CN108269696A - 聚吡咯/钴镍双氢氧化物超级电容器复合电极材料的制备方法 - Google Patents

聚吡咯/钴镍双氢氧化物超级电容器复合电极材料的制备方法 Download PDF

Info

Publication number
CN108269696A
CN108269696A CN201711413847.2A CN201711413847A CN108269696A CN 108269696 A CN108269696 A CN 108269696A CN 201711413847 A CN201711413847 A CN 201711413847A CN 108269696 A CN108269696 A CN 108269696A
Authority
CN
China
Prior art keywords
electrode
pyrrole monomer
polypyrrole
concentration
super capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711413847.2A
Other languages
English (en)
Inventor
樊新
陈韦良
李业宝
禤丽镅
董小燕
庞树花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201711413847.2A priority Critical patent/CN108269696A/zh
Publication of CN108269696A publication Critical patent/CN108269696A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种聚吡咯/钴镍双氢氧化物超级电容器复合电极材料的制备方法。在镍离子的浓度为0.2M、钴离子浓度为0.4M的混合水溶液中加入吡咯单体,室温搅拌2h直至吡咯单体完全溶解,制得电解液,取50mL电解液置入电解槽,以压实碳纸或者石墨烯纸为工作电极和对电极,饱和甘汞电极为参比电极,配置三电极体系,以5~2000mV/s的扫描速率在‑1V~1V之间对体系进行循环伏安扫描100~10000圈,取下工作电极和对电极,用去离子水浸泡过夜以去除杂质离子,最后在60℃下烘干24h,即制得聚吡咯/钴镍双氢氧化物超级电容器复合电极材料。本发明方法制备过程简单、环保、可靠,原料来源广泛、成本低廉,适合工业化生产。所制得的电极材料兼具高电导率和高的电容量。

Description

聚吡咯/钴镍双氢氧化物超级电容器复合电极材料的制备 方法
技术领域
本发明涉及一种用电化学沉积制备聚吡咯/钴镍双氢氧化物超级电容器复合电极材料的办法,具体的来说,涉及一种聚吡咯/钴镍双氢氧化物超级电容器复合电极材料的制备方法。
背景技术
聚吡咯作为一种常见的导电聚合物,由于其制备简单,成本低廉,以及具有良好的环境稳定性和独特的物理和化学性质,常常被用于超级电容器、电池、传感器以及防腐领域,得到了世界各国科研工作者的大力关注。特别是具有纳米结构的导电聚吡咯,由于其粒径极小、比表面积大、极快的电子转移速率等性质,赋予了纳米导电聚吡咯材料具有传统块体所不具备的许多独特性能。
钴镍双氢氧化物作为一种超级电容器的电极材料,因为能够提供赝电容,在碱性电解质中特定容量高、稳定性好等特点,成为碱性超级电容器电极材料的研究热点。层状的双氢氧化物(Layered Double Hydroxide,简称 LDHs),有着独特的层状结构,在化学传感器、电催化、超级电容器中,都有广泛的应用研究。((a) Chen, J.; Xu, J.; Zhou, S.;Zhao, N.; Wong, C. P., Amorphous nanostructured FeOOH and Co–Ni doublehydroxides for high-performance aqueous asymmetric supercapacitors. NanoEnergy 2016, 21, 145-153; (b) Wang, L.; Feng, X.; Ren, L.; Piao, Q.; Zhong,J.; Wang, Y.; Li, H.; Chen, Y.; Wang, B., Flexible Solid-State SupercapacitorBased on a Metal-Organic Framework Interwoven by Electrochemically-DepositedPANI. Journal of the American Chemical Society 2015, 137 (15).)
虽然钴镍双氢氧化物作为超级电容器电极在容量上虽然比较有优势,但是一般电化学窗口比较窄和导电性较差。聚吡咯在复合电极之中可以起到拓宽电化学窗口和增强导电性的作用。本发明以吡咯单体和镍盐钴盐水溶液为电解液,通过循环伏安的办法在同一电极上同时进行阳极沉积聚吡咯和阴极沉积钴镍双氢氧化物,是一种简单且环保的制备方法,所得复合材料结构规整且具有良好的电化学性能,是一种理想的超级电容器电极材料,尤其是适合工业化生产。
发明内容
本发明的目的是提供一种聚吡咯/钴镍双氢氧化物超级电容器复合电极材料的制备方法。
具体步骤为:
(1)在镍离子的浓度为0.2M、钴离子浓度为0.4M的混合水溶液中加入吡咯单体,室温搅拌2h直至吡咯单体完全溶解,制得电解液。
(2)取50mL步骤(1)制得的电解液置入电解槽,以压实碳纸或者石墨烯纸为工作电极和对电极,饱和甘汞电极为参比电极,配置三电极体系,以5~2000mV/s的扫描速率在-1V~1V之间对体系进行循环伏安扫描100~10000圈。
(3)反应结束后,取下步骤(2)的工作电极和对电极,用去离子水浸泡过夜以去除杂质离子,最后在60℃下烘干24h,即制得聚吡咯/钴镍双氢氧化物超级电容器复合电极材料。
所述吡咯单体和镍离子的物质的量之比为0.1~5:1。
本发明方法制备过程简单、环保、可靠,原料来源广泛、成本低廉,适合工业化生产,所制得的聚吡咯/钴镍双氢氧化物超级电容器复合电极材料兼具高电导率和高的电容量,有着更大的电化学窗口、更高的比电容,是一种理想的超级电容器电极材料。
附图说明
图1是本发明实施例5制得的聚吡咯/钴镍双氢氧化物超级电容器复合电极材料的扫描电镜图。
图2是本发明实施例5制得的聚吡咯/钴镍双氢氧化物超级电容器复合电极材料在氢氧化钾溶液中的循环伏安图。
图3是本发明实施例5制得的聚吡咯/钴镍双氢氧化物超级电容器复合电极材料在氢氧化钾溶液中的交流阻抗图。
图4是本发明实施例5制得的聚吡咯/钴镍双氢氧化物超级电容器复合电极材料在氢氧化钾溶液中的恒电流充放电曲线。
具体实施方式
实施例1:
(1)配置吡咯、硝酸镍和硝酸钴水溶液,镍离子的浓度为0.2M,钴离子浓度为0.4M,吡咯单体浓度为0.02M,吡咯单体和镍离子浓度比为0.1。室温搅拌2h直至吡咯单体完全溶解,制得电解液。
(2)取50mL步骤(1)制得的电解液置入电解槽,以1×4cm2压实碳纸为工作电极和对电极。饱和甘汞电极为参比电极,配置三电极体系,以100mV/s的扫描速率在-1V~1V之间对体系进行循环伏安扫描150圈。
(3)反应结束后,取下步骤(2)的工作电极和对电极,用去离子水浸泡过夜以去除杂质离子,在60℃下烘干24h,即制得聚吡咯/钴镍双氢氧化物超级电容器复合电极材料。
实施例2:
重复实施例1的步骤,将吡咯单体的浓度调为0.04M,吡咯单体和镍离子浓度比为0.2。
实施例3:
重复实施例1的步骤,将吡咯单体的浓度调为0.05M,吡咯单体和镍离子浓度比为0.25。
实施例4:
重复实施例1的步骤,将吡咯单体的浓度调为0.1M,吡咯单体和镍离子浓度比为0.5。
实施例5:
重复实施例1的步骤,将吡咯单体的浓度调为0.2M,吡咯单体和镍离子浓度比为1。
实施例6:
重复实施例1的步骤,将吡咯单体的浓度调为0.4M,吡咯单体和镍离子浓度比为2。
实施例7:
重复实施例1的步骤,将吡咯单体的浓度调为0.8M,吡咯单体和镍离子浓度比为4。
实施例8:
重复实施例1的步骤,将吡咯单体的浓度调为1M,吡咯单体和镍离子浓度比为5。
实施例9:
(1)配置吡咯、醋酸镍和醋酸钴水溶液,镍离子的浓度为0.2M,钴离子浓度为0.4M,吡咯单体浓度为0.02M,吡咯单体和镍离子浓度比为0.1。室温搅拌2h直至吡咯单体完全溶解,制得电解液。
(2)取50mL步骤(1)制得的电解液置入电解槽,以1×4cm2压实碳纸为工作电极和对电极。饱和甘汞电极为参比电极,配置三电极体系,以100mV/s的扫描速率在-1V~1V之间对体系进行循环伏安扫描150圈。
(3)反应结束后,取下步骤(2)的工作电极和对电极,用去离子水浸泡过夜以去除杂质离子,在60℃下烘干24h,即制得聚吡咯/钴镍双氢氧化物超级电容器复合电极材料。
实施例10:
重复实施例9的步骤,将吡咯单体浓度调为0.04M,吡咯单体和镍离子浓度比为0.2。
实施例11:
重复实施例9的步骤,将吡咯单体浓度调为0.05M,吡咯单体和镍离子浓度比为0.25。
实施例12:
重复实施例9的步骤,将吡咯单体浓度调为0.1M,吡咯单体和镍离子浓度比为0.5。
实施例13:
重复实施例9的步骤,将吡咯单体浓度调为0.2M,吡咯单体和镍离子浓度比为1。
实施例14:
重复实施例9的步骤,将吡咯单体浓度调为0.4M,吡咯单体和镍离子浓度比为2。
实施例15:
重复实施例9的步骤,将吡咯单体浓度调为0.8M,吡咯单体和镍离子浓度比为4。
实施例16:
重复实施例9的步骤,将吡咯单体浓度调为1M,吡咯单体和镍离子浓度比为5。
实施例17:
(1)配置吡咯、硝酸镍和硝酸钴水溶液,镍离子的浓度为0.2M,钴离子浓度为0.4M,吡咯单体浓度为0.02M,吡咯单体和镍离子浓度比为0.1。室温搅拌2h直至吡咯单体完全溶解。
(2)取50mL步骤(1)制得的电解液置入电解槽,以1×4cm2石墨烯纸为工作电极和对电极。饱和甘汞电极为参比电极,配置三电极体系,以100mV/s的扫描速率在-1V~1V之间对体系进行循环伏安扫描150圈。
(3)反应结束后,取下步骤(2)的工作电极和对电极,用去离子水浸泡过夜以去除杂质离子,在60℃下烘干24h,即制得聚吡咯/钴镍双氢氧化物超级电容器复合电极材料。
实施例18:
重复实施例17的步骤,将吡咯单体浓度调为0.04M,吡咯单体和镍离子浓度比为0.2。
实施例19:
重复实施例17的步骤,将吡咯单体浓度调为0.05M,吡咯单体和镍离子浓度比为0.25。
实施例20:
重复实施例17的步骤,将吡咯单体浓度调为0.1M,吡咯单体和镍离子浓度比为0.5。
实施例21:
重复实施例17的步骤,将吡咯单体浓度调为0.2M,吡咯单体和镍离子浓度比为1。
实施例22:
重复实施例17的步骤,将吡咯单体浓度调为0.4M,吡咯单体和镍离子浓度比为2。
实施例23:
重复实施例17的步骤,将吡咯单体浓度调为0.8M,吡咯单体和镍离子浓度比为4。
实施例24:
重复实施例17的步骤,将吡咯单体浓度调为1M,吡咯单体和镍离子浓度比为5。
实施例25:
(1)配置吡咯、醋酸镍和醋酸钴水溶液,镍离子的浓度为0.2M,钴离子浓度为0.4M,吡咯单体浓度为0.02M,吡咯单体和镍离子浓度比为0.1。室温搅拌2h直至吡咯单体完全溶解,制得电解液。
(2)取50mL步骤(1)制得的电解液置入电解槽,以1×4cm2石墨烯纸为工作电极和对电极。饱和甘汞电极为参比电极,配置三电极体系,以100mV/s的扫描速率在-1V~1V之间对体系进行循环伏安扫描150圈。
(3)反应结束后,取下步骤(2)的工作电极和对电极,用去离子水浸泡过夜以去除杂质离子,在60℃下烘干24h,即制得聚吡咯/钴镍双氢氧化物超级电容器复合电极材料。
实施例26:
重复实施例25的步骤,将吡咯单体浓度调为0.04M,吡咯单体和镍离子浓度比为0.2。
实施例27:
重复实施例25的步骤,将吡咯单体浓度调为0.05M,吡咯单体和镍离子浓度比为0.25。
实施例28:
重复实施例25的步骤,将吡咯单体浓度调为0.1M,吡咯单体和镍离子浓度比为0.5。
实施例29:
重复实施例25的步骤,将吡咯单体浓度调为0.2M,吡咯单体和镍离子浓度比为1。
实施例30:
重复实施例25的步骤,将吡咯单体浓度调为0.4M,吡咯单体和镍离子浓度比为2。
实施例31:
重复实施例25的步骤,将吡咯单体浓度调为0.8M,吡咯单体和镍离子浓度比为4。
实施例32:
重复实施例25的步骤,将吡咯单体浓度调为1M,吡咯单体和镍离子浓度比为5。

Claims (1)

1.一种聚吡咯/钴镍双氢氧化物超级电容器复合电极材料的制备方法,其特征在于具体步骤为:
(1)在镍离子的浓度为0.2M、钴离子浓度为0.4M的混合水溶液中加入吡咯单体,室温搅拌2h直至吡咯单体完全溶解,制得电解液;
(2)取50mL步骤(1)制得的电解液置入电解槽,以压实碳纸或者石墨烯纸为工作电极和对电极,饱和甘汞电极为参比电极,配置三电极体系,以5~2000mV/s的扫描速率在-1V~1V之间对体系进行循环伏安扫描100~10000圈;
(3)反应结束后,取下步骤(2)的工作电极和对电极,用去离子水浸泡过夜以去除杂质离子,最后在60℃下烘干24h,即制得聚吡咯/钴镍双氢氧化物超级电容器复合电极材料;
所述吡咯单体和镍离子的物质的量之比为0.1~5:1。
CN201711413847.2A 2017-12-24 2017-12-24 聚吡咯/钴镍双氢氧化物超级电容器复合电极材料的制备方法 Pending CN108269696A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711413847.2A CN108269696A (zh) 2017-12-24 2017-12-24 聚吡咯/钴镍双氢氧化物超级电容器复合电极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711413847.2A CN108269696A (zh) 2017-12-24 2017-12-24 聚吡咯/钴镍双氢氧化物超级电容器复合电极材料的制备方法

Publications (1)

Publication Number Publication Date
CN108269696A true CN108269696A (zh) 2018-07-10

Family

ID=62772349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711413847.2A Pending CN108269696A (zh) 2017-12-24 2017-12-24 聚吡咯/钴镍双氢氧化物超级电容器复合电极材料的制备方法

Country Status (1)

Country Link
CN (1) CN108269696A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111229324A (zh) * 2020-02-11 2020-06-05 吉林大学 具有梭形形貌的聚吡咯/铁镍氢氧化物复合中空材料、制备方法及其在电解水产氧中的应用
CN113436911A (zh) * 2021-06-22 2021-09-24 华东理工大学 在互为对电极的不锈钢网上分别生长氢氧化钴镍和聚吡咯的制备方法
CN117467863A (zh) * 2023-08-28 2024-01-30 福建祥鑫新材料科技有限公司 一种耐腐蚀性和可焊性的高强铝合金及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105572196A (zh) * 2016-01-20 2016-05-11 西北大学 镍钴合金/聚吡咯/还原石墨烯纳米复合材料及其应用
CN105719850A (zh) * 2016-01-25 2016-06-29 中国石油大学(华东) 石墨烯聚吡咯/双金属氢氧化物纳米线三元复合材料及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105572196A (zh) * 2016-01-20 2016-05-11 西北大学 镍钴合金/聚吡咯/还原石墨烯纳米复合材料及其应用
CN105719850A (zh) * 2016-01-25 2016-06-29 中国石油大学(华东) 石墨烯聚吡咯/双金属氢氧化物纳米线三元复合材料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SUNG-JIN KIM,ET AL: ""Electrochemical properties of Ni(OH)2/polypyrrole composite electrode prepared by electrodeposition for pseudo-capacitor"", 《JOURNAL OF CERAMIC PROCESSING RESEARCH》 *
YU SONG,ET AL.: ""Integration of nickel-cobalt double hydroxide nanosheets and polypyrrole films with functionalized partially exfoliated graphite for asymmetric supercapacitors with improved rate capability"", 《J. MATER. CHEM. A》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111229324A (zh) * 2020-02-11 2020-06-05 吉林大学 具有梭形形貌的聚吡咯/铁镍氢氧化物复合中空材料、制备方法及其在电解水产氧中的应用
CN111229324B (zh) * 2020-02-11 2022-11-18 吉林大学 具有梭形形貌的聚吡咯/铁镍氢氧化物复合中空材料、制备方法及其在电解水产氧中的应用
CN113436911A (zh) * 2021-06-22 2021-09-24 华东理工大学 在互为对电极的不锈钢网上分别生长氢氧化钴镍和聚吡咯的制备方法
CN117467863A (zh) * 2023-08-28 2024-01-30 福建祥鑫新材料科技有限公司 一种耐腐蚀性和可焊性的高强铝合金及其制备方法

Similar Documents

Publication Publication Date Title
Shi et al. Carbon materials from melamine sponges for supercapacitors and lithium battery electrode materials: a review
Liang et al. Highly compressible carbon sponge supercapacitor electrode with enhanced performance by growing nickel–cobalt sulfide nanosheets
Lee et al. High performance hybrid energy storage with potassium ferricyanide redox electrolyte
Zhang et al. Immobilization of NiS nanoparticles on N-doped carbon fiber aerogels as advanced electrode materials for supercapacitors
Tang et al. Hydrothermal synthesis of a flower-like nano-nickel hydroxide for high performance supercapacitors
Long et al. Ni 3 S 2@ polypyrrole composite supported on nickel foam with improved rate capability and cycling durability for asymmetric supercapacitor device applications
Cheng et al. Supermolecule self-assembly promoted porous N, P Co-doped reduced graphene oxide for high energy density supercapacitors
CN104979105B (zh) 一种氮掺杂多孔碳材料、制备方法及其应用
Xia et al. PPy decorated α-Fe 2 O 3 nanosheets as flexible supercapacitor electrodes
KR20170078555A (ko) 플렉시블 슈퍼커패시터 및 이의 제조방법
CN106449179A (zh) 一种mof/氮掺杂活性炭非对称超级电容器器件的组装方法
CN109216048A (zh) 基于细菌纤维素膜的柔性电极及其制备方法
CN108288547B (zh) 氮磷硫三元共掺杂有序介孔碳材料的制备方法
Sun et al. Template synthesis of 2D carbon nanosheets: improving energy density of supercapacitors by dual redox additives anthraquinone-2-sulfonic acid sodium and KI
CN104900419A (zh) 使用CNTs@SiO2@Ni/Al-LDH核壳结构为正极材料的超级电容器
Tang et al. Enhancement in electrochemical performance of nitrogen-doped hierarchical porous carbon-based supercapacitor by optimizing activation temperature
Liu et al. Shape-controlled synthesis of porous carbons for flexible asymmetric supercapacitors
Le et al. Polypyrrole-coated Fe 2 O 3 nanotubes constructed from nanoneedles as high-performance anodes for aqueous asymmetric supercapacitors
CN108269696A (zh) 聚吡咯/钴镍双氢氧化物超级电容器复合电极材料的制备方法
Lokhande et al. Inorganic electrolytes in supercapacitor
Chen et al. Zinc‐ion hybrid supercapacitors: Design strategies, challenges, and perspectives
Ahn et al. Co (OH) 2-combined carbon-nanotube array electrodes for high-performance micro-electrochemical capacitors
Jagadale et al. Materials development in hybrid zinc‐ion capacitors
Liu et al. Chemical bonding of flexible graphene to carbon paper: A new synthetic paradigm for freestanding electrode with high capacitive deionization performance
CN111217361B (zh) 一种电化学阴极剥离制备石墨烯纳米片的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180710

RJ01 Rejection of invention patent application after publication