CN108281295A - 聚苯胺/钴镍双氢氧化物超级电容器复合电极材料的制备方法 - Google Patents
聚苯胺/钴镍双氢氧化物超级电容器复合电极材料的制备方法 Download PDFInfo
- Publication number
- CN108281295A CN108281295A CN201711413858.0A CN201711413858A CN108281295A CN 108281295 A CN108281295 A CN 108281295A CN 201711413858 A CN201711413858 A CN 201711413858A CN 108281295 A CN108281295 A CN 108281295A
- Authority
- CN
- China
- Prior art keywords
- electrode
- aniline monomer
- polyaniline
- super capacitor
- cobalt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920000767 polyaniline Polymers 0.000 title claims abstract description 25
- 239000003990 capacitor Substances 0.000 title claims abstract description 23
- 239000007772 electrode material Substances 0.000 title claims abstract description 23
- ZGDWHDKHJKZZIQ-UHFFFAOYSA-N cobalt nickel Chemical compound [Co].[Ni].[Ni].[Ni] ZGDWHDKHJKZZIQ-UHFFFAOYSA-N 0.000 title claims abstract description 22
- 239000002131 composite material Substances 0.000 title claims abstract description 20
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 claims abstract description 162
- 239000000178 monomer Substances 0.000 claims abstract description 81
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 41
- 229910001453 nickel ion Inorganic materials 0.000 claims abstract description 41
- 239000003792 electrolyte Substances 0.000 claims abstract description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000007864 aqueous solution Substances 0.000 claims abstract description 7
- 238000006243 chemical reaction Methods 0.000 claims abstract description 7
- 229910001429 cobalt ion Inorganic materials 0.000 claims abstract description 7
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000008367 deionised water Substances 0.000 claims abstract description 7
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 7
- 150000002500 ions Chemical class 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 5
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 5
- 238000002484 cyclic voltammetry Methods 0.000 claims abstract description 4
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 claims abstract description 3
- 239000000126 substance Substances 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 239000002994 raw material Substances 0.000 abstract description 2
- 235000009508 confectionery Nutrition 0.000 description 4
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 4
- 229910052753 mercury Inorganic materials 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 description 2
- 229940011182 cobalt acetate Drugs 0.000 description 2
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 2
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 2
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical compound [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 description 2
- 229940078494 nickel acetate Drugs 0.000 description 2
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 2
- 229910020630 Co Ni Inorganic materials 0.000 description 1
- 229910002440 Co–Ni Inorganic materials 0.000 description 1
- 229910002588 FeOOH Inorganic materials 0.000 description 1
- 206010054949 Metaplasia Diseases 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000002322 conducting polymer Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000012621 metal-organic framework Substances 0.000 description 1
- 230000015689 metaplastic ossification Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D9/00—Electrolytic coating other than with metals
- C25D9/02—Electrolytic coating other than with metals with organic materials
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D9/00—Electrolytic coating other than with metals
- C25D9/04—Electrolytic coating other than with metals with inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/48—Conductive polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
本发明公开了一种聚苯胺/钴镍双氢氧化物超级电容器复合电极材料的制备方法。在镍离子浓度为0.2M、钴离子浓度为0.4M的混合水溶液中加入苯胺单体,室温搅拌2h直至苯胺单体完全溶解,制得电解液,取50ml电解液置入电解槽,以压实碳纸或者石墨烯纸为工作电极和对电极,饱和甘汞电极为参比电极,组装三电极体系,以5~2000mV/s的扫描速率在‑1V~1V之间对体系进行循环伏安扫描100~10000圈,反应结束后,取下工作电极和对电极,用去离子水浸泡过夜以去除杂质离子,最后在60℃下烘干24h,即制得聚苯胺/钴镍双氢氧化物超级电容器复合电极材料。本发明方法制备过程简单、环保、可靠,原料来源广泛、成本低廉,适合工业化生产。所制得的电极材料兼具高电导率和高的电容量。
Description
技术领域
本发明涉及一种用电化学沉积制备聚苯胺/钴镍双氢氧化物超级电容器复合电极材料的办法,具体的来说,涉及一种聚苯胺/钴镍双氢氧化物超级电容器复合电极材料的制备方法。
背景技术
聚苯胺作为一种常见的导电聚合物,由于其制备简单,成本低廉,以及具有良好的环境稳定性和独特的物理和化学性质,常常被用于超级电容器、电池、传感器以及防腐领域,得到了世界各国科研工作者的大力关注。特别是具有纳米结构的导电聚苯胺,由于其粒径极小、比表面积大、极快的电子转移速率等性质,赋予了纳米导电聚苯胺材料具有传统块体所不具备的许多独特性能。
钴镍双氢氧化物作为一种超级电容器的电极材料,因为能够提供赝电容,在碱性电解质中特定容量高、稳定性好等特点,成为碱性超级电容器电极材料的研究热点。层状的双氢氧化物(Layered Double Hydroxide,简称 LDHs),有着独特的层状结构,在化学传感器、电催化、超级电容器中,都有广泛的应用研究。((a) Chen, J.; Xu, J.; Zhou, S.;Zhao, N.; Wong, C. P., Amorphous nanostructured FeOOH and Co–Ni doublehydroxides for high-performance aqueous asymmetric supercapacitors. NanoEnergy 2016, 21, 145-153; (b) Wang, L.; Feng, X.; Ren, L.; Piao, Q.; Zhong,J.; Wang, Y.; Li, H.; Chen, Y.; Wang, B., Flexible Solid-State SupercapacitorBased on a Metal-Organic Framework Interwoven by Electrochemically-DepositedPANI. Journal of the American Chemical Society 2015, 137 (15).)
虽然钴镍双氢氧化物作为超级电容器电极在容量上虽然比较有优势,但是一般电化学窗口比较窄和导电性较差。聚苯胺在复合电极之中可以起到拓宽电化学窗口和增强导电性的作用。本发明以苯胺单体和镍盐钴盐水溶液为电解液,通过循环伏安的办法在同一电极上同时进行阳极沉积聚苯胺和阴极沉积钴镍双氢氧化物,是一种简单且环保的制备方法,所得复合材料结构规整且具有良好的电化学性能,是一种理想的超级电容器电极材料,尤其是适合工业化生产。
发明内容
本发明的目的是提供一种聚苯胺/钴镍双氢氧化物超级电容器复合电极材料的制备方法。
具体步骤为:
(1)在镍离子浓度为0.2M、钴离子浓度为0.4M的混合水溶液中加入苯胺单体,室温搅拌2h直至苯胺单体完全溶解,制得电解液。
(2)取50ml步骤(1)制得的电解液置入电解槽,以压实碳纸或者石墨烯纸为工作电极和对电极,饱和甘汞电极为参比电极,组装三电极体系,以5~2000mV/s的扫描速率在-1V~1V之间对体系进行循环伏安扫描100~10000圈。
(3)反应结束后,取下步骤(2)的工作电极和对电极,用去离子水浸泡过夜以去除杂质离子,最后在60℃下烘干24h,即制得聚苯胺/钴镍双氢氧化物超级电容器复合电极材料。
所述苯胺单体和镍离子的物质的量之比为0.1~5:1。
本发明方法制备过程简单、环保、可靠,原料来源广泛、成本低廉,适合工业化生产。所制得聚苯胺/钴镍双氢氧化物超级电容器复合电极材料兼具高电导率和高的电容量,有着更大的电化学窗口、更高的比电容,是一种理想的超级电容器电极材料。
附图说明
图1是本发明实施例5中制得的聚苯胺/钴镍双氢氧化物超级电容器复合电极材料的扫描电镜图。
图2是本发明实施例5中制得的聚苯胺/钴镍双氢氧化物超级电容器复合电极材料在氢氧化钾溶液中的循环伏安图。
图3是本发明实施例5中制得的聚苯胺/钴镍双氢氧化物超级电容器复合电极材料在氢氧化钾溶液中的交流阻抗图。
图4是本发明实施例5中制得的聚苯胺/钴镍双氢氧化物超级电容器复合电极材料在氢氧化钾溶液中的恒电流充放电曲线。
具体实施方式
实施例1:
(1)配置苯胺单体、硝酸镍和硝酸钴水溶液,镍离子的浓度为0.2M,钴离子浓度为0.4M,苯胺单体浓度为0.02M,苯胺单体和镍离子浓度比为0.1。室温搅拌2h直至苯胺单体完全溶解,制得电解液。
(2)取电解液50ml置入电解槽,以1×4cm2压实碳纸为工作电极和对电极。饱和甘汞电极为参比电极,配置三电极体系,以100mV/s的扫描速率在-1V~1V之间对体系进行循环伏安扫描150圈。
(3)反应结束后,取下工作电极和对电极,用去离子水浸泡过夜以去除杂质离子,在60℃下烘干24h,即制得聚苯胺/钴镍双氢氧化物超级电容器复合电极材料。
实施例2:
重复实施例1的步骤,仅将苯胺单体浓度调为0.04M,苯胺单体和镍离子浓度比为0.2。
实施例3:
重复实施例1的步骤,仅将苯胺单体浓度调为0.05M,苯胺单体和镍离子浓度比为0.25。
实施例4:
重复实施例1的步骤,仅将苯胺单体浓度调为0.1M,苯胺单体和镍离子浓度比为0.5。
实施例5:
重复实施例1的步骤,仅将苯胺单体浓度调为0.2M,苯胺单体和镍离子浓度比为1。
实施例6:
重复实施例1的步骤,仅将苯胺单体浓度调为0.4M,苯胺单体和镍离子浓度比为2。
实施例7:
重复实施例1的步骤,仅将苯胺单体浓度调为0.8M,苯胺单体和镍离子浓度比为4。
实施例8:
重复实施例1的步骤,仅将苯胺单体浓度调为1M,苯胺单体和镍离子浓度比为5。
实施例9:
(1)配置苯胺单体、醋酸镍和醋酸钴水溶液,镍离子的浓度为0.2M,钴离子浓度为0.4M,苯胺单体浓度为0.02M,苯胺单体和镍离子浓度比为0.1。室温搅拌2h直至苯胺单体完全溶解,制得电解液。
(2)取电解液50ml置入电解槽,以1×4cm2压实碳纸为工作电极和对电极。饱和甘汞电极为参比电极,配置三电极体系,以100mV/s的扫描速率在-1V~1V之间对体系进行循环伏安扫描150圈。
(3)反应结束后,取下工作电极和对电极,用去离子水浸泡过夜以去除杂质离子,在60℃下烘干24h,即制得聚苯胺/钴镍双氢氧化物超级电容器复合电极材料。
实施例10:
重复实施例9的步骤,仅将苯胺单体浓度调为0.04M,苯胺单体和镍离子浓度比为0.2。
实施例11:
重复实施例9的步骤,仅将苯胺单体浓度调为0.05M,苯胺单体和镍离子浓度比为0.25。
实施例12:
重复实施例9的步骤,仅将苯胺单体浓度调为0.1M,苯胺单体和镍离子浓度比为0.5。
实施例13:
重复实施例9的步骤,仅将苯胺单体浓度调为0.2M,苯胺单体和镍离子浓度比为1。
实施例14:
重复实施例9的步骤,仅将苯胺单体浓度调为0.4M,苯胺单体和镍离子浓度比为2。
实施例15:
重复实施例9的步骤,仅将苯胺单体浓度调为0.8M,苯胺单体和镍离子浓度比为4。
实施例16:
重复实施例9的步骤,仅将苯胺单体浓度调为1M,苯胺单体和镍离子浓度比为5。
实施例17:
(1)配置苯胺单体、硝酸镍和硝酸钴水溶液,镍离子的浓度为0.2M,钴离子浓度为0.4M,苯胺单体浓度为0.02M,苯胺单体和镍离子浓度比为0.1。室温搅拌2h直至苯胺单体完全溶解,制得电解液。
(2)取电解液50ml置入电解槽,以1×4cm2石墨烯纸为工作电极和对电极。饱和甘汞电极为参比电极,配置三电极体系,以100mV/s的扫描速率在-1V~1V之间对体系进行循环伏安扫描150圈。
(3)反应结束后,取下工作电极和对电极,用去离子水浸泡过夜以去除杂质离子,在60℃下烘干24h,即制得聚苯胺/钴镍双氢氧化物超级电容器复合电极材料。
实施例18:
重复实施例17的步骤,仅将苯胺单体浓度调为0.04M,苯胺单体和镍离子浓度比为0.2。
实施例19:
重复实施例17的步骤,仅将苯胺单体浓度调为0.05M,苯胺单体和镍离子浓度比为0.25。
实施例20:
重复实施例17的步骤,仅将苯胺单体浓度调为0.1M,苯胺单体和镍离子浓度比为0.5。
实施例21:
重复实施例17的步骤,仅将苯胺单体浓度调为0.2M,苯胺单体和镍离子浓度比为1。
实施例22:
重复实施例17的步骤,仅将苯胺单体浓度调为0.4M,苯胺单体和镍离子浓度比为2。
实施例23:
重复实施例17的步骤,仅将苯胺单体浓度调为0.8M,苯胺单体和镍离子浓度比为4。
实施例24:
重复实施例17的步骤,仅将苯胺单体浓度调为1M,苯胺单体和镍离子浓度比为5。
实施例25:
(1)配置苯胺单体、醋酸镍和醋酸钴水溶液,镍离子的浓度为0.2M,钴离子浓度为0.4M,苯胺单体浓度为0.02M,苯胺单体和镍离子浓度比为0.1。室温搅拌2h直至苯胺单体完全溶解,制得电解液。
(2)取电解液50ml置入电解槽,以1×4cm2石墨烯纸为工作电极和对电极。饱和甘汞电极为参比电极,配置三电极体系,以100mV/s的扫描速率在-1V~1V之间对体系进行循环伏安扫描150圈。
(3)反应结束后,取下工作电极和对电极,用去离子水浸泡过夜以去除杂质离子,在60℃下烘干24h,即制得聚苯胺/钴镍双氢氧化物超级电容器复合电极材料。
实施例26:
重复实施例25的步骤,仅将苯胺单体浓度调为0.04M,苯胺单体和镍离子浓度比为0.2。
实施例27:
重复实施例25的步骤,仅将苯胺单体浓度调为0.05M,苯胺单体和镍离子浓度比为0.25。
实施例28:
重复实施例25的步骤,仅将苯胺单体浓度调为0.1M,苯胺单体和镍离子浓度比为0.5。
实施例29:
重复实施例25的步骤,仅将苯胺单体浓度调为0.2M,苯胺单体和镍离子浓度比为1。
实施例30:
重复实施例25的步骤,仅将苯胺单体浓度调为0.4M,苯胺单体和镍离子浓度比为2。
实施例31:
重复实施例25的步骤,仅将苯胺单体浓度调为0.8M,苯胺单体和镍离子浓度比为4。
实施例32:
重复实施例25的步骤,仅将苯胺单体浓度调为1M,苯胺单体和镍离子浓度比为5。
Claims (1)
1.一种聚苯胺/钴镍双氢氧化物超级电容器复合电极材料的制备方法,其特征在于具体步骤为:
(1)在镍离子浓度为0.2M、钴离子浓度为0.4M的混合水溶液中加入苯胺单体,室温搅拌2h直至苯胺单体完全溶解,制得电解液;
(2)取50ml步骤(1)制得的电解液置入电解槽,以压实碳纸或者石墨烯纸为工作电极和对电极,饱和甘汞电极为参比电极,组装三电极体系,以5~2000mV/s的扫描速率在-1V~1V之间对体系进行循环伏安扫描100~10000圈;
(3)反应结束后,取下步骤(2)的工作电极和对电极,用去离子水浸泡过夜以去除杂质离子,最后在60℃下烘干24h,即制得聚苯胺/钴镍双氢氧化物超级电容器复合电极材料;
所述苯胺单体和镍离子的物质的量之比为0.1~5:1。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711413858.0A CN108281295A (zh) | 2017-12-24 | 2017-12-24 | 聚苯胺/钴镍双氢氧化物超级电容器复合电极材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711413858.0A CN108281295A (zh) | 2017-12-24 | 2017-12-24 | 聚苯胺/钴镍双氢氧化物超级电容器复合电极材料的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108281295A true CN108281295A (zh) | 2018-07-13 |
Family
ID=62802077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711413858.0A Pending CN108281295A (zh) | 2017-12-24 | 2017-12-24 | 聚苯胺/钴镍双氢氧化物超级电容器复合电极材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108281295A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110676067A (zh) * | 2019-10-24 | 2020-01-10 | 陈丰 | 一种聚苯胺-双金属氢氧化物超级电容器材料及其制法 |
CN111525111A (zh) * | 2020-04-29 | 2020-08-11 | 蜂巢能源科技有限公司 | 改性钴锰-层状双金属氢氧化物电极材料及其制备方法和应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103093972A (zh) * | 2013-01-25 | 2013-05-08 | 中北大学 | 应用于mems超级电容器的复合膜电极材料的制备方法 |
CN104191702A (zh) * | 2014-06-16 | 2014-12-10 | 华中科技大学 | 一种纳米氢氧化钴-石墨烯复合膜、其制备方法及应用 |
CN107221448A (zh) * | 2017-05-03 | 2017-09-29 | 青岛科技大学 | 一种超级电容器电极材料PANI/CeO2/Ni(OH)2多级微球及其制备方法 |
-
2017
- 2017-12-24 CN CN201711413858.0A patent/CN108281295A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103093972A (zh) * | 2013-01-25 | 2013-05-08 | 中北大学 | 应用于mems超级电容器的复合膜电极材料的制备方法 |
CN104191702A (zh) * | 2014-06-16 | 2014-12-10 | 华中科技大学 | 一种纳米氢氧化钴-石墨烯复合膜、其制备方法及应用 |
CN107221448A (zh) * | 2017-05-03 | 2017-09-29 | 青岛科技大学 | 一种超级电容器电极材料PANI/CeO2/Ni(OH)2多级微球及其制备方法 |
Non-Patent Citations (2)
Title |
---|
LEI MA等: ""A controllable morphology GO/PANI/metal hydroxide composite for supercapacitor"", 《JOURNAL OF ELECTROANALYTICAL CHEMISTRY》 * |
任永桃: ""钴、镍(氢)氧化物/石墨纸柔性复合材料的电化学性能"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110676067A (zh) * | 2019-10-24 | 2020-01-10 | 陈丰 | 一种聚苯胺-双金属氢氧化物超级电容器材料及其制法 |
CN110676067B (zh) * | 2019-10-24 | 2021-05-14 | 绍兴市梓昂新材料有限公司 | 一种聚苯胺-双金属氢氧化物超级电容器材料及其制法 |
CN111525111A (zh) * | 2020-04-29 | 2020-08-11 | 蜂巢能源科技有限公司 | 改性钴锰-层状双金属氢氧化物电极材料及其制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shi et al. | Carbon materials from melamine sponges for supercapacitors and lithium battery electrode materials: a review | |
Liang et al. | Highly compressible carbon sponge supercapacitor electrode with enhanced performance by growing nickel–cobalt sulfide nanosheets | |
Zhang et al. | One-step synthesis of the reduced graphene oxide@ NiO composites for supercapacitor electrodes by electrode-assisted plasma electrolysis | |
Wang et al. | Nitrogen-doped porous carbons as electrode materials for high-performance supercapacitor and dye-sensitized solar cell | |
Tang et al. | Hydrothermal synthesis of a flower-like nano-nickel hydroxide for high performance supercapacitors | |
Cheng et al. | Supermolecule self-assembly promoted porous N, P Co-doped reduced graphene oxide for high energy density supercapacitors | |
Long et al. | Ni 3 S 2@ polypyrrole composite supported on nickel foam with improved rate capability and cycling durability for asymmetric supercapacitor device applications | |
Huang et al. | Ni 3 S 4 supported on carbon cloth for high-performance flexible all-solid-state asymmetric supercapacitors | |
CN104979105B (zh) | 一种氮掺杂多孔碳材料、制备方法及其应用 | |
Shi et al. | Low cost and flexible mesh-based supercapacitors for promising large-area flexible/wearable energy storage | |
Xia et al. | PPy decorated α-Fe 2 O 3 nanosheets as flexible supercapacitor electrodes | |
CN102465309A (zh) | 一种石墨烯制备方法 | |
CN106449179A (zh) | 一种mof/氮掺杂活性炭非对称超级电容器器件的组装方法 | |
Sun et al. | Template synthesis of 2D carbon nanosheets: improving energy density of supercapacitors by dual redox additives anthraquinone-2-sulfonic acid sodium and KI | |
Shi et al. | 3D mesoporous hemp-activated carbon/Ni3S2 in preparation of a binder-free Ni foam for a high performance all-solid-state asymmetric supercapacitor | |
CN106299271A (zh) | 一种纳米钴酸镍/石墨烯复合材料及其制备方法 | |
CN104900419A (zh) | 使用CNTs@SiO2@Ni/Al-LDH核壳结构为正极材料的超级电容器 | |
CN107045948B (zh) | NaxMnO2正极材料、制备方法及其应用 | |
Tang et al. | Enhancement in electrochemical performance of nitrogen-doped hierarchical porous carbon-based supercapacitor by optimizing activation temperature | |
Lokhande et al. | Inorganic electrolytes in supercapacitor | |
Le et al. | Polypyrrole-coated Fe 2 O 3 nanotubes constructed from nanoneedles as high-performance anodes for aqueous asymmetric supercapacitors | |
CN108269696A (zh) | 聚吡咯/钴镍双氢氧化物超级电容器复合电极材料的制备方法 | |
Liu et al. | Chemical bonding of flexible graphene to carbon paper: A new synthetic paradigm for freestanding electrode with high capacitive deionization performance | |
Jagadale et al. | Materials development in hybrid zinc‐ion capacitors | |
CN111217361B (zh) | 一种电化学阴极剥离制备石墨烯纳米片的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180713 |
|
RJ01 | Rejection of invention patent application after publication |