CN107221448A - 一种超级电容器电极材料PANI/CeO2/Ni(OH)2多级微球及其制备方法 - Google Patents

一种超级电容器电极材料PANI/CeO2/Ni(OH)2多级微球及其制备方法 Download PDF

Info

Publication number
CN107221448A
CN107221448A CN201710303187.6A CN201710303187A CN107221448A CN 107221448 A CN107221448 A CN 107221448A CN 201710303187 A CN201710303187 A CN 201710303187A CN 107221448 A CN107221448 A CN 107221448A
Authority
CN
China
Prior art keywords
pani
solution
ceo
electrode material
super capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710303187.6A
Other languages
English (en)
Other versions
CN107221448B (zh
Inventor
王德宝
袁金钟
宋彩霞
孙欣欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Sirui Micro Technology Co.,Ltd.
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN201710303187.6A priority Critical patent/CN107221448B/zh
Publication of CN107221448A publication Critical patent/CN107221448A/zh
Application granted granted Critical
Publication of CN107221448B publication Critical patent/CN107221448B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

本发明公开了一种超级电容器电极材料PANI/CeO2/Ni(OH)2多级微球的制备方法。其特征在于,所述超级电容器电极材料PANI/CeO2/Ni(OH)2多级微球由一步水热反应制备。将硫酸镍,硝酸铈铵,丙烯酰胺,六亚甲基四胺溶解于水得到混合溶液,记作溶液a;再将十六烷基三甲基溴化铵,苯胺溶于水中,滴加盐酸混合均匀,再滴加过硫酸铵溶液得到墨绿色溶液,记作溶液b;将溶液a与墨绿色溶液b混合,在内衬聚四氟乙烯的高压反应釜中进行水热反应。反应结束后,将所得产物离心洗涤并干燥,获得PANI/CeO2/Ni(OH)2多级微球。本发明所述制备方法操作简单,产物PANI/CeO2/Ni(OH)2多级微球分散性好,比表面积高,作为超级电容器电极材料具有很高的比电容和电化学循环稳定性。

Description

一种超级电容器电极材料PANI/CeO2/Ni(OH)2多级微球及其制 备方法
技术领域
本发明属于超级电容器电极材料领域,涉及一种PANI/CeO2/Ni(OH)2多级微球及其制备方法,具体地说,是涉及一种超级电容器电极材料PANI/CeO2/Ni(OH)2多级微球及其制备方法。
背景技术
超级电容器是一种能够快速充放电、循环寿命长且功率密度高的新型储能装置,在移动通讯、电动汽车等方面具有广阔的应用前景,越来越受到科研工作者和产业界的重视。而电极材料对超级电容器的性能起到决定性作用,因此,高比电容活性物质的制备成为超级电容器中研究的重点。
目前,以氢氧化镍为代表的过渡金属氢氧化物(氧化物),在超级电容器领域已被广泛应用于电极材料,由于其资源广泛、价格低廉、对环境无污染、电化学性能优越以及易于制备等特点,已经成为超级电容器电极材料的研究热点。最近,研究表明花状氢氧化镍微球由于其大的比表面积和高的表面缺陷,使其具有较好的电化学性能。但由于导电性能差而很难进一步发挥出很高的比电容量。研究发现,导电高分子材料也是极有应用前景的超级电容器的电极材料,其中聚苯胺(PANI)因其高电容、高导电性、低成本以及易于制备而最为引人注目。然而,PANI相对低的机械稳定性和循环寿命同样限制了它的应用。制备无机-有机杂合材料,利用其协同效应,是提高电极材料性能的有效途径。将过渡金属氢氧化物(氧化物)与导电聚合物PANI复合是一类非常重要的超级电容器材料。但由于PANI等导电聚合物的合成通常需要在酸性条件下制得,因此,需要预先合成PANI,再和其它无机材料混合,导致导电聚合物难以均匀分散,与无机材料的界面结合效果差,使其优异的电性能难以充分发挥出来。并且其制备方法较为复杂,耗时,制备条件苛刻。
基于上述原因,如何找到一种工艺相对简单、反应条件较温和,并能制备出有利于电子和电解质离子传输和扩散的PANI/CeO2/Ni(OH)2三元复合电极材料,则是本发明所要解决的主要问题。
发明内容
本发明针对现有制备聚苯胺与金属氧化物及氢氧化物复合电极材料步骤多,超级电容器复合电极材料难以均匀分散,聚苯胺与金属氧化物及氢氧化物界面结合不紧密从而影响其优异的电化学性能发挥的技术问题,提供一种高性能超级电容器电极材料PANI/CeO2/Ni(OH)2多级微球的制备方法。该方法采用一步水热合成法,工艺简单,反应条件较温和,所制备出的 PANI/CeO2/Ni(OH)2多级微球比表面积大、微球孔径和PANI、CeO2在Ni(OH)2多级微球上的分散性容易控制,本发明采用以下技术方案予以实现:
一种高性能超级电容器电极材料PANI/CeO2/Ni(OH)2多级微球及其制备方法,其特征在于,所述高性能超级电容器电极材料PANI/CeO2/Ni(OH)2多级微球由一步水热反应制备,所述方法包括下述步骤:
1.称量0.1-0.5g硫酸镍(NiSO4·6H2O),0.01-0.06g硝酸铈铵,0.01-0.05g丙烯酰胺,0.1-1.0g六亚甲基四胺(C6H12N4)分别加去离子水溶解,混合均匀,记作溶液a;
2.(2)称取0.01-0.05g十六烷基三甲基溴化铵(CTAB),0.01-0.1g苯胺溶解于15ml去离子水中,滴加0.02-0.1ml盐酸后,搅拌混合均匀,再逐滴缓慢地加入5ml含有0.1-0.06g过硫酸铵的过硫酸铵溶液,静置一段时间至溶液呈墨绿色,记作溶液b;
3.将溶液a与墨绿色溶液b混合,转移至内衬聚四氟乙烯的反应釜中,在120-200℃反应1-12h。
4.反应结束后,取出反应釜冷却至室温,将沉淀分别用去离子水和无水乙醇分别离心洗涤三次,得到PANI/CeO2/Ni(OH)2沉淀。
5.将步骤(4)中获得的沉淀物放入60-80℃真空干燥箱中干燥,得到最终产物PANI/CeO2/Ni(OH)2多级微球。
本发明的优点在于:在水溶液中进行一步反应,工艺简单,反应条件温和,制备成本低;所制备出的PANI/CeO2/Ni(OH)2多级微球比表面积大、微球孔径和PANI、CeO2在Ni(OH)2多级微球上的分散性容易控制。
附图说明
图1为实施例一所制备的PANI/CeO2/Ni(OH)2样品的XRD谱图。
图2为实施例一所制备的PANI/CeO2/Ni(OH)2样品的SEM照片
图3为实施例一所制备的PANI/CeO2/Ni(OH)2样品的氮气吸附等温线和孔径分布图。
图4为实施例一所制备的PANI/CeO2/Ni(OH)2样品的IR谱图。
图5为实施例一所制备的PANI/CeO2/Ni(OH)2样品作为超级电容器电极材料,在不同电流密度下的充放电性能。
图6为实施例一所制备的PANI/CeO2/Ni(OH)2样品作为超级电容器电极材料得到的充放电循环稳定性。
具体实施方式
下面结合附图和实施例对本发明进行详细说明:
实施例一:
1.称量0.156g硫酸镍(NiSO4·6H2O),0.02g硝酸铈铵,0.03g丙烯酰胺,0.4g六亚甲基四胺(C6H12N4)加20ml去离子水溶解,混合均匀,记作溶液a;
2.再称取0.01g CTAB,0.015g苯胺溶解在15ml去离子水中,滴加0.05ml盐酸,搅拌至混合均匀,再逐滴缓慢地加入5ml的0.003g/ml过硫酸铵溶液,静置一段时间至溶液呈墨绿色,记作溶液b;
3.将溶液a与墨绿色溶液b混合,转移至内衬聚四氟乙烯的反应釜中,在180℃反应6h。
4.反应结束后,取出反应釜冷却至室温,将沉淀分别用去离子水和无水乙醇分别离心洗涤三次,得到PANI/CeO2/Ni(OH)2沉淀。
5.将步骤(4)中获得的沉淀物放入70℃真空干燥箱中干燥,得到最终产物 PANI/CeO2/Ni(OH)2多级微球。
实施例二:
1.称量0.312g硫酸镍(NiSO4·6H2O),0.04g硝酸铈铵,0.03g丙烯酰胺,0.8g六亚甲基四胺(C6H12N4)加20ml去离子水溶解,混合均匀,记作溶液a;
2.再称取0.01g CTAB,0.03g苯胺溶解在15ml去离子水中,滴加0.1ml盐酸,搅拌至混合均匀,再逐滴缓慢地加入5ml的0.003g/ml过硫酸铵溶液,静置一段时间至溶液呈墨绿色,记作溶液b;
3.将溶液a与墨绿色溶液b混合,转移至内衬聚四氟乙烯的反应釜中,在180℃反应3h。
4.反应结束后,取出反应釜冷却至室温,将沉淀分别用去离子水和无水乙醇分别离心洗涤三次,得到PANI/CeO2/Ni(OH)2沉淀。
5.将步骤(4)中获得的沉淀物放入70℃真空干燥箱中干燥,得到最终产物 PANI/CeO2/Ni(OH)2多级微球。
实施例三:
1.称量0.312g硫酸镍(NiSO4·6H2O),0.04g硝酸铈铵,0.03g丙烯酰胺,0.4g六亚甲基四胺(C6H12N4)加20ml去离子水溶解,混合均匀,记作溶液a;
2.再称取0.02g CTAB,0.015g苯胺溶解在15ml去离子水中,滴加0.05ml盐酸,搅拌至混合均匀,再逐滴缓慢地加入5ml的0.003g/ml过硫酸铵溶液,静置一段时间至溶液呈墨绿色,记作溶液b;
3.将溶液a与墨绿色溶液b混合,转移至内衬聚四氟乙烯的反应釜中,在150℃反应9h;
4.反应结束后,取出反应釜冷却至室温,将沉淀分别用去离子水和无水乙醇分别离心洗涤三次,得到PANI/CeO2/Ni(OH)2沉淀;
5.将步骤(4)中获得的沉淀物放入60℃真空干燥箱中干燥,得到最终产物 PANI/CeO2/Ni(OH)2多级微球。
实施例四:
1.称量0.156g硫酸镍(NiSO4·6H2O),0.03g硝酸铈铵,0.03g丙烯酰胺,0.6g六亚甲基四胺(C6H12N4)加20ml去离子水溶解,混合均匀,记作溶液a;
2.再称取0.03g CTAB,0.045g苯胺溶解在15ml去离子水中,滴加0.1ml盐酸,搅拌至混合均匀,再逐滴缓慢地加入5ml的0.003g/ml过硫酸铵溶液,静置一段时间至溶液呈墨绿色,记作溶液b;
3.将溶液a与墨绿色溶液b混合,转移至内衬聚四氟乙烯的反应釜中,在150℃反应9h。
4.反应结束后,取出反应釜冷却至室温,将沉淀分别用去离子水和无水乙醇分别离心洗涤三次,得到PANI/CeO2/Ni(OH)2沉淀。
5.将步骤(4)中获得的沉淀物放入70℃真空干燥箱中干燥,得到最终产物 PANI/CeO2/Ni(OH)2多级微球。
样品的XRD谱图在日本理学公司的D-Max 2500/PC型X射线衍射仪上获得,图1为利用本发明实施例一所述方法制备的PANI/CeO2/Ni(OH)2多级微球的XRD谱图。由图可以看出,水热法合成的样品是PANI/CeO2/Ni(OH)2复合材料。
样品的形貌和微结构分析在JSM-6700F场发射扫描电子显微镜(SEM)上进行。图2为利用本发明实施例一所述方法制备的PANI/CeO2/Ni(OH)2多级微球的SEM照片。从图中的照片可以看出,所制备的样品是由纳米薄片片组装而成的单分散PANI/CeO2/Ni(OH)2多级微球,微球大小约8-10μm。
样品的比表面积和孔径分布是在美国麦克仪器公司ASAP2020M全自动比表面积及孔隙度吸附分析仪上得到的。图3为该样品的氮气吸附等温线和孔径分布图,求得BET比表面积为186.5m2/g,孔径分布在1.5~4.5nm之间,包含介孔和微孔两种结构。大的比表面积,有利于材料表面与电解液的充分接触,提供更多的活性位点,改善复合材料的电容性质。
图4为利用本发明实施例一所述方法制备的PANI/CeO2/Ni(OH)2多级微球的红外光谱图(IR)。从图中可以看出,复合材料的吸收峰中依然能够与聚苯胺的IR图谱特征吸收峰相匹配,结合产物的XRD图谱分析,表明实验合成的产物中含有聚苯胺。
实验结果表明,通过一步简单的水热反应,可以得到PANI/CeO2/Ni(OH)2多级微球,该微球比表面积高、孔径分布和PANI、CeO2在Ni(OH)2多级微球上的分散性容易控制。
图5为实施例一所制备的PANI/CeO2/Ni(OH)2样品作为超级电容器电极材料,在不同电流密度下的充放电性能。测试表明,本发明制备的PANI/CeO2/Ni(OH)2多级微球用作电极材料具有很高的比电容,在电流密度为1A·g-1时首次循环比电容为2870F·g-1
图6为实施例一所制备的PANI/CeO2/Ni(OH)2样品作为超级电容器电极材料得到的充放电循环稳定性。在电流密度为1A·g-1时,连续充放电1000次后比电容仍然有2755F·g-1,容量保持率高达95.9%,远高于纯氢氧化镍的比电容保持率。较高的容量保持率表明复合材料有良好的储能特性,具有较高的实际应用价值。
上述实施例是本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,未背离本发明的原理与工艺过程下所作的其它任何改变、替代、简化等,均为等效的置换,都应包含在本发明的保护范围之内。

Claims (1)

1.一种超级电容器电极材料PANI/CeO2/Ni(OH)2多级微球的制备方法。其特征在于,所述超级电容器电极材料PANI/CeO2/Ni(OH)2多级微球由一步水热反应制备,所述方法包括下述步骤:
(1)称量0.1-0.5g硫酸镍(NiSO4·6H2O),0.01-0.06g硝酸铈铵,0.01-0.05g丙烯酰胺,0.1-1.0g六亚甲基四胺(C6H12N4)分别加去离子水溶解,搅拌混合均匀,记作溶液a;
(2)称取0.01-0.05g十六烷基三甲基溴化铵(CTAB),0.01-0.1g苯胺溶解于15ml去离子水中,滴加0.02-0.1ml盐酸后,搅拌混合均匀,再逐滴缓慢地加入5ml含有0.1-0.06g过硫酸铵的过硫酸铵溶液,静置一段时间至溶液呈墨绿色,记作溶液b;
(3)将溶液a与溶液b混合,移至内衬聚四氟乙烯的50ml反应釜中,在120-200℃反应1-12h。
(4)反应结束后,取出反应釜冷却至室温,将沉淀分别用去离子水和无水乙醇分别离心洗涤三次,得到PANI/CeO2/Ni(OH)2沉淀。
(5)将步骤(4)中获得的沉淀物放入60-80℃真空干燥箱中干燥,得到最终产物PANI/CeO2/Ni(OH)2多级微球。
CN201710303187.6A 2017-05-03 2017-05-03 一种高性能超级电容器电极材料PANI/CeO2/Ni(OH)2多级微球及其制备方法 Active CN107221448B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710303187.6A CN107221448B (zh) 2017-05-03 2017-05-03 一种高性能超级电容器电极材料PANI/CeO2/Ni(OH)2多级微球及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710303187.6A CN107221448B (zh) 2017-05-03 2017-05-03 一种高性能超级电容器电极材料PANI/CeO2/Ni(OH)2多级微球及其制备方法

Publications (2)

Publication Number Publication Date
CN107221448A true CN107221448A (zh) 2017-09-29
CN107221448B CN107221448B (zh) 2018-09-14

Family

ID=59943749

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710303187.6A Active CN107221448B (zh) 2017-05-03 2017-05-03 一种高性能超级电容器电极材料PANI/CeO2/Ni(OH)2多级微球及其制备方法

Country Status (1)

Country Link
CN (1) CN107221448B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107746459A (zh) * 2017-10-31 2018-03-02 齐鲁工业大学 一种镍/二氧化铈np@pani核‑壳结构复合材料及其制备方法
CN108269697A (zh) * 2017-12-24 2018-07-10 桂林理工大学 聚吡咯/氢氧化钴超级电容器复合电极材料的制备方法
CN108281295A (zh) * 2017-12-24 2018-07-13 桂林理工大学 聚苯胺/钴镍双氢氧化物超级电容器复合电极材料的制备方法
CN108281294A (zh) * 2017-12-24 2018-07-13 桂林理工大学 聚苯胺/氢氧化镍超级电容器复合电极材料的制备方法
CN108447702A (zh) * 2018-03-06 2018-08-24 常州大学 一种高循环寿命rGO-CeO2/PorousPANI三元复合电极材料的制备
CN112599359A (zh) * 2020-12-14 2021-04-02 宁波大学 一种硫化钴镍纳米片包覆的棒束状氧化铈材料及其制备方法和应用
CN115196885A (zh) * 2022-08-15 2022-10-18 安徽理工大学 一种多色彩高循环稳定性的CeO2/PANI电致变色薄膜及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175735A (zh) * 2010-12-31 2011-09-07 甘肃省科学院传感技术研究所 Au NPs-CeO2@PANI纳米复合材料及制法和以此材料制作的葡萄糖生物传感器
CN103151178A (zh) * 2013-03-01 2013-06-12 暨南大学 多孔石墨烯/氢氧化镍/聚苯胺复合电极材料及制备方法
US20150079485A1 (en) * 2013-09-13 2015-03-19 Samsung Electronics Co., Ltd. Composite membrane, preparation method thereof, and lithium-air battery including the composite membrane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175735A (zh) * 2010-12-31 2011-09-07 甘肃省科学院传感技术研究所 Au NPs-CeO2@PANI纳米复合材料及制法和以此材料制作的葡萄糖生物传感器
CN103151178A (zh) * 2013-03-01 2013-06-12 暨南大学 多孔石墨烯/氢氧化镍/聚苯胺复合电极材料及制备方法
US20150079485A1 (en) * 2013-09-13 2015-03-19 Samsung Electronics Co., Ltd. Composite membrane, preparation method thereof, and lithium-air battery including the composite membrane

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DEBASIS GHOSH ETC: "High performance supercapacitor electrode material based on vertically aligned PANI grown on reduced graphene oxide/Ni(OH)2 hybrid composite", 《RSC ADV》 *
FENG-YI CHUANG ETC: "Cerium dioxide/polyaniline core–shell nanocomposites", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》 *
徐惠, 史星伟, 苟国俊, 刘小育: "PANI/CeO2 纳米复合纤维材料的合成和表征", 《高分子材料科学与工程》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107746459A (zh) * 2017-10-31 2018-03-02 齐鲁工业大学 一种镍/二氧化铈np@pani核‑壳结构复合材料及其制备方法
CN108269697A (zh) * 2017-12-24 2018-07-10 桂林理工大学 聚吡咯/氢氧化钴超级电容器复合电极材料的制备方法
CN108281295A (zh) * 2017-12-24 2018-07-13 桂林理工大学 聚苯胺/钴镍双氢氧化物超级电容器复合电极材料的制备方法
CN108281294A (zh) * 2017-12-24 2018-07-13 桂林理工大学 聚苯胺/氢氧化镍超级电容器复合电极材料的制备方法
CN108447702A (zh) * 2018-03-06 2018-08-24 常州大学 一种高循环寿命rGO-CeO2/PorousPANI三元复合电极材料的制备
CN112599359A (zh) * 2020-12-14 2021-04-02 宁波大学 一种硫化钴镍纳米片包覆的棒束状氧化铈材料及其制备方法和应用
CN112599359B (zh) * 2020-12-14 2022-01-28 宁波大学 一种硫化钴镍纳米片包覆的棒束状氧化铈材料及其制备方法和应用
CN115196885A (zh) * 2022-08-15 2022-10-18 安徽理工大学 一种多色彩高循环稳定性的CeO2/PANI电致变色薄膜及其制备方法
CN115196885B (zh) * 2022-08-15 2024-01-26 安徽理工大学 一种多色彩高循环稳定性的CeO2/PANI电致变色薄膜及其制备方法

Also Published As

Publication number Publication date
CN107221448B (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
CN107221448B (zh) 一种高性能超级电容器电极材料PANI/CeO2/Ni(OH)2多级微球及其制备方法
Zhang et al. Influence of metallic oxide on the morphology and enhanced supercapacitive performance of NiMoO4 electrode material
CN102259936B (zh) 一种纳米钴酸镍的制备方法
CN102531070B (zh) 一种超级电容器用四氧化三钴纳米材料及其制备方法
CN111681887B (zh) 一种超级电容器用超薄类石墨烯碳材料的制备方法
CN104773764A (zh) 一种三维花状钴酸镍纳米片介孔微球的制备方法
CN103531365B (zh) 超级电容器电极材料钴镍氧化物复合材料的制备方法
Ma et al. ZIF-derived mesoporous carbon materials prepared by activation via Na2SiO3 for supercapacitor
Konnerth et al. Metal oxide-doped activated carbons from bakery waste and coffee grounds for application in supercapacitors
CN103219169A (zh) 一种超级电容器电极材料碳包覆氧化镍NiO/C的制备方法
Chen et al. Facile preparation and performances of Ni, Co, and Al layered double hydroxides for application in high-performance asymmetric supercapacitors
Jiao et al. A novel organic molecule electrode based on organic polymer functionalized graphene for supercapacitor with high-performance
CN110176364A (zh) 一种利用壳聚糖制备高氮掺杂微孔-介孔碳材料的方法
CN105198007A (zh) 一种介孔四氧化三钴纳米片的制备及剥离方法
Huang et al. Hollow FeS2 nanospheres encapsulated in N/S co-doped carbon nanofibers as electrode material for electrochemical energy storage
CN108597891A (zh) 一种二氧化硅@金属氧化物/石墨烯气凝胶双负载双包覆复合材料及其制备方法和应用
CN105295040B (zh) 用于制备超级电容器电极的多孔聚合物材料及其制备方法
CN109950058A (zh) 一种基于多孔有机聚合物结构的多孔碳材料及其制备方法和应用
CN109904000A (zh) 一种纳米线状镍基配合物电极材料的制备方法及其应用
Guo et al. A new COF linked by an ether linkage (–O–): synthesis, characterization and application in supercapacitance
Yang et al. Facile microwave-assisted synthesis of sheet-like cobalt hydroxide for energy-storage application: effect of the cobalt precursors
CN103553151B (zh) 一种超级电容器电极材料氧化镍的制备方法
CN111921529A (zh) 镍钴金属有机骨架/镍钴金属氢氧化物异质材料的制备方法及应用
CN105513836A (zh) 一种超级电容器电极材料镍、钴复合纳米氧化物的制备方法
CN102820137A (zh) 一种高活性TiO2纳米管/中间相炭微球复合材料及其制备方法和其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Song Caixia

Inventor after: Wang Debao

Inventor after: Yuan Jinzhong

Inventor after: Sun Xinxin

Inventor before: Wang Debao

Inventor before: Yuan Jinzhong

Inventor before: Song Caixia

Inventor before: Sun Xinxin

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder

Address after: 266000 Shandong Province, Qingdao city Laoshan District Songling Road No. 99

Patentee after: QINGDAO University OF SCIENCE AND TECHNOLOGY

Address before: 266000 Shandong province Qingdao City, Zhengzhou Road No. 53

Patentee before: QINGDAO University OF SCIENCE AND TECHNOLOGY

CP02 Change in the address of a patent holder
TR01 Transfer of patent right

Effective date of registration: 20221017

Address after: 201500 Building 2, No. 6488, Tingwei Road, Jinshan District, Shanghai (Hangzhou Bay North Bank Industrial Park)

Patentee after: Shanghai Lvnengxinwang Semiconductor Technology Co.,Ltd.

Address before: 266000 Songling Road, Laoshan District, Qingdao, Shandong Province, No. 99

Patentee before: QINGDAO University OF SCIENCE AND TECHNOLOGY

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240407

Address after: Room 1001, Building 1, Modern Creative Exhibition Building, No. 1500 East Ring Road, Suzhou Industrial Park, Suzhou City, Jiangsu Province, 215028

Patentee after: Suzhou Sirui Micro Technology Co.,Ltd.

Country or region after: China

Address before: 201500 Building 2, No. 6488, Tingwei Road, Jinshan District, Shanghai (Hangzhou Bay North Bank Industrial Park)

Patentee before: Shanghai Lvnengxinwang Semiconductor Technology Co.,Ltd.

Country or region before: China

TR01 Transfer of patent right