各照明区域IR1~IR6以使沿Y方向相邻的梯形照明区域的斜边部的三角部彼此在沿光罩M的圆周方向(X方向)转动时相互重叠(overlap)的方式配置。此外,在第一实施方式中,各照明区域IR1~IR6虽然是梯形区域,但也可以是长方形区域。
另外,光罩M具有形成有光罩图案的图案形成区域A3、和未形成有光罩图案的非图案形成区域A4。非图案形成区域A4是难以反射照明光束EL1的低反射区域(反射抑制部),以呈框状围绕图案形成区域A3的方式配置。第一至第六照明区域IR1~IR6以覆盖图案形成区域A3的Y方向的全宽的方式配置。
照明光学系统IL与多个照明区域IR1~IR6对应地设有多个(第一实施方式中例如为六个)。对于多个照明光学系统(分割照明光学系统)IL1~IL6,分别射入来自光源装置13的照明光束EL1。各照明光学系统IL1~IL6将从光源装置13射入的各照明光束EL1分别导向各照明区域IR1~IR6。也就是说,第一照明光学系统IL1将照明光束EL1导向第一照明区域IR1,同样地,第二至第六照明光学系统IL2~IL6将照明光束EL1导向第二至第六照明区域IR2~IR6。多个照明光学系统IL1~IL6隔开中心面CL,在配置有第一、第三、第五照明区域IR1、IR3、IR5的一侧(图2的左侧)配置了第一照明光学系统IL1、第三照明光学系统IL3及第五照明光学系统IL5。第一照明光学系统IL1、第三照明光学系统IL3及第五照明光学系统IL5在Y方向上隔开规定间隔地配置。另外,多个照明光学系统IL1~IL6隔开中心面CL,在配置有第二、第四、第六照明区域IR2、IR4、IR6的一侧(图2的右侧)配置了第二照明光学系统IL2、第四照明光学系统IL4及第六照明光学系统IL6。第二照明光学系统IL2、第四照明光学系统IL4及第六照明光学系统IL6在Y方向上隔开规定间隔地配置。这时,第二照明光学系统IL2在轴方向上配置于第一照明光学系统IL1与第三照明光学系统IL3之间。同样地,第三照明光学系统IL3、第四照明光学系统IL4、第五照明光学系统IL5在轴方向上分别配置在第二照明光学系统IL2与第四照明光学系统IL4之间、第三照明光学系统IL3与第五照明光学系统IL5之间、第四照明光学系统IL4与第六照明光学系统IL6之间。另外,第一照明光学系统IL1、第三照明光学系统IL3及第五照明光学系统IL5与第二照明光学系统IL2、第四照明光学系统IL4及第六照明光学系统IL6从Y方向来看对称地配置。
接着,参照图4对各照明光学系统IL1~IL6进行说明。此外,由于各照明光学系统IL1~IL6的结构相同,所以以第一照明光学系统IL1(以下仅称为照明光学系统IL)为例进行说明。
照明光学系统IL为了以均匀的照度对照明区域IR(第一照明区域IR1)进行照明,而将来自光源装置13的光源31的照明光束EL1对光罩M上的照明区域IR进行柯勒照明。另外,照明光学系IL成为使用偏振分束器PBS的垂射照明系统。照明光学系统IL从来自光源装置13的照明光束EL1的入射侧起依次具有照明光学模块ILM、偏振分束器PBS、和1/4波长板41。
如图4所示,照明光学模块ILM从照明光束EL1的入射侧起依次包括准直透镜51、复眼透镜52、多个聚光透镜53、柱面透镜54、照明视野光圈55、和中继透镜系统56,并设置在第一光轴BX1上。准直透镜51入射从导光部件32射出的光,并照射复眼透镜52的入射侧的整个面。复眼透镜52的射出侧的面的中心配置在第一光轴BX1上。复眼透镜52生成将来自准直透镜51的照明光束EL1分割为多个点光源像的面光源像。照明光束EL1从该面光源像生成。这时,生成点光源像的复眼透镜52的射出侧的面通过从复眼透镜52经由照明视野光圈55到后述的投影光学系统PL的第一凹面镜72的各种透镜,以与第一凹面镜72的反射面所在的光瞳面光学上共轭的方式配置。设于复眼透镜52射出侧的聚光透镜53的光轴配置在第一光轴BX1上。聚光透镜53使来自形成于复眼透镜52射出侧的多个点光源像的每一个的光在照明视野光圈55上重叠,并以均匀的照度分布照射照明视野光圈55。照明视野光圈55具有与图3所示的照明区域IR相似的梯形或长方形的矩形开口部,该开口部的中心配置在第一光轴BX1上。通过设置在从照明视野光圈55至光罩M的光路中的中继透镜系统(成像系统)56、偏振分束器PBS、1/4波长板41,而使照明视野光圈55的开口部被配置成与光罩M上的照明区域IR为光学上共轭的关系。中继透镜系统56由沿着第一光轴BX1配置的多个透镜56a、56b、56c、56d构成,将透过照明视野光圈55的开口部后的照明光束EL1经由偏振分束器PBS照射到光罩M上的照明区域IR。在聚光透镜53的射出侧且与照明视野光圈55相邻的位置上,设有柱面透镜54。柱面透镜54是入射侧为平面、射出侧为凸圆筒透镜面的平凸柱面透镜。柱面透镜54的光轴配置在第一光轴BX1上。柱面透镜54使对光罩M上的照明区域IR照射的照明光束EL1的各主光线在XZ面内收敛,并在Y方向上成平行状态。
偏振分束器PBS配置在照明光学模块ILM与中心面CL之间。偏振分束器PBS以波阵面分割面来反射成为S偏振光的直线偏振光的光束,并使成为P偏振光的直线偏振光的光束透过。在此,若将射入至偏振分束器PBS的照明光束EL1设为S偏振光的直线偏振光,则照明光束EL1由偏振分束器PBS的波阵面分割面反射,透过1/4波长板41成为圆偏振光并照射光罩M上的照明区域IR。在光罩M上的照明区域IR反射的投影光束EL2通过再次通过1/4波长板41而从圆偏振光转换成直线P偏振光,透过偏振分束器PBS的波阵面分割面并朝向投影光学系统PL。偏振分束器PBS优选将射入至波阵面分割面的照明光束EL1的大部分反射,并使投影光束EL2的大部分透过。偏振分束器PBS的波阵面分割面上的偏振分离特性以消光比表示,但由于该消光比也会因朝向波阵面分割面的光线的入射角而改变,所以波阵面分割面的特性以对实用上的成像性能的影响不会成为问题的方式,在也考虑照明光束EL1及投影光束EL2的NA(开口数)的情况下进行设计。
图5是将照射到光罩M上的照明区域IR内的照明光束EL1、和由照明区域IR反射的投影光束EL2的动作在XZ面(与第一轴AX1垂直的面)内放大表示的图。如图5所示,上述照明光学系统IL以由光罩M的照明区域IR反射的投影光束EL2的主光线成为远心(平行系)的方式,将照射到光罩M的照明区域IR内的照明光束EL1的各主光线在XZ面(与第一轴AX1垂直的面)内刻意地设为非远心的状态,而在YZ面(与中心面CL平行)内设为远心的状态。照明光束EL1的这种特性通过图4中所示的柱面透镜54来赋予。
具体而言,在设定了从光罩面P1上的照明区域IR的圆周方向中央的点Q1通过并朝向第一轴AX1的线、与半径为光罩面P1的半径Rm的1/2的圆之间的交点Q2(1/2半径位置)后,以使通过照明区域IR的照明光束EL1的各主光线在XZ面内朝向交点Q2的方式,设定柱面透镜54的凸圆筒透镜面的曲率。如此一来,在照明区域IR内反射的投影光束EL2的各主光线在XZ面内成为与从第一轴AX1、点Q1、交点Q2通过的直线平行(远心)的状态。
接着,对由投影光学系统PL投影曝光的多个投影区域PA1~PA6进行说明。如图3所示,基板P上的多个投影区域PA1~PA6与光罩M上的多个照明区域IR1~IR6对应配置。也就是说,基板P上的多个投影区域PA1~PA6隔开中心面CL,在输送方向上游侧的基板P上配置有第一投影区域PA1、第三投影区域PA3及第五投影区域PA5,在输送方向下游侧的基板P上配置有第二投影区域PA2、第四投影区域PA4及第六投影区域PA6。各投影区域PA1~PA6成为具有沿着基板P的宽度方向(Y方向)延伸的短边及长边的细长梯形(矩形状)区域。这时,梯形的各投影区域PA1~PA6成为其短边位于中心面CL侧、其长边位于外侧的区域。第一投影区域PA1、第三投影区域PA3及第五投影区域PA5在宽度方向上隔开规定间隔地配置。另外,第二投影区域PA2、第四投影区域PA4及第六投影区域PA6在宽度方向上隔开规定间隔地配置。这时,第二投影区域PA2在轴方向上配置于第一投影区域PA1与第三投影区域PA3之间。同样地,第三投影区域PA3在轴方向上配置于第二投影区域PA2与第四投影区域PA4之间。第四投影区域PA4在轴方向上配置于第三投影区域PA3与第五投影区域PA5之间。第五投影区域PA5在轴方向上配置于第四投影区域PA4与第六投影区域PA6之间。各投影区域PA1~PA6与各照明区域IR1~IR6同样地,以使沿Y方向相邻的梯形投影区域PA的斜边部的三角部彼此在基板P的输送方向上重叠(overlap)的方式配置。这时,投影区域PA成为使在相邻投影区域PA的重复区域内的曝光量与在不重复区域内的曝光量实质相同的形状。而且,第一至第六投影区域PA1~PA6以将曝光于基板P上的曝光区域A7的Y方向的全宽覆盖的方式配置。
此处,图2中,在XZ面内观察时,光罩M上的从照明区域IR1(及IR3、IR5)的中心点至照明区域IR2(及IR4、IR6)的中心点为止的圆周长度设定成与顺着支承面P2的基板P上的从投影区域PA1(及PA3、PA5)的中心点至投影区域PA2(及PA4、PA6)的中心点为止的圆周长度实质上相等。
投影光学系统PL与多个投影区域PA1~PA6对应设置有多个(第一实施方式中例如为六个)。对于多个投影光学系统(分割投影光学系统)PL1~PL6分别射入从多个照明区域IR1~IR6反射的多个投影光束EL2。各投影光学系统PL1~PL6将由光罩M反射的各投影光束EL2分别导向各投影区域PAl~PA6。也就是说,第一投影光学系统PL1将来自第一照明区域IR1的投影光束EL2导向第一投影区域PA1,同样地,第二至第六投影光学系统PL2~PL6将来自第二至第六照明区域IR2~IR6的各投影光束EL2导向第二至第六投影区域PA2~PA6。多个投影光学系统PL1~PL6隔开中心面CL,在配置有第一、第三、第五投影区域PA1、PA3、PA5的一侧(图2的左侧)配置了第一投影光学系统PL1、第三投影光学系统PL3及第五投影光学系统PL5。第一投影光学系统PL1、第三投影光学系统PL3及第5投影光学系统PL5在Y方向上隔开规定间隔地配置。另外,多个投影光学系统PL1~PL6隔开中心面CL,在配置有第二、第四、第六投影区域PA2、PA4、PA6的一侧(图2的右侧)配置了第二投影光学系统PL2、第四投影光学系统PL4及第六投影光学系统PL6。第二投影光学系统PL2、第四投影光学系统PL4及第六投影光学系统PL6在Y方向上隔开规定间隔地配置。这时,第二投影光学系统PL2在轴方向上配置于第一投影光学系统PL1与第三投影光学系统PL3之间。同样地,第三投影光学系统PL3、第四投影光学系统PL4、第五投影光学系统PL5在轴方向上分别配置于第二投影光学系统PL2与第四投影光学系统PL4之间、第三投影光学系统PL3与第五投影光学系统PL5之间、以及第四投影光学系统PL4与第六投影光学系统PL6之间。另外,第一投影光学系统PL1、第三投影光学系统PL3及第五投影光学系统PL5与第二投影光学系统PL2、第四投影光学系统PL4及第六投影光学系统PL6从Y方向看对称地配置。
再次,参照图4对各投影光学系统PL1~PL6进行说明。此外,由于各投影光学系统PL1~PL6为相同结构,所以以第一投影光学系统PL1(以下仅称为投影光学系统PL)为例进行说明。
投影光学系统PL将光罩M上的照明区域IR(第一照明区域IR1)内的光罩图案的像投影至基板P上的投影区域PA内。投影光学系统PL从来自光罩M的投影光束EL2的入射侧起依次具有上述的1/4波长板41、上述的偏振分束器PBS、和投影光学模块PLM。
1/4波长板41和偏振分束器PBS与照明光学系统IL兼用。换言之,照明光学系统IL和投影光学系统PL共有1/4波长板41及偏振分束器PBS。
由照明区域IR反射的投影光束EL2成为远心状态(各主光线相互平行的状态),并射入至投影光学系统PL。由照明区域IR反射的成为圆偏振光的投影光束EL2在通过1/4波长板41从圆偏振光被转换成直线偏振光(P偏振光)之后,射入至偏振分束器PBS。射入至偏振分束器PBS内的投影光束EL2在透过偏振分束器PBS之后,射入至投影光学模块PLM。
投影光学模块PLM与照明光学模块ILM对应设置。也就是说,第一投影光学系统PL1的投影光学模块PLM将由第一照明光学系统IL1的照明光学模块ILM照明的第一照明区域IR1的光罩图案的像投影至基板P上的第一投影区域PA1。同样地,第二至第六投影光学系统PL2~PL6的投影光学模块LM将由第二至第六照明光学系统IL2~IL6的照明光学模块ILM照明的第二至第六照明区域IR2~IR6的光罩图案的像投影至基板P上的第二至第六投影区域PA2~PA6。
如图4所示,投影光学模块PLM具备:将在照明区域IR内的光罩图案的像成像于中间像面P7上的第一光学系统61;将由第一光学系统61成像的中间像的至少一部分再成像于基板P的投影区域PA内的第二光学系统62;以及配置在形成中间像的中间像面P7上的投影视野光圈63。另外,投影光学模块PLM具备焦点修正光学部件64、像切换用光学部件65、倍率修正用光学部件66、旋转修正机构67、和偏振调整机构(偏振调整设备)68。
第一光学系统61及第二光学系统62例如是戴森(Dyson)系统变形后的远心的折反射光学系统。第一光学系统61的光轴(以下称为第二光轴BX2)相对于中心面CL实质上正交。第一光学系统61具备第一偏向部件70、第一透镜组71、和第一凹面镜72。第一偏向部件70是具有第一反射面P3和第二反射面P4的三棱镜。第一反射面P3成为使来自偏振分束器PBS的投影光束EL2反射,并使所反射的投影光束EL2在通过第一透镜组71后射入至第一凹面镜72的面。第二反射面P4成为供被第一凹面镜72反射的投影光束EL2在通过第一透镜组71后射入,并将所射入的投影光束EL2朝向投影视野光圈63反射的面。第一透镜组71包括各种透镜,且各种透镜的光轴配置在第二光轴BX2上。第一凹面镜72配置在第一光学系统61的光瞳面上,并设定成与由复眼透镜52生成的多个点光源像为光学上共轭的关系。
来自偏振分束器PBS的投影光束EL2由第一偏向部件70的第一反射面P3反射,并在通过第一透镜组71的上半部分视野区域后射入至第一凹面镜72。射入至第一凹面镜72的投影光束EL2由第一凹面镜72反射,并在通过第一透镜组71的下半部分视野区域后射入至第一偏向部件70的第二反射面P4。射入至第二反射面P4的投影光束EL2由第二反射面P4反射,并在通过焦点修正光学部件64及像切换用光学部件65后射入至投影视野光圈63。
投影视野光圈63具有规定投影区域PA的形状的开口。即,投影视野光圈63的开口的形状规定投影区域PA的实质形状。因此,在将照明光学系统IL内的照明视野光圈55的开口的形状设为与投影区域PA的实质形状相似的梯形时,能够省略投影视野光圈63。
第二光学系统62与第一光学系统61为相同结构,且隔开中间像面P7与第一光学系统61对称设置。第二光学系统62的光轴(以下称为第三光轴BX3)相对于中心面CL实质上正交,且与第二光轴BX2平行。第二光学系统62具备第二偏向部件80、第二透镜组81、和第二凹面镜82。第二偏向部件80具有第三反射面P5和第四反射面P6。第三反射面P5成为使来自投影视野光圈63的投影光束EL2反射,并使所反射的投影光束EL2在通过第二透镜组81后射入至第二凹面镜82的面。第四反射面P6成为供被第二凹面镜82反射的投影光束EL2在通过第二透镜组81后射入,并将所射入的投影光束EL2朝向投影区域PA反射的面。第二透镜组81包括各种透镜,且各种透镜的光轴配置在第三光轴BX3上。第二凹面镜82配置在第二光学系统62的光瞳面上,并设定成与成像于第一凹面镜72上的多个点光源像为光学上共轭的关系。
来自投影视野光圈63的投影光束EL2由第二偏向部件80的第三反射面P5反射,并在通过第二透镜组81的上半部分视野区域后射入至第二凹面镜82。射入至第二凹面镜82的投影光束EL2由第二凹面镜82反射,并在通过第二透镜组81的下半部分视野区域后射入至第二偏向部件80的第四反射面P6。射入至第四反射面P6的投影光束EL2由第四反射面P6反射,并在通过倍率修正用光学部件66后投射至投影区域PA。由此,照明区域IR内的光罩图案的像被以等倍(×1)投影至投影区域PA。
焦点修正光学部件64配置在第一偏向部件70与投影视野光圈63之间。焦点修正光学部件64调整投影至基板P上的光罩图案的像的聚焦状态。焦点修正光学部件64是例如使两片楔形棱镜逆向(图4中为相对于X方向逆向),并以整体成为透明的平行平板的方式重叠而得到的部件。通过使这一对棱镜在不改变彼此相对的面之间的间隔的状态下沿斜面方向滑动,而使作为平行平板的厚度可变。由此,对第一光学系统61的实效光路长度进行微调,从而对形成于中间像面P7及投影区域PA内的光罩图案的像的对焦状态进行微调。
像切换用光学部件65配置在第一偏向部件70与投影视野光圈63之间。像切换用光学部件65以能够使投影至基板P上的光罩图案的像在像面内移动的方式对其进行调整。像切换用光学部件65由能在图4的XZ面内倾斜的透明的平行平板玻璃、与能在图4的YZ面内倾斜的透明的平行平板玻璃构成。通过调整这两片平行平板玻璃的各倾斜量,能够使形成在中间像面P7及投影区域PA内的光罩图案的像在X方向或Y方向上微幅移动(shift)。
倍率修正用光学部件66配置在第二偏向部件80与基板P之间。倍率修正用光学部件66例如构成为将凹透镜、凸透镜、凹透镜这三片以规定间隔同轴配置,且前后的凹透镜是固定的,使中间的凸透镜在光轴(主光线)方向上移动。由此,形成在投影区域PA内的光罩图案的像在维持远心的成像状态的同时,等方性地仅微量放大或缩小。此外,构成倍率修正用光学部件66的三片透镜组的光轴以与投影光束EL2的主光线平行的方式在XZ面内倾斜。
旋转修正机构67例如是通过致动器(图示略)使第一偏向部件70绕着与Z轴平行的轴微幅旋转的机构。该旋转修正机构67能够通过第一偏向部件70的旋转来使形成于中间像面P7上的光罩图案的像在该中间像面P7内微幅旋转。
偏振调整机构68例如是通过致动器(图示略)使1/4波长板41绕着与板面正交的轴旋转来调整偏振方向的机构。偏振调整机构68能够通过使1/4波长板41旋转来调整投射至投影区域PA的投影光束EL2的照度。
在如此构成的投影光学系统PL中,来自光罩M的投影光束EL2从照明区域IR以远心的状态(各主光线相互平行的状态)射出,并在通过1/4波长板41及偏振分束器PBS后射入至第一光学系统61。射入至第一光学系统61的投影光束EL2由第一光学系统61的第一偏向部件70的第一反射面(平面镜)P3反射,并在通过第一透镜组71后由第一凹面镜72反射。由第一凹面镜72反射的投影光束EL2再次通过第一透镜组71后由第一偏向部件70的第二反射面(平面镜)P4反射,并在透过焦点修正光学部件64及像切换用光学部件65后射入至投影视野光圈63。通过投影视野光圈63后的投影光束EL2由第二光学系统62的第二偏向部件80的第三反射面(平面镜)P5反射,并在通过第二透镜组81后由第二凹面镜82反射。由第二凹面镜82反射的投影光束EL2再次通过第二透镜组81后由第二偏向部件80的第四反射面(平面镜)P6反射,并射入至倍率修正用光学部件66。从倍率修正用光学部件66射出的投影光束EL2射入至基板P上的投影区域PA,且出现在照明区域IR内的光罩图案的像被以等倍(×1)投影至投影区域PA。
在本实施方式中,虽然第一偏向部件70的第二反射面(平面镜)P4与第二偏向部件80的第三反射面(平面镜)P5成为相对于中心面CL(或光轴BX2、BX3)倾斜45°的面,但第一偏向部件70的第一反射面(平面镜)P3与第二偏向部件80的第四反射面(平面镜)P6相对于中心面CL(或光轴BX2、BX3)被设定为除45°以外的角度。图5中,在将通过点Q1、交点Q2、第一轴AX1的直线与中心面CL所成的角度设为θs°时,第一偏向部件70的第一反射面P3相对于中心面CL(或光轴BX2)的角度α°(绝对值)被确定为α°=45°+θs°/2的关系。同样地,在将从基板支承筒25的外周面的圆周方向上的投影区域PA内的中心点通过的投影光束EL2的主光线与中心面CL在ZX面内的角度设为εs°时,第二偏向部件80的第四反射面P6相对于中心面CL(或第二光轴BX2)的角度β°(绝对值)被确定为β°=45°+εs°/2的关系。
<光罩及光罩支承筒>
接着,使用图6及图7对第一实施方式的曝光装置U3中的光罩保持机构11的圆筒轮(光罩保持筒)21与光罩M的结构进行说明。图6是表示圆筒轮21及形成在其外周面上的光罩M的概略结构的立体图。图7是表示将圆筒轮21的外周面展开成平面时的光罩面P1的概略结构的展开图。
在本实施方式中,将光罩M设为反射型的薄片光罩,虽然无论是在卷绕于圆筒轮21外周面上的情况下,还是在以金属制的圆筒基材构成圆筒轮21并在圆筒基材的外周面上直接形成反射型光罩图案的情况下都能适用,但此处为了简便,以后者的情况进行说明。如先前的图3所示,形成在圆筒轮21的外周面(直径φ)即光罩面P1上的光罩M由图案形成区域A3与非图案形成区域(遮光带区域)A4构成。图6、图7中所示的光罩M经由投影光学系统PL1~PL6的各投影区域PA1~PA6与图3中的投影至基板P上的曝光区域A7内的图案形成区域A3对应。光罩M(图案形成区域A3)虽形成在圆筒轮21外周面的圆周方向的大致整个区域内,但在将与该第一轴AX1平行的方向(Y方向)的宽度(长度)设为L时,比圆筒轮21外周面与第一轴AX1平行的方向(Y方向)的长度La小。另外,在本实施方式的情况下,光罩M并非在圆筒轮21外周面的360°范围内紧密配置的,而是在圆周方向上隔开规定尺寸的余白部92设置。因此,该余白部92的圆周方向的两端与光罩M(图案形成区域A3)在扫描曝光方向上的终端和始端对应。
另外,图6中,在圆筒轮21的两端面部上设有与第一轴AX1同轴的轴SF。轴SF经由设置在曝光装置U3内的规定位置上的轴承来支承圆筒轮21。轴承采用使用了金属滚珠或滚针等的接触式、或者静压气体轴承之类的非接触式。进一步地,还可以在圆筒轮21的外周面(光罩面P1)中的、在与第一轴AX1平行的Y方向上与光罩M的区域相比靠外侧的各个端部区域内,在整个圆周方向上形成用于高精度地测量圆筒轮21(光罩M)的旋转角度位置的光栅(encoder scale)。也可以将刻设有用于测量旋转角度位置的光栅的刻度圆板与轴SF同轴固定。
在此,图7是以余白部92中的切断线94将图6的圆筒轮21的外周面切断后展开的状态。另外,在以下说明中,将在外周面展开后的状态下与Y方向正交的方向设为θ方向。如图7所示,由于直径为φ,所以将圆周率设为π则光罩面P1的整个圆周长度为πφ。另外,相对于光罩面P1的与第一轴AX1平行的方向上的全长La,光罩M(图案形成区域A3)的与第一轴AX1平行的Y方向上的长度L以L≤La形成,且在θ方向上以长度Lb形成。从光罩面P1的整个圆周长度πφ减去长度Lb后的长度是余白部92的θ方向的合计尺寸。在余白部92内的Y方向的各个分散位置上,也形成有用于进行光罩M的对位的对准标记。
在此,图7所示的光罩M是用于形成图案的光罩,该图案与在液晶显示器、有机EL显示器等中使用的显示面板之一对应。这种情况下,作为形成在光罩M上的图案,有形成使显示面板的显示画面的各像素驱动的TFT用电极或布线的图案、显示器件的显示画面的各像素的图案、以及显示器件的彩色滤光片及黑色矩阵的图案等。如图7所示,在光罩M(图案形成区域A3)上,设有形成与显示面板的显示画面对应的图案的显示画面区域DPA、和配置在显示画面区域DPA周围且形成用于驱动显示画面的电路等的图案的周边电路区域TAB。
光罩M上的显示画面区域DPA的尺寸与要制造的显示面板的显示部的尺寸(对角线长度Le的英寸尺寸)对应,在图2、图4所示的投影光学系统PL的投影倍率为等倍(×1)的情况下,光罩M上的显示画面区域DPA的实际尺寸(对角线长度Le)成为实际的显示画面的英寸尺寸。在本实施方式中,显示画面区域DPA为长边Ld与短边Lc的长方形,长边Ld与短边Lc的长度比(长宽比)在典型的示例中为Ld:Lc=16:9或Ld:Lc=2:1。长宽比16:9是所谓的高画质尺寸(宽尺寸)使用的画面的纵横比。另外,长宽比2:1是被称为显示器(scope)尺寸的画面的纵横比,在电视机画面中是4K2K的超高画质尺寸所使用的长宽比。举个例子,若是长宽比为16:9而画面尺寸为50英寸(Le=127cm)的显示面板的话,则光罩M上的显示画面区域DPA的长边Ld约为110.7cm、短边Lc约为62.3cm。另外,若是相同画面尺寸(50英寸)而长宽比为2:1的话,则显示画面区域DPA的长边Ld约为113.6cm、短边Lc约为56.8cm。
如图7所示,在将一个显示面板用的光罩M(包括显示画面区域DPA和周边电路区域TAB)形成在圆筒轮21的外周面上的情况下,优选以显示画面区域DPA的长边Ld的方向成为θ方向(圆筒轮21的圆周方向)的方式配置。这是因为无需使圆筒轮21的直径φ过小,也无需使圆筒轮21的第一轴AX1方向的长度La过大的缘故。此处,举一个包含周边电路区域TAB的宽度尺寸在内的光罩M的尺寸(Lb×L)的例子。周边电路区域TAB的宽度尺寸虽会因电路结构而有各种不同情况,但可以将图7中的位于显示画面区域DPA的Y方向两端侧的周边电路区域TAB的Y方向的宽度的合计设为显示画面区域DPA的Y方向长度Lc的10%,并将位于显示画面区域DPA的θ方向两端侧的周边电路区域TAB的θ方向的宽度的合计设为显示画面区域DPA的θ方向长度Ld的10%。
这种情况下,在长宽比16:9的50英寸显示面板中,光罩M的长边Lb为121.76cm,短边L为68.49cm。由于余白部92在θ方向上的尺寸为零以上,所以圆筒轮21的直径φ根据φ≥Lb/π的计算,为38.76cm以上。因此,为了将长宽比16:9的50英寸显示面板的图案扫描曝光至基板P上,需要直径φ为38.76mm以上、光罩面P1在与第一轴AX1平行的方向上的长度La为短边L(68.49cm)以上的圆筒轮21。这种情况下,直径φ与光罩M的短边L的比率L/φ约为1.77。此外,若假设周边电路区域TAB的θ方向的宽度合计为显示画面区域DPA的θ方向长度Ld的20%的话,则光罩M的长边Lb为132.83cm,短边L为68.49cm,圆筒轮21的直径φ为42.28cm以上,直径φ与光罩M的短边L的比率L/φ则约为1.62。
在同样的条件下,若是长宽比2:1的50英寸显示面板的话,则光罩M的长边Lb为124.96cm、短边L为62.48cm。由此,圆筒轮21的直径φ根据φ≥Lb/π的计算,为39.78cm以上。因此,为了将长宽比2:1的50英寸显示面板的图案扫描曝光至基板P上,需要直径φ为39.78cm以上、光罩面P1在与第一轴AX1平行的方向上的长度La为短边L(62.48cm)以上的圆筒轮21。这种情况下,直径φ与光罩M的短边L的比率L/φ约为1.57。此外,若假设周边电路区域TAB的θ方向的宽度的合计为显示画面区域DPA的θ方向长度Ld的20%的话,则光罩M的长边Lb为136.31cm,短边L为62.48cm,圆筒轮21的直径φ为43.39cm以上,直径φ与光罩M的短边L的比率L/φ则约为1.44。
如图7所示,在将形成有单一显示面板用图案的光罩M配置在圆筒轮(光罩保持筒)21的外周面上的情况下,与扫描曝光方向正交的Y方向的光罩M的长度L和光罩面P1的直径φ的关系会落在1.3≤L/φ≤3.8的范围内。然而,在使图7所示的光罩M的配置于图7中旋转90°,并将光罩M的长边Lb设为Y方向、将短边L设为θ方向的情况下,会脱离上述关系。例如,在先前的长宽比16:9的50英寸显示面板的情况下,若将周边电路区域TAB的θ方向的宽度设为显示画面区域DPA的长度Ld的10%的话,则由于光罩M的长边Lb为121.76cm、短边L为68.49cm,所以光罩面P1在与第一轴AX1平行的方向上的长度L的最小值为Lb(121.76cm),圆筒轮21的直径φ根据φ≥L/π的计算,为21.80cm以上。因此,直径φ与光罩M在与第一轴AX1平行的方向上的长度Lb的比率Lb/φ约为5.59。同样地,在长宽比2:1的50英寸的显示面板的情况下,由于光罩M的长边Lb为124.96cm、短边L为62.48cm,所以光罩面P1在与第一轴AX1平行的方向上的长度L的最小值为Lb(124.96cm),圆筒轮21的直径φ根据φ≥L/π的计算,为19.89cm以上。因此,直径φ与光罩M在与第一轴AX1平行的方向上的长度Lb的比率Lb/φ约为6.28。
这样,即使光罩M的尺寸(Lb×L)相同,也会因其长边与短边的方向而使比率L/φ(或Lb/φ)的值大幅变化。比率L/φ(或Lb/φ)大的情况是代表圆筒轮21的直径φ小且光罩面P1的弯曲陡,因此为了维持图案转印的忠实度,而势必将图3所示的照明区域IR或投影区域PA的扫描曝光方向Xs的宽度设得更狭窄。或者,需使圆筒轮21的与第一轴AX1平行的方向上的长度倍增,以进一步增加配置于Y方向上的多个投影光学系统PL(照明光学系统IL)的数量。另一方面,比率L/φ(或Lb/φ)小,一种情况是圆筒轮21上的光罩M在与第一轴AX1平行的方向上的长度小,例如仅使用图3中的六个投影区域PA1~PA6中的一半左右,另一种情况是圆筒轮21的直径φ过大,导致图6、图7所示的余白部92的θ方向的尺寸变大而成为所需程度以上。由于以上理由,通过将圆筒轮(光罩保持筒)21的外形尺寸条件设为1.3≤L/φ≤3.8的关系,能够有效地实施使用了形成有显示面板用图案的光罩M的精密曝光作业,并能提高生产性。
在图6及图7所示的例子中,虽是在圆筒轮(光罩保持筒)21的外周面(光罩面P1)上支承了具有一面显示面板用图案的光罩M的例子,但也有在光罩面P1上形成多面显示面板用图案的情况。通过图8至图10对这种情况的若干个例子进行说明。
图8是表示在光罩面P1上将三个相同尺寸的光罩M1沿着圆筒轮21的圆周长度方向(θ方向)配置时的概略结构的展开图。图9是表示在光罩面P1上将四个相同尺寸的光罩M2沿着圆筒轮21的圆周长度方向(θ方向)配置时的概略结构的展开图。图10是表示将图9所示的光罩M2旋转90°,在光罩面P1上沿Y方向排列两个光罩M2,再将其沿着圆筒轮21的圆周长度方向(θ方向)配置两组时的概略结构的展开图。由于在圆筒轮21的一次旋转中使基板P上相同尺寸的显示面板曝光多个(此处为三个或四个),因此图8至图10所示的例子被称为配置多面的光罩M。另外,如图8所示,将待经由投影光学系统PL扫描曝光至基板P上的光罩面P1上的整个区域配合图7地设为光罩M,在光罩M中应成为显示面板的光罩M1(图9、10中为M2)沿扫描曝光方向(θ方向)隔开规定的间隔Sx排列。在各光罩M1(图9、10中为M2)中,与图7同样地,包括对角线长度Le的显示画面区域DPA、和将其围绕的周边电路区域TAB。
首先,从图8所示的例子开始详述如下。图8中,最大的长方形是圆筒轮21的外周面即光罩面P1。光罩面P1在以切断线94为θ方向的原点时,从0°至360°的旋转角度的范围内在θ方向上具有长度πφ,在与第一轴AX1平行的Y方向上具有长度La。在光罩面P1的内侧以虚线表示的区域是与应曝光至基板P上的整个区域(图3中的曝光区域A7)对应的光罩M。在光罩M内沿θ方向排列的三个光罩M1以使显示画面区域DPA的长边方向为Y方向、短边方向为θ方向的方式配置。另外,在各光罩M1的沿θ方向相邻的间隔Sx内,在Y方向的三处离散地设有用于特定圆筒轮21上的光罩M(或M1)的位置的对准标记(光罩标记)96。这些光罩标记96经由在圆筒轮21的圆周方向的规定位置上与外周面(光罩面P1)相对配置的未图示的光罩对准光学系统进行检测。曝光装置U3根据由光罩对准光学系统检测出的各光罩标记96的位置,测量圆筒轮21整体、或各光罩M1在旋转方向(θ方向)上的位置偏移和在Y方向上的位置偏移。
一般而言,在基板P上形成显示面板的器件时都需要层叠多层,因此,曝光装置会将用于特定在基板P上的哪个位置曝光了光罩M(或M1)的图案的对准标记(基板标记)与光罩M(或M1)一起转印至基板P上。图8中,这种基板标记96a分别形成在各光罩M1的Y方向的两端部分、且θ方向上分离的三处。基板标记96a所占有的光罩(或基板P)上的区域的Y方向的宽度为几mm左右。因此,应曝光至基板P上的光罩面P1上的光罩M的Y方向长度L成为各光罩M1的Y方向的尺寸、与在各光罩M1的Y方向两侧确保的基板标记96a的区域的Y方向的尺寸的合计。
另外,若将各光罩M1的θ方向的尺寸与各间隔Sx的Y方向的尺寸合计后的长度设为Px的话,则光罩面P1上的光罩M整体的θ方向长度Lb成为Lb=3Px。如先前的图7所示,在配置与单一显示面板对应的光罩M时,虽优选设置规定长度的余白部92,但如图8所示,在θ方向上设置间隔Sx来配置多个光罩M1时,能够使余白部92的θ方向长度为零。即,各光罩M1的θ方向长度自然是根据显示面板的尺寸而定的,作为间隔Sx所需的最小尺寸也是预先决定的,因此,只要将圆筒轮21的直径φ设定为满足φ=3Px/π的关系即可。相反地,若能够安装于曝光装置U3上的圆筒轮21的直径φ的范围已大致决定了的话,则能够通过改变(增大)间隔Sx的尺寸来进行调整。
在此,对图8所示的光罩M的具体尺寸的一例进行说明。图8中,设想光罩M1的显示画面区域DPA的对角线长度Le为32英寸(81.28cm)、周边电路区域TAB的Y方向和θ方向的各尺寸为显示画面区域DPA的尺寸的10%左右、且形成基板标记96a的区域的Y方向的尺寸为0.5cm(两侧合计1cm)。若是长宽比16:9的显示面板的话,则光罩M1的短边尺寸为48.83cm、长边尺寸为77.93cm,若是长宽比2:1的显示面板的话,则光罩M1的短边尺寸为43.83cm、长边尺寸为79.97cm。在将余白部92的尺寸设为零,并以满足Lb=πφ=3Px的方式将三个光罩M1与三个间隔Sx沿θ方向排列时,若将光罩M1的θ方向长度设为Lg的话,则间隔Sx由Sx=(Lb-3Lg)/3求出。
于是,在将长宽比16:9的显示面板用光罩M1和长宽比2:1的显示面板用光罩M1中的某一方设成能够配置在相同直径的圆筒轮21的光罩面P1上时,将圆筒轮21的直径φ设为43cm左右即可。这种情况下,在长宽比16:9的显示面板中,将光罩M1之间的间隔Sx设定为1.196cm即可,而在长宽比2:1的显示面板中,将光罩M1之间的间隔Sx设定为5.045cm即可。
由于光罩面P1上的光罩M的Y方向长度L是光罩M1的Y方向尺寸与基板标记96a的形成区域的Y方向尺寸(1cm)的合计,所以在长宽比16:9的显示面板用的光罩M中L=78.93cm,而在长宽比2:1的显示面板用的光罩M中则为L=80.97cm。因此,若是长宽比16:9的显示面板用的圆筒轮21的话,则圆筒轮21的直径φ(43cm)与光罩M的Y方向长度L的比为L/φ=1.84,若是长宽比2:1的显示面板用的圆筒轮21的话,则为L/φ=1.88。无论何种情况,该比率L/φ都落在1.3~3.8的范围内。
另外,在将长宽比16:9的显示面板的图案曝光至基板P上的情况、和将长宽比2:1的显示面板的图案曝光至基板P上的情况下,若将基板P上的间隔Sx的θ方向尺寸控制在所需的最小限的话,则自然需要改变圆筒轮21的直径φ。例如,在将间隔Sx设为2cm时,形成有长宽比16:9的显示面板用的光罩M1的圆筒轮21的直径φ从πφ=3(Lg+Sx)的关系来看为φ≥43.77cm。另一方面,形成有长宽比2:1的显示面板用的光罩M1的圆筒轮21的直径φ为φ≥40.1cm。这种情况下,若是长宽比16:9的显示面板用的圆筒轮21的话,则比率L/φ=1.80,若是长宽比2:1的显示面板用的圆筒轮21的话,则比率L/φ=2.02,都落在1.3~3.8的范围内。
此外,在应如此安装于曝光装置U3上的圆筒轮21(光罩M)的直径φ发生变化的情况下,于曝光装置U3上设有使圆筒轮21的第一轴AX1的Z方向位置偏移其直径φ的差量的1/2左右的机构。在上述示例中,由于直径φ的差为3.67cm,所以圆筒轮21的第一轴AX1(轴SF)在Z方向上偏移1.835cm左右并被支承。进一步地,当圆筒轮21的第一轴AX1往Z方向的偏移量大时,还需要将图4中所示的柱面透镜54变更成具有如满足图5所示的照明条件那样的凸圆筒面的曲率的柱面透镜,调整第一偏向部件70的第一反射面(平面镜)P3的角度α°,并使偏振分束器PBS和1/4波长板41整体地在XZ面内微幅倾斜。
以上,如图8所示,在形成于圆筒轮21上的光罩M(包括三个光罩M1)上,伴随转印至基板P上的显示面板用的图案(光罩M1)而沿θ方向(扫描曝光方向)设有多个基板标记96a。因此,当以曝光装置U3将多个基板标记96a与显示面板用的图案(光罩M1)一起依次转印至基板P上时,则能够确认曝光时的各种问题。例如,能够使用转印至基板P上的基板标记96a来特定基板P上产生的缺陷(例如杂物附着)的位置,或者测量光罩的图案化误差、焦点误差、重叠曝光时的重叠误差等各种偏置误差。所测量出的偏置误差除利用于光罩整体的管理外,还利用于圆筒光罩21上的各光罩M1的位置管理、以及转印至基板P上的各显示面板的图案(光罩M1)的位置管理(修正)。
图9是表示例如以使Y方向为显示画面区域DPA长边的方式,将长宽比2:1的显示面板用的光罩M2沿θ方向排列四个而配置在圆筒轮21的光罩面P1上的例子。在各光罩M2的θ方向的侧边(长边)设有间隔Sx,光罩标记96、基板标记96a也与先前的图8同样地设置。这种情况下,光罩面P1的圆周方向(θ方向)的全长πφ(=Lb)为πφ=4Px=4(Lg+Sx)。在此,将显示画面区域DPA的画面尺寸设为24英寸(Le=60.96cm),将周边电路区域TAB的θ方向的合计宽度设为显示画面区域DPA的θ方向长度的10%,将周边电路区域TAB的Y方向的合计宽度设为显示画面区域DPA的Y方向长度的20%,再者,将分别配置在光罩M2的Y方向两端部上的基板标记96a的形成区域的Y方向的合计宽度设为1cm。
这种情况下,因为显示画面区域DPA的尺寸为长边54.52cm、短边27.26cm,所以光罩面P1上的曝光用光罩M的Y方向全长L包括光罩M2和基板标记96a的形成区域,为L=66.43cm。另外,因为光罩面P1上的光罩M2的θ方向长度Lg为Lg=29.99cm,所以当将间隔Sx设为1cm时,光罩M(圆筒轮21)的直径φ因πφ≥4Px而为39.46cm以上。因此,如图9所示,在将长宽比2:1的显示面板用的光罩M2的四个面的量设于圆筒轮21上的情况下,比率L/φ为1.67,也落在1.3~3.8的范围内。
图10表示使图9所示的光罩M2旋转90°后将长边朝向θ方向配置,并以沿θ方向配置两个、沿Y方向配置两个的方式在光罩面P1上共计排列四个的情况的示例。另外,此处,在排列于Y方向上的两个光罩M之间,设有基板标记96a的形成区域。因此,若将基板标记96a的形成区域的Y方向的合计宽度设为2cm的话,则形成在光罩面P1上的光罩M的Y方向全长(短边)L为61.98cm,光罩M的θ方向全长(长边)πφ为132.86cm,光罩M(圆筒光罩21)的直径φ为42.29cm以上,比率L/φ为1.47。
另外,在将四个光罩M2如图9或图10那样地配置时,只要调整间隔Sx,就能使圆筒轮21的直径φ与光罩面P1的Y方向尺寸La固定。在图9与图10的情况下,光罩M的Y方向长度L较大的是图9的情况下的L=66.43cm,而圆筒轮21(光罩M)的直径φ较大的是图10的情况下的φ≥42.29cm。于是,若使用外周面(光罩面P1)的Y方向尺寸La为La≥66.43cm、且直径φ为φ≥42.3cm的圆筒轮21的话,无论图9与图10的哪种配置,都能实现光罩M2的配置四面。这种情况下,比率L/φ为1.57,也落在1.3~3.8的范围内。
如图8至图10所示,在光罩面P1上有可能以各种配置规则来配置显示器件用的光罩图案(光罩M、M1、M2)。相对于此,通过使圆筒轮(光罩保持筒)21的光罩面P1(外周面)在与扫描曝光方向(θ方向)正交的方向(Y方向)上的长度L和圆筒轮21的直径φ的关系满足1.3≤L/φ≤3.8,从而如图8至图10所示,即使是在配置有多个各种尺寸的显示面板的光罩图案(光罩M1、M2)的情况下,也能在减少了间隙(间隔Sx)的状态下配置光罩图案。
另外,通过使圆筒轮21满足1.3≤L/φ≤3.8的关系,能够在抑制照明光学系统IL及投影光学系统PL的数量增加的同时,抑制装置的大型化。也就是说,圆筒轮21变得细长,能够抑制照明光学系统IL及投影光学系统PL的数量增加。另外,圆筒轮21的直径φ变大,从而能够抑制装置的Z方向尺寸变大。
在此,如图7所示,在将长宽比2:1的显示面板用的配置一面的光罩M形成于圆筒轮21的整个外周面(光罩面P1)上时,设想以使图6、图7中的余白部92的θ方向尺寸为零、且使光罩面P1的Y方向(第一轴AX1方向)尺寸La为La=L的情况。另外,如先前所说明的,配置在画面显示区域DPA周围的周边电路区域TAB有相当于画面显示区域DPA的20%左右的情况。然而,周边电路区域TAB的尺寸比例会因实际的图案规格、设计而根据在画面显示区域DPA周围的哪个部分上配置有作为电路的端子部从而发生变化。因此,虽无法准确地进行特定,但设为会往作为光罩M的纵横比变大的方向增加,与画面显示区域DPA的短边相邻的周边电路区域TAB的合计宽度,假设为画面显示区域DPA的长边Ld的20%左右。另外,与画面显示区域DPA的长边相邻的周边电路区域TAB的合计宽度,则假设为画面显示区域DPA的短边Lc的0~10%左右。在这种假定下,在画面显示区域DPA为长宽比2:1的50英寸显示面板的情况下,画面显示区域DPA的长边Ld为113.59cm、短边Lc为56.8cm。因此,图7中的光罩M的θ方向长度Lb(=πφ)为136.31cm,圆筒轮21(光罩M)的直径φ为43.39cm,Y方向长度L(=La)为56.8~62.48cm,长度L与直径φ的比率为1.30~1.44。这样,在将长宽比大的显示面板用的光罩整体以配置一面的方式形成在圆筒轮21的整个外周面(光罩面P1)上时,比率L/φ成为最小的值1.3。此外,在画面显示区域DPA的长宽比为2:1的情况下,若光罩M仅在长边方向上包含周边电路区域TAB的宽度而大20%的话,则图7所示的配置一面的光罩M的纵横比(Lb/L)为2.4,由于Lb=πφ,导出比率L/φ=π/2.4≒1.30。
另外,像印刷机那样,在使图7中的光罩M旋转90°且配置在圆筒轮21的光罩面P1的大致整个面上时,如先前所说明的,比率L/φ会变得过大。如上述的条件所述,在画面显示区域DPA的长宽比为2:1的情况下,若配置一面的光罩M仅在长边方向上包含周边电路区域TAB的宽度而大20%,且余白部92的θ方向尺寸为零的话,则L/Lb(πφ)=2.4/1,比率L/φ为7.54。这种情况下,若是先前示例的50英寸显示面板用的配置一面的光罩M的话,则Y方向长度L为136.31cm,θ方向长度Lb(πφ)为56.8cm,圆筒轮21(光罩M)的直径φ为18.1cm。这样,在将光罩M的长边方向设为θ方向的情况下和设为Y方向情况下,比率L/φ都会大幅变化。
曝光装置U3的投影光学系统PL在圆筒轮21的直径大幅变化的情况下,尤其是在直径φ变小时,因射影导致的变形(distortion)误差及因圆弧导致的投影像面的变化的点会变大,因此难以将良好的投影像曝光至基板P上。这种情况下,例如如图11所示,将具有长宽比2:1的画面显示区域DPA的显示面板用的长边方向设为Y方向的两个光罩M2排列在θ方向上即可。
图11中,两个光罩M2分别包括长宽比为2:1的画面显示区域DPA、和配置在画面显示区域DPA的Y方向两侧的周边电路区域TAB。周边电路区域TAB的Y方向宽度的合计设为画面显示区域DPA的长边尺寸Ld的20%,在光罩M2的右邻侧设有间隔Sx。若假设在光罩M2的周围没有配置基板标记96a或光罩标记96,则包含两个光罩M2和间隔Sx的光罩M整体(光罩面P1)的Y方向尺寸L为L=1.2·Ld,θ方向尺寸πφ(Lb)为πφ=2(Lc+Sx)。在将画面显示区域DPA的长宽比Asp设为Asp=Ld/Lc时,比率L/φ表示如下。
L/φ=0.6·π·Asp·Lc/(Lc+Sx)
在此,若将间隔Sx设为零,则比率L/φ为L/φ=0.6·π·Asp,在将长宽比2:1的显示面板用的两个光罩M2以图11所示的方向配置的情况下,圆筒轮21(光罩面P1)的直径φ与第一轴AX1方向的长度L(=La)的比率L/φ为3.77(约3.8)。这种情况下,若画面显示区域DPA(2:1)是50英寸的话,则直为36.16cm、长度L(La)为136.31cm。同样地,在将图11所示的光罩M2设为长宽比16:9的显示面板用的情况下,若将间隔Sx设为零,则由于L/φ=0.6·π·Asp的关系,比率L/φ成为3.35。这种情况下,若画面显示区域DPA(16:9)是50英寸的话,则直径φ为39.64cm、长度L(La)为132.83cm。
如上所述,在以使画面显示区域DPA的短边方向朝向圆筒轮21的圆周方向(θ方向)、长边方向朝向圆筒轮21的第一轴AX1的方向(Y方向)的方式配置光罩M的情况下,通过将两个以上的相同光罩M2排列于θ方向,能够将比率L/φ设为3.8以下。此外,若将图11所示的光罩M2以相同条件在θ方向上排列n个的话,则先前的表示比率L/φ的关系式如下。
L/φ=1.2·π·Asp·Lc/n(Lc+Sx)
根据该关系式,能够将欲制造的显示面板用的光罩M2在圆筒轮21上的配置、所需的间隔Sx等设定为满足1.3≤L/φ≤3.8。
另外,光罩面P1通过将显示面板器件用的光罩图案的光罩M1、M2如先前的图8那样排列三个、或如图9所示的那样排列四个,能够将比率L/φ配置成小于3.8。这种情况下,比率L/φ会成为何种值,是可以根据将Y方向设为长边的光罩M1、M2在θ方向上排列n个时的关系式求出的。根据显示画面区域DPA周围的周边电路区域TAB的宽度不同,光罩M1、M2的纵横尺寸也会发生变化,因此,将因显示画面区域DPA的长边方向两侧(或单侧)的周边电路区域TAB而放大的光罩M1、M2的长边方向尺寸的放大倍率设为e1,将因显示画面区域DPA的短边方向两侧(或单侧)的周边电路区域TAB而放大的光罩M1、M2的短边方向尺寸的放大倍率设为e2。
因此,当以使光罩面P1的Y方向尺寸La与光罩M1、M2的长边方向尺寸一致的方式配置时,光罩面P1上的光罩区域的Y方向长度L为L=La=e1·Ld。同样地,光罩面P1上的光罩区域的θ方向长度πφ(Lb)为πφ=n(e2·Lc+Sx),比率L/φ由下述关系式表示。
L/φ=e1·π·Asp·Lc/n(e2·Lc+Sx)
该关系式中,若是图11所示的光罩M2,则n=2、e1=1.2、e2=1.0。
例如,在将显示面板器件用的光罩M2的显示画面区域DPA的纵横比设为16:9(Asp=1.778)的情况下,若将光罩M2在θ方向上以三面并排的方式配置(n=3)的话,则间隔Sx为零时,比率L/φ为L/φ=e1·π·Asp/n·e2,即使将放大倍率e1设为1.2、将放大倍率e2设为1.0,比率L/φ也是2.23。
进一步地,如先前的图10所示,若以两行两列配置光罩M2(24英寸)的四面整体的光罩区域的纵横比与将显示画面区域DPA的长边方向朝向θ方向的配置一面的光罩M(50英寸)的纵横比大致相同的话,则可以仅通过周边电路区域TAB的端子部的尺寸的不同、或间隔Sx的不同,设为相同尺寸的圆筒轮21。
如上所述,如显示面板的显示画面区域DPA的长宽比为16:9或2:1等那样,当接近2:1时,为了将该显示面板用的光罩M、M1、M2有效地排列在圆筒轮21的外周面上,优选使圆筒轮(圆筒光罩)21在与扫描曝光方向(θ方向)正交的方向(Y方向)上的长度L与直径φ的关系满足1.3≤L/φ≤3.8。再者,若单一的光罩M、M1、M2的纵横比接近2:1的话,则在将这些光罩以配置多面方式排列多个时,优选使因配置多面而占有的光罩面P1上的光罩区域整体的纵横比(L:Lb)接近1:1。另外,间隔Sx(或余白部92)优选设为固定。
另外,圆筒轮21的外周面(光罩面P1)的直径φ与形成在光罩面P1上的光罩图案的第一轴AX1方向的全长L(La)的关系优选为满足1.3≤L/φ≤3.8,但进一步地,若设为1.3≤L/φ≤2.6的话,则能够更好地获得上述效果。举个例子,若以使图11所示的光罩M2的长边方向成为θ方向的方式,使光罩M2旋转90°并沿Y方向没有隔开间隔地排列两个而作为配置两面的话,则L/φ≒2.6。这种情况下,一个光罩M2的θ方向长度πφ(Lb)为πφ=e1·Ld,沿Y方向排列的两个光罩M2的合计长度L为L=2·e2·Lc。因此,因Asp=Ld/Lc,比率L/φ成为L/φ=2π·e2/e1·Asp,若设为e1=1.2、e2=1.0、Asp=2/1的话,则L/φ=π/1.2≒2.6。
另外,曝光装置U3优选为能够将光罩M(M1、M2)设为可更换的。通过将光罩设为可更换的,能够将各种尺寸的显示面板、或电子电路基板用的光罩图案投影曝光至基板P上。另外,即使形成于圆筒轮21的光罩面P1上的光罩(M、M1、M2等)的面数有多种情况,也无需将各光罩间产生的间隙(间隔Sx)做得过大。即,能够抑制光罩面P1在整体面积中所占的有效的光罩区域比例(光罩利用率)的降低。
另外,优选能够以使圆筒轮21的光罩面P1的直径φ、和与扫描曝光方向正交的方向(Y方向)上的光罩区域的长度L均大致相同的方式,将光罩M(M1、M2)设为可更换的。由此,仅通过更换光罩M(M1、M2),而无需进行曝光装置U3侧的投影光学系统PL及照明光学系统IL、或基板P与光罩面P1间的距离等其他部分的调整,或者仅需要极少的调整量就能完成,在光罩更换后也能以同等的像质转印各种器件的图案。
另外,在上述实施方式中,具有将圆筒轮21的直径φ设为固定而使所配置面数或排列方向不同的各种面数的器件用光罩(M1、M2)配置在光罩面P1上的情况,或者使圆筒轮21的直径φ不同并在光罩面P1上配置各种面数的器件的情况。然而,无论何种情况,都能通过使圆筒状的光罩面P1的形状满足1.3≤L/φ≤3.8的关系,而在光罩面P1上以较少的间隙配置多个光罩图案。由此,能够高效地使器件(显示面板)的图案转印至基板P上。另外,通过将圆筒轮21的圆筒光罩设为满足1.3≤L/φ≤3.8的关系的形状,能够在减少多个器件图案的间隙的同时,高效地配置各种尺寸的器件的图案,且能减少圆筒光罩的直径φ的变化。
另外,如图8至图11所示,光罩M1、M2的安装面数能够根据欲制造的显示面板(器件)的尺寸而设为两面、三面、四面或更多。若将光罩M1、M2的安装面数增加至三面、四面的话,则能进一步缩小间隙(间隔Sx)的尺寸。
另外,圆筒轮21能够通过满足1.3≤L/φ≤3.8,而相对于滚筒径(直径φ)使照明区域IR或投影区域PA的扫描曝光方向(θ方向)的宽度、即所谓的曝光狭缝宽度最优化(增大)。以下,使用图12对圆筒轮21的光罩面P1的直径φ与扫描曝光方向的曝光狭缝宽度的关系进行说明。
图12是改变散焦(Defocus)量来模拟圆筒轮21(光罩面P1)的直径φ与曝光狭缝宽度D的关系的图表。图12中,纵轴表示曝光狭缝宽度D[mm],这表示形成在基板P上的投影区域PA(图3)的θ方向(X方向)的宽度。纵轴表示圆筒轮21(光罩面P1)的直径φ[mm]。另外,所谓散焦量是根据由曝光装置U3的投影光学系统PL的像侧(基板P侧)的开口数NA、曝光用的照明光的波长λ、和由工艺常数k(k≤1)定义的焦点深度DOF来决定的。在此,针对投影像的最佳焦平面与基板P表面之间的聚焦方向的偏差量(散焦量)以为25μm和为50μm的两种情况来进行模拟。
在此,由于在图12的模拟中将投影光学系统PL的开口数NA设为0.0875,将照明光的波长λ设为水银灯的i线的365nm,将工艺常数k设为0.5左右,所以焦点深度DOF根据DOF=k·λ/NA2而得到宽度约为50μm(约-25μm~+25μm)左右。此外,作为该条件下的分辨率,能够获得2.5μmL/S。图12中由虚线表示的25μm散焦时是指在曝光狭缝宽度D内产生焦点深度DOF的1/2左右的聚焦偏差的状态;由实线表示的50μm散焦时则是指在曝光狭缝宽度D内产生与焦点深度DOF程度相当的聚焦偏差的状态。即,由虚线表示的25μm散焦时的图表表示出了将焦点深度DOF的宽度的l/2(宽度25μm)作为因该圆筒轮21的光罩面P1的弯曲产生的误差而容许时的、直径φ与曝光狭缝宽度D的关系;由实线表示的50μm散焦时的图表表示出了将到焦点深度DOF的宽度左右为止作为因该圆筒轮21的光罩面P1的弯曲产生的误差而容许时的、直径φ与曝光狭缝宽度D的关系。
图12中,通过以下计算求出将圆筒轮21的直径φ在100mm~1000mm的范围内进行改变时所容许的散焦量(设为ΔZ)为25μm时的曝光狭缝宽度D、和上述散焦量为50μm时的曝光狭缝宽度D。
D=2·[(φ/2)2-(φ/2-ΔZ)2]0.5
根据该模拟,例如在直径φ为500mm的情况下,作为散焦量ΔZ而容许至25μm时的曝光狭缝宽度D的最大值约为7.lmm,而作为散焦量ΔZ而容许至50μm时的曝光狭缝宽度D的最大值约为10.0mm。
如图12所示,圆筒轮21的直径φ越大,满足所容许的散焦量的曝光狭缝宽度D就越大。在显示画面区域DPA的长宽比为2:1且仅在显示画面区域DPA的长度方向上设有周边电路区域TAB的、如图11所示的光罩M2的情况下,若不设置余白部92(间隔Sx)而仅将该光罩M2的一面形成于圆筒轮21的整个光罩面P1上的话,则通过将该光罩M2的长度方向设为圆筒轮21的圆周方向(θ方向)、或第一轴AX1的方向(Y方向),比率L/φ会有很大变化。若将光罩M2的长度方向如图11所示设为Y方向的话,则光罩M2的一面的θ方向长度Lc(短边)与圆筒轮21外周面的整个圆周长度πφ相等,成为φ=Lc/π。这时,圆筒轮21上的光罩M2的第一轴AX1方向(Y方向)的长度L与图11的情况同样地成为L=1.2·Ld。因长宽比为2:1,而Ld=2Lc,所以该情况下的比率L/φ为L/φ=2.4·π≒7.5。另一方面,若将光罩M2的短边方向设为Y方向的话,则光罩M2的一面在θ方向上的整个圆周长度πφ为1.2·Ld,圆筒轮21上的光罩M2的Y方向长度L成为Lc。因此,该情况下的比率L/φ成为L/φ=π/2.4≒1.3。
若将光罩的Y方向长度L设定在曝光装置U3的投影光学系统PL的各投影区域PAl~PA6(图3)的Y方向合计尺寸的范围内,并使长度L为固定的话,则比率从1.3至7.5变化约六倍,这意味着圆筒轮21的直径φ发生约六倍的变化。直径φ约六倍的变化在图12中相当于例如直径φ=从150mm至900mm的变化。这种情况下,将容许散焦量ΔZ设为25μm时的曝光狭缝宽度D从φ150mm时的约3.9mm变化至φ900mm时的约9.5mm。因此,在将光罩的Y方向长度L设为固定的情况下,当从直径φ900mm的圆筒光罩变至直径φ150mm的圆筒光罩时,曝光狭缝宽度D减少至约40%。将容许散焦量ΔZ设为50μm时也一样。
因此,当比率L/φ以从1.3至7.5的范围为对象时,在使投影像的对比度为固定来进行曝光的情况下,单纯来说,赋予基板P的曝光量会减少至40%。为使赋予基板P的曝光量达到适当值(100%),相对于基于将曝光狭缝宽度D设定为9.5mm的投影区域PA进行曝光时基板P的移动速度,使基板P以约40%的速度移动。即,由于需要使基板P的输送速度本身降至约40%,所以生产性(throughput)将降至一半以下。在使用曝光狭缝宽度D设定为3.9mm的投影区域PA进行曝光时,为避免降低基板P的输送速度,也可以考虑提高投影区域PA内投影像的辉度、即照明光束ELI的照度。这种情况下,相对于曝光狭缝宽度D为9.5mm时的照度,照射光罩面P1的照明光束EL1的照度需提高至约2.5倍。
相对于此,当采用图11所示的光罩M2的配置两面时,能够将比率L/φ降至约3.8(1.2·π)以下的范围(1.3~3.8)。光罩的Y方向长度L设为固定时,圆筒光罩(圆筒轮21)的直径φ的变化约为三倍的范围,例如仅需考虑φ=900mm~300mm之间即可。通过图12的模拟,直径φ为300mm时将容许散焦量ΔZ设为25μm的情况下的曝光狭缝宽度D约为5.5mm。因此,相对于曝光狭缝宽度D约为9.5mm的情况,基板P的输送速度仅减少至约60%左右。这样,通过以比率L/φ为约1.3~约3.8的方式对圆筒轮21的光罩面P1上所形成的光罩区域的纵横比进行限制,能够抑制曝光狭缝宽度D的变化。
同样地,在将图11的光罩M2如图8所示地沿θ方向无间隔Sx地排列三个的情况下,L/φ=0.4π·Asp,圆筒轮21的直径φ例如有可能在500mm~900mm这一约1.8倍的范围内变化。散焦量为25μm的曝光狭缝宽度D会从直径φ为900mm时的约9.5mm减少至约7.1mm,但这相当于生产性降低至约75%。然而,与先前示例中的生产性降至一半以下的情况相比获得改善。进一步地,在将图11的光罩M2如图9所示地沿θ方向无间隔Sx地排列四个的情况下,L/φ=0.3π·Asp,圆筒轮21的直径φ例如有可能在700mm~900mm这一约1.3倍范围内变化。散焦量为25μm的曝光狭缝宽度D会从直径φ为900mm时的约9.5mm减少至约8.4mm。这相当于生产性降低至约88%,但与先前示例中的生产性降至一半以下的情况相比获得大幅改善,可以进行实质上无损失的曝光。另外,若是曝光狭缝宽度D的75%或88%左右的减少的话,通过提高光源31的发光强度,或增加光源数量等,能够很容易地提升照明光束EL1的照度,完全不会产生生产性的降低。此外,光罩区域的尺寸可知是随着接近一定值而使生产性变为固定的。即,根据显示画面区域DPA的画面尺寸(对角线长度Le),分别采用光罩M的配置一面、光罩M1或光罩M2的配置多面,从而能够实现光罩区域的尺寸(L×πφ)为固定的圆筒轮21(直径φ不变),且能够固定地维持生产性。
然而,虽将比率L/φ的范围设成了约1.3~约3.8,但这是由于如图11所示地设想了:长宽比2:1的显示面板用的光罩M2的长度方向尺寸包含周边电路区域TAB的宽度,且相对于显示画面区域DPA的长度方向尺寸Ld增加20%的情况(为1.2倍的情况)。于是,若将光罩的长度方向尺寸相对于显示画面区域DPA的长度方向尺寸Ld放大至e1倍的话,则比率L/φ因Asp=Ld/Lc而由以下范围表示。
π/(e1·Asp)≤L/φ≤e1·π
通过使用满足该条件的圆筒轮21(圆筒光罩),本实施方式的曝光装置U3能在抑制因圆筒面造成的射影误差而产生的投影像畸变(distortion)、或因圆弧造成的投影像面的变化(聚焦偏差)的同时,将显示面板(器件)用的多个光罩图案在减少间隙的情况下排列并转印至基板P上。
以上,将本实施方式中的圆筒光罩(圆筒轮21)上形成的光罩M、M1、M2等的配置例进行总结,则如图13、图14所示。图13与先前的图7同样地表示以θ方向为长度方向的光罩M的配置一面的情况,图14则与先前的图11同样地表示将以Y方向为长度方向的光罩M2在θ方向上排列两个的配置两面的情况。图13与图7同样是以长边为θ方向朝向的方式对显示画面区域DPA的对角线长度Le(英寸)的显示面板用的光罩M进行配置的情况。这种情况下,若将显示画面区域DPA的长边尺寸Ld与短边尺寸Lc的比(Ld/Lc)作为长宽比Asp,并将包括显示画面区域DPA周围的周边电路区域TAB在内的光罩M整体无余白地形成在圆筒轮21的外周面(光罩面P1)上的话,则光罩M的θ方向长度πφ为πφ=e1·Ld=e1·Asp·Lc,Y方向长度L为L=e2·Lc。如先前所说明的,e1是通过在显示画面区域DPA的长度方向两侧或单侧附属的周边电路区域TAB的合计宽度,表示光罩M的长度方向相对于显示画面区域DPA的长度方向放大多少程度的放大倍率。同样地,e2是通过在显示画面区域DPA的短边方向两侧或单侧附属的周边电路区域TAB的合计宽度(图13中的Ta),表示光罩M的短边方向相对于显示画面区域DPA的短边方向放大多少程度的放大倍率。根据以上说明,圆筒轮21的外周面(光罩面P1)所需最低限的尺寸为πφ×L,这时的光罩M的长度L与直径φ的比率L/φ表示如下。
L/φ=π·e2/e1·Asp
设想光罩M的纵横比(πφ:L)进一步增大的情况,若将与显示画面区域DPA的长边相邻的周边电路区域TAB的宽度Ta设为零(e2=1)、放大倍率e1设为1.2(增加20%)的话,则比率L/φ成为π/1.2·Asp。因此,长宽比Asp为2(2/1)时,比率L/φ为π/2.4≒1.3;长宽比Asp为1.778(16/9)时,比率L/φ则为π/2.134≒1.47。
图14与图11同样是将以显示画面区域DPA的长边方向为Y方向的两个光罩M2沿θ方向排列的配置两面的情况,长宽比Asp、放大倍率e1、e2的定义与图13的情况相同。包括显示画面区域DPA周围的周边电路区域TAB在内的一个光罩M2的尺寸为L×Lg,这两个光罩M2在θ方向上隔开间隔Sx并列配置。因此,在将包含两个光罩M2和两个间隔Sx的光罩整体无余白地形成于圆筒轮21的外周面(光罩面P1)上的情况下,光罩整体的θ方向长度πφ为πφ=2(Lg+Sx),Y方向的长度L则为L=e1·Ld。因此,这时的比率L/φ表示如下。
L/φ=π·e1·Ld/2(Lg+Sx)
在此,假设放大倍率e1为1.2(增加20%),与显示画面区域DPA的长边相邻的周边电路区域TAB的宽度Ta为零(e2=1),且间隔Sx为零时,根据Lg=e2·Lc、Ld=Asp·Lc的关系,比率L/φ为0.6π·Asp。因此,长宽比Asp为2(2/1)时,比率L/φ约为3.8;长宽比Asp为1.778(16/9)时,比率L/φ约为3.4。
这样,配置于圆筒状光罩面P1上的显示面板(器件)的尺寸(英寸数)、显示画面区域DPA的长宽比Asp、和周边电路区域TAB的宽度等如果确定的话,就能基于此,简单地制作比率L/φ适合于曝光装置U3的装置规格的较佳的圆筒光罩(圆筒轮21)。
进一步地,使用图15至图18对具体例进行说明。首先,如上述图7或图13所示,将显示画面区域DPA的长边方向设为θ方向的光罩M在圆筒轮21的光罩面P1上配置一面的情况作为比较基准。在此,具体例中曝光装置U3的投影光学系统PL将光罩图案以等倍投影至基板P上。因此,在圆筒轮21的光罩面P1上,会形成显示面板的实际尺寸的光罩图案。另外,显示面板的显示画面区域DPA设为高画质尺寸(长宽比16:9)且60英寸画面。这种情况下,显示画面区域DPA的短边尺寸Lc为74.7cm、长边尺寸Ld为132.8cm、对角线长度Le为152.4cm。另外,关于包括周边电路区域TAB在内的光罩M整体的尺寸,将与显示画面区域DPA的长边方向有关的放大倍率e1设为1.2(增加20%),与短边方向有关的放大倍率e2设为1.15(增加15%),长边方向(θ方向)设为e1·Ld=159.4cm,短边方向(Y方向)设为e2·Lc=85.9cm。进一步地,将图6或图7所示的余白部92的θ方向长度设为5.0cm。由于以上述条件将光罩M设置在圆筒轮21的光罩面P1上,所以光罩面P1的θ方向尺寸πφ成为164.4cm。因此,圆筒轮21的直径φ需为52.33cm以上,例如设定为52.5cm。另外,虽将上述条件的光罩M整体的Y方向长度设成了85.9cm,但由于以该光罩M为基准,所以将曝光装置U3的各投影光学系统PL1~PL6的投影区域PA1~PA6沿Y方向连接的曝光区域的Y方向全宽稍微大于85.9cm而为87cm。在此,根据图12所示的模拟结果,若将圆筒轮21(圆筒光罩M)的直径φ设为52.5cm,则将所容许的散焦量设为25μm时的曝光狭缝宽度D为7.4mm,而将所容许的散焦量设为50μm时的曝光狭缝宽度D则为10.3mm。因此,在使用图13所示的作为基准的光罩M(圆筒轮21)进行基板P的扫描曝光时,以曝光狭缝宽度D的7.4mm以下、或10.3mm以下为基准使各种曝光条件(基板P的移动速度、照明光束EL1的照度等)最优化。即,在欲将所容许的散焦量ΔZ设为25μm以下时,调整图4中的照明视野光圈55的开口、或投影光学系统PL内的投影视野光圈63的开口,以使曝光狭缝宽度D(投影区域PA的扫描曝光方向的宽度)成为7.4mm以下的规定值。
接着,说明在为了图13所示的60英寸显示面板用的光罩M而设定的圆筒轮21的外周面(光罩面P1)上,配置长宽比16:9(Asp=16/9)的32英寸显示面板用光罩M3的情况。圆筒轮21的光罩面P1的尺寸为Y方向长度L=85.9cm、θ方向长度πφ=164.4cm,但与作为基准的光罩M同样地,以显示画面区域DPA的长度方向为θ方向的方式,配置一个32英寸显示面板用的光罩M3(配置一面)时,会在光罩面P1上的光罩M3周围产生宽阔的余白部。
在该32英寸显示面板的情况下,显示画面区域DPA的长边尺寸Ld为70.8cm、短边尺寸Lc为39.9cm。另外,在将与显示画面区域DPA的长度方向两侧或单侧相邻的周边电路区域TAB的放大倍率e1设为1.2(增加20%)左右时,光罩M3的θ方向尺寸放大约15cm而成为85.8cm,若再进一步沿θ方向设置5cm左右的余白部92的话,则全长成为90.8cm。因此,光罩M3在为基准光罩M用而准备的圆筒轮21的光罩面P1上仅形成为整个圆周长度(πφ=164.4cm)的约55%。另外,作为基准的圆筒轮21的光罩面P1的Y方向长度L为85.9cm,相对于此,若将显示画面区域DPA的短边方向的放大倍率e2设为1.15(增加15%)左右的话,则光罩M3的Y方向长度成为45.8cm。因此,光罩M3在作为基准的圆筒轮21的光罩面P1上仅形成为Y方向尺寸(L=85.9cm)的约53%。由此,当以显示画面区域DPA的长度方向为θ方向的方式将一个32英寸显示面板用的光罩M3配置在作为基准的圆筒轮21的光罩面P1上时,光罩M3的占有面积仅为光罩面P1整个面积的约30%,所以效率不佳。
于是,为了高效地将一个光罩M3配置于圆筒轮21上,而改变圆筒轮21的直径φ以使光罩M3的θ方向尺寸与余白部92的尺寸的合计即全长90.8cm成为整个圆周长度的话,则直径φ最低只要为28.91cm即可。因此,作为光罩M3用的圆筒轮21,若准备一个直径φ为29cm的圆筒轮,则根据图12的模拟结果,直径φ=29cm时的曝光狭缝宽度D在容许散焦量ΔZ为25μm时约为5.4mm;而在容许散焦量ΔZ为50μm时则约为7.6mm。
将其与相对于作为基准的圆筒轮21而设定的曝光狭缝宽度D(7.4mm、或10.3mm)加以比较。在作为基准的光罩面P1(直径φ=52.5cm的圆筒轮21)的情况下,将曝光狭缝宽度D设为10.3mm(容许散焦量50μm),并将以能够获得适当曝光量的方式设定的基板P的移动速度设为V1。这时,在相同条件的基板P上曝光出形成于直径φ=29cm的圆筒轮21上的32英寸显示面板用的配置一面的光罩M3的图案的情况下,由于曝光狭缝宽度D为7.6mm(容许散焦量50μm),所以在照度固定时,为获得适当曝光量的基板P的移动速度V2成为V2=(7.6/10.3)V1,生产线的基板处理速度整体地大致降低25%。在容许散焦量ΔZ为25μm的情况下,生产性也同程度地降低。
于是,通过图15对以先前的图14所示的配置将长宽比16:9的32英寸显示面板用的光罩M3设为配置两面的圆筒光罩(圆筒轮21)的具体例进行说明。在该图15中,显示画面区域DPA的长边尺寸Ld为70.8cm、短边尺寸Le为39.9cm。另外,由于因周边电路区域TAB导致的光罩M3的长度方向(Y方向)的放大倍率e1设为1.2左右、短边方向(θ方向)的放大倍率e2设为1.15左右,所以光罩M3的Y方向长度L增加15cm左右而成为85.8cm;光罩M3的θ方向长度Lg增加6cm左右而成为45.9cm。
在此,当将与光罩M3的长边相邻的间隔Sx(余白部92)的θ方向尺寸设为10cm时,包含两个光罩M3和两个间隔Sx的光罩区域整体的θ方向长度因2(Lg+Sx)而成为110.8cm。因此,这种情况下的圆筒轮21的直径φ只要为35.3cm左右即可。另外,圆筒轮21上的光罩面P1的Y方向长度L最低为85.8cm。该长度L(85.8cm)正好落在由作为基准的圆筒轮21设定的曝光区域的Y方向全宽(投影区域PA1~PA6的Y方向合计长度)87cm的范围内。因此,图15所示的光罩M3的配置两面的圆筒光罩(φ=35.3cm、L=85.8cm的圆筒轮21)与作为基准的圆筒光罩(φ=52.5cm、L=85.9cm的圆筒轮21)同样地能够安装在曝光装置U3上并将光罩M3的图案高效地曝光至基板P上。
图16是表示将图15所示的32英寸显示面板用的光罩M3设为配置两面的其他例的概略结构的展开图。在此,假设将与图15为相同尺寸的光罩M3以显示画面区域DPA的长度方向为θ方向的方式沿Y方向无间隙地排列两个,两个光罩M3的Y方向尺寸L为91.8cm(2×45.9cm)。该长度L(91.8cm)未落在由作为基准的圆筒轮21设定的曝光区域的Y方向全宽(投影区域PA1~PA6的Y方向合计长度)87cm的范围内。即,将与图15相同的光罩M3旋转90°后的配置两面无法配置在作为基准的圆筒轮21的光罩面P1上。
图17是表示将图15所示的32英寸显示面板用的光罩M3配置一面的其他例的概略结构的展开图。在此,假设将与图15为相同尺寸的一个光罩M3以显示画面区域DPA的短边方向为θ方向的方式配置,并将θ方向的余白部92的间隔Sx设为10cm。这种光罩M3的配置相对于作为标准的圆筒轮21的光罩面P1的占有面积极小,效率不佳。因此,若设想尺寸与图17的配置一面的光罩M3适应的圆筒轮21,则圆筒轮21的整个圆周长度πφ通过光罩M3的θ方向尺寸Lg(45.9cm)与余白部92(Sx)的尺寸(10cm)的合计而为πφ=55.9cm。由于圆筒轮21的直径φ为17.8cm以上,所以可以视为18cm。此外,这种情况下的光罩M3的Y方向长度L与图15同样为85.8cm,因此比率L/φ约为4.77。
这样,若设为比作为标准的圆筒光罩(圆筒轮21)的直径(52.5cm)小的直径φ(18cm),则虽能在光罩面P1上高效地配置光罩M3,但生产性(throughput)却会降低。根据图12的模拟,若将光罩面P1的直径设为18.0cm的话,则将容许散焦量ΔZ设为25μm时的曝光狭缝宽度D约为4.3mm,而将容许散焦量ΔZ设为50μm时的曝光狭缝宽度D则约为6.0mm。因此,基板P的移动速度V2相对于使用作为标准的圆筒光罩(圆筒轮21)时的基板P的移动速度V1,随着曝光狭缝宽度D的狭小化而降低。在将容许散焦量ΔZ设为25μm时,V2=(4.3/7.4)V1,而将容许散焦量ΔZ设为50μm时,V2=(6.0/10.3)V1,无论何种情况,与使用作为标准的圆筒光罩的情况相比,生产性都会降低至约58%。
接着,根据图18对将与图15为相同尺寸的光罩M3如图15所示地以长度方向朝向Y方向的方式在θ方向上排列三个的情况下的具体例进行说明。图18的光罩M3的配置与先前的图8同样为配置三面。
在此,若将与三个光罩M3的各个长边相邻的余白部92(Sx)或间隔Sx的θ方向尺寸均设为9cm,则由于光罩M3的短边方向尺寸Lg为45.9cm,所以光罩区域整体的θ方向长度因3(Lg+Sx)而为164.7cm。这种情况下,若使光罩区域整体的θ方向长度与圆筒轮21的整个圆周长度πφ一致,则圆筒轮21的直径φ为52.43cm以上。该值与作为标准的圆筒光罩的直径φ=52.5cm大致相同。另外,光罩区域的Y方向尺寸L为85.8cm,落在曝光区域(投影区域PA1~PA6)的Y方向合计宽度87cm以内。
这样,若是长宽比16:9的32英寸显示面板用的光罩M3的话,通过图18所示的配置三面,仅需在作为标准的圆筒轮21(φ=52.5cm)的光罩面P1上调整余白部92及间隔Sx的尺寸,就能有效地配置光罩M3。因此,将光罩M3如图18所示地配置三面时,由于仍能使用作为标准的圆筒光罩的尺寸(φ×L),所以生产性不会降低。此外,在该图18的情况下,比率L/φ约为1.63,落在了被认为可有效地生产的范围1.3≤L/φ≤3.8内。
如图15至图18所示,将以能够安装于曝光装置U3上的作为基准的圆筒光罩(圆筒轮21)的光罩面P1的尺寸为基准,当制作任意尺寸的显示面板器件时,通过以在圆筒轮21上将光罩配置一面、或者以多面用方式配置时的比率L/φ设为1.3~3.8的范围的方式调整方向性及面数,能够在不降低生产效率的情况下,有效地进行图案的转印。
另外,图15至图18以用于制作显示画面区域DPA为长宽比16:9的60英寸的一面的显示面板器件的光罩面P1的尺寸为基准。然而,并不限定于此。例如,还可以将显示画面区域DPA以长宽比16:9的高画质尺寸设为65英寸画面。这种情况下,如图13所示配置的显示画面区域DPA的对角线长度Le为165.1cm,沿Y方向延伸的短边Lc为80.9cm,沿θ方向延伸的长边Ld为143.9cm。另外,包括周边电路区域TAB的光罩M整体的尺寸与显示画面区域DPA的尺寸相比变大,仅沿长边方向(θ方向)增大放大倍率e1=1.2(显示画面区域DPA的长度方向增大20%),并沿短边方向(Y方向)增大放大倍率e2=1.15(显示画面区域DPA的短边方向增大15%)。因此,长宽比16:9的65英寸显示面板用的配置一面的光罩M的情况下,光罩M的长度方向尺寸如图13所示地因e1·Asp·Lc而为172.7cm,短边方向的尺寸则如图13所示地因e2·Lc而为93.1cm。在配置一面的光罩M的情况下,沿θ方向相邻地设置有余白部92,若将其θ方向尺寸(Sx)设为5cm的话,则光罩面P1的θ方向尺寸成为约178cm、直径φ为56.7cm以上。另外,由于光罩面P1的Y方向长度为93.1cm,所以在以该65英寸用的圆筒光罩为基准的光罩而能够安装的曝光装置U3上,以曝光区域的Y方向全宽(投影区域PA1~PA6的Y方向宽度的合计)例如为95.0cm的方式,设有改变了投影区域PA的Y方向尺寸的六个投影光学系统PL。或者,设置有在Y方向上又追加了一个投影光学系统PL的七个投影光学系统。该长宽比16:9的65英寸显示面板的配置一面的圆筒光罩(圆筒轮21)的比率L/φ为L/φ=1.64(≒93.1/56.7)。另外,由于圆筒光罩的直径φ为56.7cm,所以根据图12的模拟结果,曝光狭缝宽度D在将容许散焦量ΔZ设为25μm时约为7.5mm,而在将容许散焦量ΔZ设为50μm时则约为10.6mm。
于是,参照图19,说明在长宽比16:9的65英寸显示面板的配置一面用的圆筒光罩(φ=56.7cm、L=93.1cm)上将三个37英寸显示面板用的光罩M4以如图18所示的配置配置多面的具体例。图19中,37英寸的显示画面区域DPA的长边Ld(Y方向)为81.9cm,短边Lc(θ方向)为46.lcm,若将向长边方向的放大倍率e1、向短边方向的放大倍率e2均设为1.15(增加15%)的话,则光罩M4的长边尺寸L(e1·Ld)约为94.2cm,短边尺寸Lg(e2·Le)约为53.0cm。
在此,若将光罩M4与光罩M4间的间隔Sx设为6.0cm左右的话,光罩面P1上的三个光罩M4与三个间隔Sx在θ方向上的合计尺寸即整个圆周长度πφ因πφ=3Lg+3Sx而约为177cm,直径φ为56.4cm以上。另外,由于光罩M4的Y方向长度L为94.2cm,所以落在曝光区域的Y方向全宽(95cm)内。此外,图19的情况下,在Y方向上追加了第七个投影光学系统PL(投影区域PA7),使曝光区域的Y方向全宽成为95cm。由以上可知,在将图19所示的37英寸显示面板用的光罩配置三面时,可使用与用于将65英寸显示面板用的光罩M配置一面的圆筒光罩(圆筒轮21)为相同形状尺寸的圆筒光罩。这样,在图19所示的光罩M4的情况下,也能相对于作为基准的圆筒轮21的光罩面P1的全面积,减少三个光罩M4间的间隔Sx以进行高效率的配置,并且还能使用与作为基准的圆筒光罩同等直径φ的圆筒轮21,因此也能抑制随着曝光狭缝宽度D减少而产生的生产性低下。
另外,在将显示面板器件的显示画面区域DPA的尺寸设为37英寸,并将用于其上的光罩M4配置两面的情况下,也可以使用与上述图15同样的配置。这种情况下,将两个光罩M4与两个间隔Sx在θ方向上的合计尺寸设为圆筒光罩的整个圆周长度πφ、并将间隔Sx设为6cm左右的话,因此,将两面光罩M4在圆周方向上高效地配置时的圆筒光罩(圆筒轮21)的直径φ为37.6cm以上。
这种情况下,比率L/φ约为2.5(≒94.2/37.6)。另外,在直径φ=37.6cm的圆筒轮21的情况下,根据图12的模拟,曝光狭缝宽度D在容许散焦量ΔZ为25μm时约为6mm,在容许散焦量ΔZ为50μm时则约为8.6mm。与相对于作为基准的直径φ=56.7cm的圆筒光罩而设定的作为基准的曝光狭缝宽度D(7.5mm、10.6mm)相比较,无论是在将容许散焦量ΔZ设为25μm或50μm的任一情况下,生产性(基板P的移动速度)均约为80%。然而,若能使照明光束EL1的照度与使用作为基准的圆筒光罩进行曝光时相比增大20%左右的话,则不会产生实质的生产性低下。
此外,本实施方式的曝光装置U3虽将圆筒光罩(圆筒轮21)的光罩图案以等倍投射到基板P上,但并不限定于此。曝光装置U3还可以调整投影光学系统PL的结构、及圆筒光罩(圆筒轮21)的圆周速度与基板P的移动速度等,将光罩M的图案以规定倍率放大后投射至基板P上,也可以以规定倍率缩小后投射至基板P上。
以上,在可安装于本实施方式的曝光装置U3上的圆筒光罩中,如图8、图9、图14、图15、图18、图19所示,以将长方形的显示画面区域DPA的长边方向设为Y方向,并沿θ方向隔开间隔Sx地排列两个以上光罩区域(光罩M1、M2、M3、M4)的配置多面的情况下,该圆筒光罩(圆筒轮21)以如下方式构成。
一种圆筒光罩,其沿着相对于中心线(AX1)具有固定半径(Rm)的圆筒面(P1)而形成有光罩图案(光罩M1~M4),该圆筒光罩以能够绕着上述中心线旋转的方式安装于曝光装置上,在上述圆筒面上,沿上述圆筒面的圆周方向(θ方向)隔开间隔Sx排列形成有n(n≥2)个显示面板用的长方形的光罩区域(光罩M1~M4),该光罩区域包含:长边尺寸为Ld、短边尺寸为Lc的长宽比为Asp(=Ld/Lc)的显示画面区域(DPA);和与该显示画面区域的周边相邻的周边电路区域(TAB),当将上述光罩区域的长度方向(Y方向)尺寸L设为上述显示画面区域的长边尺寸Ld的e1倍(放大倍率e1≥1),并将上述光罩区域的短边方向(θ方向)尺寸设为上述显示画面区域的短边尺寸Lc的e2倍(放大倍率e2≥1)时,上述圆筒面在上述中心线方向(Y方向)的长度设定为上述尺寸L(=e1·Ld)以上,将上述圆筒面的直径设为φ的上述圆筒面的整个圆周长度πφ设定为n(e2·Lc+Sx),进一步地,以使尺寸L与直径φ的比在1.3≤L/φ≤3.8的范围的方式设定上述直径φ、上述个数n、上述间隔Sx。
[第二实施方式]
接着,参照图20对第二实施方式的曝光装置U3a进行说明。此外,为避免重复记载,仅说明与第一实施方式不同的部分,针对与第一实施方式相同的构成要素,则标注与第一实施方式相同的附图标记进行说明。图20是表示第二实施方式的曝光装置(基板处理装置)的整体结构的图。第一实施方式的曝光装置U3是以圆筒状的基板支承筒25来保持通过投影区域的基板P的结构,但第二实施方式的曝光装置U3a通过能够在XY平面内一维或二维移动的基板支承机构12a将基板P保持成平面状。因此,本实施方式的基板P不仅可以是以挠性树脂(PET或PEN等)为基底的片状的薄片基板,也可以是片状的薄玻璃基板。
在第二实施方式的曝光装置U3a中,基板支承机构12a具备装有将基板P保持成平面状的支承面P2的基板台102、和使基板台102在与中心面CL正交的面内沿X方向扫描移动的移动装置(图示省略)。
由于图20的基板P的支承面P2是实质上与XY面平行的平面(与中心面CL正交的平面),所以从光罩M反射、通过投影光学模块PLM(投影光学系统PL1~PL6)后投射至基板P上的投影光束EL2的主光线被设定成与XY面垂直。
另外,第二实施方式中,当将投影光学模块PLM的投影倍率设定为等倍(×1)时,与先前的图2同样地,在XZ面内观察时,从光罩M上的奇数号照明区域IR1(及IR3、IR5)的中心点至偶数号照明区域IR2(及IR4、IR6)的中心点为止的周长距离CCM,与顺着支承面P2的基板P上的奇数号投影区域PA1(及PA3、PA5)的中心点至偶数号第二投影区域PA2(及PA4、PA6)的中心点为止的X方向(扫描曝光方向)距离CCP,设定为实质上相等。
在图20的曝光装置U3a中,也由下位控制装置16控制基板支承机构12a的移动装置(扫描曝光用的线性马达及微动用致动器等),与保持圆筒光罩M的圆筒轮21的旋转精密同步地驱动基板台102。因此,基板台102的X方向及Y方向的移动位置通过测距用激光干涉仪或线性编码器精密地测量,圆筒轮21的旋转位置也通过旋转编码器精密地加以测量。此外,基板台102的支承面P2还可以由在扫描曝光中将基板P以真空吸附、静电吸附的吸附保持器构成,也可以由在支承面P2与基板P之间形成静压气体轴承来以非接触状态或低摩擦状态支承基板P的贝努利型保持器构成。
在贝努利型保持器的情况下,由于基板P可以是挠性长条的薄片基板(web),能够在对基板P赋予X方向(及Y方向)的张力的同时,使基板P向X方向移动,所以无需使基板台102(贝努利型保持器)向X、Y方向移动,另外,支承面P2也是只要有能覆盖投影区域PA1~PA6的范围的面积即可,能谋求基板台102的小型化。另外,在贝努利型保持器的情况下,若基板P为长条的薄片基板的话,由于能一边使基板P连续向长条方向移动一边扫描曝光,所以与需要基板P的吸附/开放等附加时间的吸附保持器的情况相比,更适合卷对卷方式的制造。
如曝光装置U3a所示,在将支承面P2设为实质上与XY面平行的平面,并将基板P支承为平面状的情况下,通过使将光罩M(M1~M4)保持成圆筒状的圆筒轮21的形状条件(L/φ)满足先前的第一实施方式所说明的关系,而能将各种尺寸的显示面板的光罩图案高效地排列在基板P上进行曝光,并能抑制生产性的降低。
[第三实施方式]
接着,参照图21对第三实施方式的曝光装置U3b进行说明。此外,为避免重复记载,仅说明与第一、第二实施方式不同的部分,针对与第一、第二实施方式相同的构成要素,则标注与第一、第二实施方式相同的附图标记进行说明。图21是表示第三实施方式的曝光装置(基板处理装置)的整体结构的图。第二实施方式的曝光装置U3b是使用由光罩反射的光成为投影光束EL2的反射型光罩的结构,但第三实施方式的曝光装置U3b则是使用透过光罩的光成为投影光束EL2的透过型光罩的结构。
在第三实施方式的曝光装置U3b中,光罩保持机构11a具备:将光罩MA保持成圆筒状的圆筒轮(光罩保持筒)21a;支承光罩保持筒21a的导辊93;驱动光罩保持筒21a的驱动辊98;以及驱动部99。
光罩保持筒21a形成供光罩MA上的照明区域IR配置的光罩面(P1)。本实施方式中,光罩面设定成相对于沿Y方向延伸的中心线AX1’具有半径Rm(直径φ=2Rm)的圆筒面。圆筒面例如是圆筒的外周面、圆柱的外周面等。光罩保持筒21a由例如玻璃或石英等构成为具有固定厚度的圆环状透明筒,其外周面(圆筒面)形成光罩面。
光罩MA例如是在平坦性好的长条状极薄玻璃板(例如厚度为100~500μm)的一个面上以铬等遮光层形成有图案的透过型的平面状薄片光罩,使其顺着光罩保持筒21a的外周面弯曲,并在卷绕(贴合)至该外周面上的状态下使用。光罩MA具有未形成图案的非图案形成区域,在非图案形成区域(相当于周边的余白部92等)安装于光罩保持筒21a上。因此,这种情况下,光罩MA能够相对于光罩保持筒21a进行装拆。还可以配置代将平面状薄片光罩卷绕至光罩保持筒21a(圆环状透明筒)的外周面上作为光罩MA的结构,而在由圆环状透明筒作成的光罩保持筒21a的外周面上直接描绘形成以铬等遮光层构成的光罩图案并进行一体化。这种情况下,光罩保持筒21a也作为光罩MA的支承部件(光罩支承部件)发挥功能。
导辊93及驱动辊98在相对于光罩保持筒21a的中心线AX1’平行的Y轴方向上延伸。导辊93及驱动辊98以虽与光罩保持筒21a的Y方向端部附近外切,但不与光罩保持筒21a所保持的光罩MA的图案形成区域接触的方式设置。驱动辊98与驱动部99连接。驱动辊98通过将从驱动部99供给来的力矩传递至光罩保持筒21a,而使光罩保持筒21a绕中心轴旋转。
本实施方式的光源装置13a具备与第一实施方式相同的光源(图示省略)及多个照明光学系统ILa(ILa1~ILa6)。各照明光学系统ILa1~ILa6的一部分或全部配置在光罩保持筒21a(环状的透明筒)内侧,从内侧对保持在光罩保持筒21a外周面(光罩面P1)上的光罩MA上的各照明区域IR1~IR6进行照明。
各照明光学系统ILa1~ILa6具备复眼透镜和棒状积分器(rodintegrator)等,通过照明光束EL1以均匀的照度对各照明区域IR1~IR6进行照明。此外,光源可以配置在光罩保持筒21a的内侧,也可以配置在光罩保持筒21a的外侧。另外,光源还可以与曝光装置U3b分开设置,经由光纤及中继透镜等导光单元来加以引导。
如本实施方式所述,使用透过型圆筒光罩作为光罩时,也能通过使将光罩MA保持成圆筒状的光罩支承筒21a的形状条件(L/φ)满足先前的第一实施方式所说明的关系,而将各种尺寸的显示面板的光罩图案高效地排列于基板P上进行曝光,并能抑制生产性的降低。
以上第一、第二、第三各实施方式的曝光装置U3、U3a、U3b都是将形成于圆筒状光罩面P1(圆筒轮21、光罩保持筒21a)上的光罩图案经由投影光学模块PLM(PL1~PL6)投影曝光至基板P上的方式。然而,在如第三实施方式所述的透过型圆筒光罩(MA)的情况下,还可以设为如下的接近(proximity)方式的扫描曝光装置,其以在透过型圆筒光罩的外周面(光罩面P1)与被曝光对象即基板P的表面之间保持固定间隙(几十μm~几百μm)的方式,将透过型圆筒光罩(MA)与基板P接近配置,一边使透过型圆筒光罩旋转一边使基板P往一方向同步移动。
另外,在第一至第三各实施方式的曝光装置U3、U3a、U3b中,为了对应于能够安装的圆筒光罩(圆筒轮21、光罩保持筒21a)的直径φ可变化的情况,而设置了能够调整圆筒光罩的支承位置(Z位置)的机构、或调整照明光学系统IL及投影光学系统PL内的光学器件的状态的机构等。这种情况下,对于可供曝光装置安装的圆筒光罩的直径φ,存在从最小直径φ1至最大直径φ2的范圈。因此,根据欲制造的显示面板的尺寸,以光罩(M、M1~M4)的配置一面、或配置多面的方式制作圆筒光罩时,优选以满足1.3≤L/φ≤3.8的关系、和φ1≤φ≤φ2的关系的方式,设定圆筒光罩21和光罩保持筒21a的形状尺寸。
<器件制造方法>
接着,参照图22对器件制造方法进行说明。图22是表示由器件制造系统进行的器件制造方法的流程图。
图22所示的器件制造方法中,首先,进行例如基于有机EL等自发光器件形成的显示面板的功能、性能设计,用CAD等设计所需的电路图案及布线图案(步骤S201)。接着,根据用CAD等设计的各种的每一层图案,制作所需层量的圆筒光罩(步骤S202)。这时,圆筒光罩制作成直径φ与长度L(La)的关系满足1.3≤L/φ≤3.8且满足可安装在曝光装置上的条件、以及φ1≤φ≤φ2。另外,准备卷绕有作为显示面板的基材的挠性基板P(树脂薄膜、金属箔膜、塑料等)的供给用卷筒FR1(步骤S203)。此外,在该步骤S203中准备的卷筒状基板P可以是根据需要对其表面进行了改性的、或事前已形成底层(例如通过压印法(imprint)得到的微小凹凸)的基板、或预先层压有光感应性的功能膜或透明膜(绝缘材料)的基板。
接着,在基板P上形成通过构成显示面板器件的电极或布线、绝缘膜、TFT(薄膜半导体)等构成的底板层,并以层叠于该底板上的方式形成由有机EL等自发光器件构成的发光层(显示像素部)(步骤S204)。在该步骤S204中,包括:在由先前的各实施方式所说明的曝光装置U3、U3a、U3b上安装规定的圆筒光罩,使涂覆在基板P表面上的光感应层(光致抗蚀层、感光性硅烷偶联剂层等)曝光,从而在表面上形成光罩图案的像(潜像等)的曝光工序;将经曝光而形成有光罩图案的基板P在根据需要显影后,以化学镀法形成金属膜图案(布线、电极等)的湿式工序;或者,通过含有银纳米粒子的导电性油墨等描绘图案的印刷工序等的处理。
接着,将以卷方式在长条基板P上连续制造出的每一显示面板器件切割成基板P,在各显示面板器件的表面上粘贴保护膜(对环境的隔离层)或彩色滤光片膜等,来组装器件(步骤S205)。接着,进行显示面板器件是否可正常工作、或是否满足所期望的性能及特性的检查工序(步骤S206)。由此,能够制造出显示面板(柔性显示器)。附图标记说明
1 器件制造系统
2 基板供给装置
4 基板回收装置
5 上位控制装置
11 光罩保持机构
12、12a 基板支承机构
13 光源装置
16 下位控制装置
21 圆筒轮
21a 光罩保持筒
25 基板支承筒
31 光源
32 导光部件
41 1/4波长板
51 准直透镜
52 复眼透镜
53 聚光透镜
54 柱面透镜
55 照明视野光圈
56 中继透镜系统
61 第一光学系统
62 第二光学系统
63 投影视野光圈
64 焦点修正光学部件
65 像切换用光学部件
66 倍率修正用光学部件
67 旋转修正机构
68 偏振调整机构
70 第一偏向部件
71 第一透镜组
72 第一凹面镜
80 第二偏向部件
81 第二透镜组
82 第二凹面镜
92 余白部
P 基板
FR1 供给用卷筒
FR2 回收用卷筒
U1~Un 处理装置
U3、U3a、U3b 曝光装置(基板处理装置)
M、M1、M2、M3 光罩
AX1 第一轴
AX2 第二轴
P1 光罩面
P2 支承面
P7 中间像面
EL1 照明光束
EL2 投影光束
Rm 曲率半径
Rp 曲率半径
CL 中心面
PBS 偏振分束器
IR1~IR6 照明区域
IL1~IL6 照明光学系统
ILM 照明光学模块
PA1~PA7 投影区域
PLM 投影光学模块

Claims (14)

1.一种圆筒光罩,其沿着圆筒状的外周面保持电子器件用的光罩图案,安装在规定的曝光装置上,且能够绕着中心线旋转,其特征在于,
具有所述外周面在所述中心线的方向上的长度为La、所述外周面的直径为φ的圆筒基材,
当将保持在所述圆筒基材的外周面上的所述光罩图案在所述中心线的方向上的最大长度设为L时,在L≤La的范围内,所述直径φ与所述长度L的比率L/φ设定为1.3≤L/φ≤3.8的范围。
2.根据权利要求1所述的圆筒光罩,其特征在于,
所述圆筒基材由金属制圆筒体构成,
所述光罩图案构成为在所述圆筒基材的外周面上直接形成针对来自所述曝光装置的照明光的高反射部和低反射部而成的反射型光罩图案。
3.根据权利要求1所述的圆筒光罩,其特征在于,
所述光罩图案构成为在薄板上形成针对来自所述曝光装置的照明光的高反射部和低反射部而成的反射型薄片光罩,
所述反射型薄片光罩沿着所述圆筒基材的外周面而被保持为圆筒状,
所述直径φ成为形成有所述反射型薄片光罩的图案的光罩面的直径。
4.根据权利要求3所述的圆筒光罩,其特征在于,
所述圆筒基材能够装拆地保持所述反射型薄片光罩。
5.根据权利要求1所述的圆筒光罩,其特征在于,
所述圆筒基材由圆环状的透明筒构成,
所述光罩图案构成为在所述透明筒的外周面上通过针对来自所述曝光装置的照明光的遮光层而直接形成图案而成的透过型光罩图案。
6.根据权利要求1所述的圆筒光罩,其特征在于,
所述圆筒基材由圆环状的透明筒构成,
所述光罩图案构成为通过针对来自所述曝光装置的照明光的遮光层而形成图案的、由薄玻璃板构成的透过型薄片光罩,
所述透过型薄片光罩沿着所述圆筒基材的外周面被保持为圆筒状,
所述直径φ成为形成有所述透过型薄片光罩的图案的光罩面的直径。
7.根据权利要求6所述的圆筒光罩,其特征在于,
所述圆筒基材能够装拆地保持所述透过型光罩图案。
8.根据权利要求1至7中任一项所述的圆筒光罩,其特征在于,
所述直径φ和所述长度L的关系被设定为进一步满足L/φ≤2.6。
9.根据权利要求1至7中任一项所述的圆筒光罩,其特征在于,
所述电子器件的光罩图案包括以下图案中的任一个:显示器件的显示区域内的各像素的图案、使各像素驱动的薄膜半导体用电极或布线的图案、配置在显示区域的周边的周边电路区域的图案、以及彩色滤光片及黑色矩阵的图案。
10.根据权利要求9所述的圆筒光罩,其特征在于,
所述显示器件是液晶显示器或有机EL显示器。
11.根据权利要求10所述的圆筒光罩,其特征在于,
由所述显示区域形成的画面尺寸是纵向尺寸和横向尺寸不同的长方形。
12.根据权利要求11所述的圆筒光罩,其特征在于,
所述画面尺寸的长宽比为16:9或2:1。
13.根据权利要求11或12所述的圆筒光罩,其特征在于,
被所述圆筒基材的外周面保持的所述光罩图案具有一个或多个所述显示器件用的图案,所述显示器件用的图案以所述显示区域的长边沿着所述圆筒基材的圆周方向延伸的方式配置,且以所述显示区域的短边沿着所述中心线的方向延伸的方式配置。
14.根据权利要求11或12所述的圆筒光罩,其特征在于,
被所述圆筒基材的外周面保持的所述光罩图案在所述圆筒基材的圆周方向上具有多个所述显示器件用的图案,所述显示器件用的图案以所述显示区域的短边沿着所述圆筒基材的圆周方向延伸的方式配置,且以所述显示区域的长边沿着所述中心线的方向延伸的方式配置。
CN201710546158.2A 2013-04-30 2014-03-26 圆筒光罩 Active CN107255910B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013095647 2013-04-30
JP2013-095647 2013-04-30
CN201480037519.5A CN105359040B (zh) 2013-04-30 2014-03-26 基板处理装置以及器件制造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201480037519.5A Division CN105359040B (zh) 2013-04-30 2014-03-26 基板处理装置以及器件制造方法

Publications (2)

Publication Number Publication Date
CN107255910A true CN107255910A (zh) 2017-10-17
CN107255910B CN107255910B (zh) 2019-04-02

Family

ID=51843379

Family Applications (4)

Application Number Title Priority Date Filing Date
CN201710546158.2A Active CN107255910B (zh) 2013-04-30 2014-03-26 圆筒光罩
CN201711449976.7A Active CN108227408B (zh) 2013-04-30 2014-03-26 曝光装置及曝光方法
CN201710546115.4A Active CN107390480B (zh) 2013-04-30 2014-03-26 圆筒光罩
CN201480037519.5A Active CN105359040B (zh) 2013-04-30 2014-03-26 基板处理装置以及器件制造方法

Family Applications After (3)

Application Number Title Priority Date Filing Date
CN201711449976.7A Active CN108227408B (zh) 2013-04-30 2014-03-26 曝光装置及曝光方法
CN201710546115.4A Active CN107390480B (zh) 2013-04-30 2014-03-26 圆筒光罩
CN201480037519.5A Active CN105359040B (zh) 2013-04-30 2014-03-26 基板处理装置以及器件制造方法

Country Status (6)

Country Link
JP (5) JP6269660B2 (zh)
KR (5) KR101924255B1 (zh)
CN (4) CN107255910B (zh)
HK (3) HK1215308A1 (zh)
TW (5) TWI610143B (zh)
WO (1) WO2014178244A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101924255B1 (ko) * 2013-04-30 2018-11-30 가부시키가이샤 니콘 기판 처리 장치, 디바이스 제조 방법 및 원통 마스크
CN108885408B (zh) * 2016-03-30 2021-02-05 株式会社尼康 图案描绘装置
JP7114459B2 (ja) * 2016-05-19 2022-08-08 株式会社ニコン パターニング装置
CN114096797B (zh) * 2020-01-31 2024-03-22 日本精工株式会社 旋转角度传感器、电动助力转向装置以及旋转角度传感器的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100396945C (zh) * 2002-02-28 2008-06-25 富士通株式会社 动压轴承的制造方法、动压轴承及动压轴承制造装置
JP2009237305A (ja) * 2008-03-27 2009-10-15 Mitsubishi Paper Mills Ltd マスクパターンフィルムの巻き付け機構及び露光装置
JP2011221536A (ja) * 2010-04-13 2011-11-04 Nikon Corp マスク移動装置、露光装置、基板処理装置及びデバイス製造方法
JP2012248864A (ja) * 2012-07-19 2012-12-13 Nikon Corp 露光装置、露光方法、及びデバイス製造方法。

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6019037U (ja) * 1983-07-18 1985-02-08 株式会社リコー 露光装置
JPH01128069A (ja) * 1987-11-12 1989-05-19 Dainippon Screen Mfg Co Ltd スリット走査露光式複写カメラの試写像露光装置
JPH01175730A (ja) * 1987-12-29 1989-07-12 Matsushita Electric Ind Co Ltd 露光装置
KR100363922B1 (ko) 1993-12-06 2003-08-21 가부시키가이샤 니콘 노광장치및노광방법
US6018383A (en) * 1997-08-20 2000-01-25 Anvik Corporation Very large area patterning system for flexible substrates
JP2000035677A (ja) * 1998-07-17 2000-02-02 Adtec Engineeng:Kk 露光装置
US6411362B2 (en) * 1999-01-04 2002-06-25 International Business Machines Corporation Rotational mask scanning exposure method and apparatus
JP2007227438A (ja) * 2006-02-21 2007-09-06 Nikon Corp 露光装置及び方法並びに光露光用マスク
JP4984631B2 (ja) * 2006-04-28 2012-07-25 株式会社ニコン 露光装置及び方法、露光用マスク、並びにデバイス製造方法
JP4905455B2 (ja) * 2006-09-08 2012-03-28 株式会社ニコン マスク、露光装置、及びデバイス製造方法
JP2009026933A (ja) * 2007-07-19 2009-02-05 Konica Minolta Holdings Inc 電磁波遮蔽フィルムの製造方法及び電磁波遮蔽フィルム
JPWO2011129369A1 (ja) * 2010-04-13 2013-07-18 株式会社ニコン 露光装置、基板処理装置及びデバイス製造方法
JP5724564B2 (ja) * 2010-04-13 2015-05-27 株式会社ニコン マスクケース、マスクユニット、露光装置、基板処理装置及びデバイス製造方法
JP2012252076A (ja) * 2011-06-01 2012-12-20 Nikon Corp 露光装置
WO2013035489A1 (ja) * 2011-09-06 2013-03-14 株式会社ニコン 基板処理装置
JPWO2013035661A1 (ja) * 2011-09-07 2015-03-23 株式会社ニコン 基板処理装置
KR101623695B1 (ko) * 2011-11-04 2016-05-23 가부시키가이샤 니콘 기판 처리 장치, 및 기판 처리 방법
TWI641915B (zh) * 2012-01-12 2018-11-21 尼康股份有限公司 基板處理裝置、基板處理方法、及圓筒狀光罩
KR101405251B1 (ko) * 2012-09-10 2014-06-17 경북대학교 산학협력단 노광 장치 및 이를 사용한 기판 처리 장치
KR101924255B1 (ko) * 2013-04-30 2018-11-30 가부시키가이샤 니콘 기판 처리 장치, 디바이스 제조 방법 및 원통 마스크

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100396945C (zh) * 2002-02-28 2008-06-25 富士通株式会社 动压轴承的制造方法、动压轴承及动压轴承制造装置
JP2009237305A (ja) * 2008-03-27 2009-10-15 Mitsubishi Paper Mills Ltd マスクパターンフィルムの巻き付け機構及び露光装置
JP2011221536A (ja) * 2010-04-13 2011-11-04 Nikon Corp マスク移動装置、露光装置、基板処理装置及びデバイス製造方法
JP2012248864A (ja) * 2012-07-19 2012-12-13 Nikon Corp 露光装置、露光方法、及びデバイス製造方法。

Also Published As

Publication number Publication date
KR20160003181A (ko) 2016-01-08
TWI681263B (zh) 2020-01-01
CN107255910B (zh) 2019-04-02
KR101924255B1 (ko) 2018-11-30
KR20200019782A (ko) 2020-02-24
TW201908880A (zh) 2019-03-01
CN108227408A (zh) 2018-06-29
JP2018081320A (ja) 2018-05-24
HK1246405B (zh) 2020-05-15
JP6485535B2 (ja) 2019-03-20
TW202014807A (zh) 2020-04-16
CN108227408B (zh) 2020-02-14
TWI646407B (zh) 2019-01-01
JP6638835B2 (ja) 2020-01-29
TW201445262A (zh) 2014-12-01
KR101979562B1 (ko) 2019-05-16
TWI610143B (zh) 2018-01-01
JP6662473B2 (ja) 2020-03-11
KR102019620B1 (ko) 2019-09-06
KR102079793B1 (ko) 2020-02-21
KR20180128521A (ko) 2018-12-03
JP2019070840A (ja) 2019-05-09
CN105359040B (zh) 2018-01-19
JP2019074769A (ja) 2019-05-16
CN105359040A (zh) 2016-02-24
TWI717946B (zh) 2021-02-01
WO2014178244A1 (ja) 2014-11-06
TWI677767B (zh) 2019-11-21
KR102096961B1 (ko) 2020-04-03
TW201907244A (zh) 2019-02-16
TW201809909A (zh) 2018-03-16
KR20180128520A (ko) 2018-12-03
HK1245419B (zh) 2019-11-29
JP6816814B2 (ja) 2021-01-20
CN107390480A (zh) 2017-11-24
JP6269660B2 (ja) 2018-01-31
CN107390480B (zh) 2019-08-13
JPWO2014178244A1 (ja) 2017-02-23
KR20190104256A (ko) 2019-09-06
HK1215308A1 (zh) 2016-08-19
JP2020064317A (ja) 2020-04-23

Similar Documents

Publication Publication Date Title
CN107255858A (zh) 基底处理装置
CN105359040B (zh) 基板处理装置以及器件制造方法
CN109375475A (zh) 基板处理方法以及元件制造装置
CN107247388B (zh) 曝光装置、器件制造系统及器件制造方法
CN104885012B (zh) 偏振光分束器、基板处理装置、器件制造系统及器件制造方法
CN106896651B (zh) 曝光方法
CN105892237A (zh) 照明装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1245419

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant