CN107217185B - 一种可降解医学植入物 - Google Patents

一种可降解医学植入物 Download PDF

Info

Publication number
CN107217185B
CN107217185B CN201710410135.9A CN201710410135A CN107217185B CN 107217185 B CN107217185 B CN 107217185B CN 201710410135 A CN201710410135 A CN 201710410135A CN 107217185 B CN107217185 B CN 107217185B
Authority
CN
China
Prior art keywords
biodegradable
medical implant
magnesium alloy
stent
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710410135.9A
Other languages
English (en)
Other versions
CN107217185A (zh
Inventor
冯晶
王衍根
赵兴全
赵兴旺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Feng Jing
Southwest Medical University
Original Assignee
Southwest Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Medical University filed Critical Southwest Medical University
Priority to CN201710410135.9A priority Critical patent/CN107217185B/zh
Publication of CN107217185A publication Critical patent/CN107217185A/zh
Application granted granted Critical
Publication of CN107217185B publication Critical patent/CN107217185B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Vascular Medicine (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

一种可生物降解医学植入物,其包括可生物降解的镁合金,该镁合金按照质量百分比由以下组分构成:Zn 15‑20%,Nd 0.6‑1.1%,Zr 1~2%,Sn 3~5%,其余为Mg以及的不可避免的杂质元素,且满足(2Sn+3Zr)/10‑Nd≥0.5。得到的可降解医学植入物的强度可以达到580MPa以上,降解速度低于0.15mm/年。

Description

一种可降解医学植入物
技术领域
本发明属于医用材料技术领域,特别涉及一种可生物降解的医学植入物,更特别涉及一种血管支架。
背景技术
目前,临床上普遍使用的传统医用金属材料主要有医用不锈钢、医用钛合金、医用钴合金等,但这些材料作为医学植入物往往存在某些隐患。镁合金作为医用金属材料可追溯到100多年前,但是,由于镁合金的耐蚀性较差,在人体内降解速度过快无法满足作为医学植入物的性能要求,因此限制了镁合金作为医学植入物的广泛应用。但早期的临床应用已经证实了镁合金作为医用材料的可行性。
随着不同的加工方法和表面处理技术的发展和成熟,镁合金的耐腐蚀性能和力学性能都得到了很大的提高。最近几年,世界各国有更多的研究者开始进行镁合金作为生物材料的研究。许多的体内、体外实验结果也已证明,可降解镁合金作为医学植入材料有很多的杰出表现。但现有技术的镁合金的耐腐蚀性和力学性能方面仍存在不足,特别是作为与人体血液直接接触的血管支架使用时。为降低腐蚀速度,改善力学性能,提高生物相容性,目前主要通过纯化、合金化、保护涂层和表面改性来改良镁合金。其中合金化将能够提高金属力学性能和耐腐蚀性能的元素加入镁合金中来,可以同时改善两方面性能,是主要的研究方向。
本申请针对现有技术提出了一种具有高耐腐蚀性和力学性能的可降解医学植入物。
发明内容
本发明的目的是提供一种对人体无任何毒性、耐腐蚀性能和力学性能良好可降解医学植入物。
本发明的目的是通过以下技术方案实现的:
一种可生物降解医学植入物,其包括可生物降解的镁合金,该镁合金按照质量百分比由以下组分构成:Zn 15-20%,Nd 0.6-1.1%,Zr 1~2%,Sn 3~5%,其余为Mg以及的不可避免的杂质元素,且满足(2Sn+3Zr)/10-Nd≥0.5。
一种可生物降解医学植入物的制备方法,包括将得到的可生物降解医学植入物进行如下处理:
在真空或氩气保护气氛下,在310~340℃下进行4-10h的均匀化退火处理,使镁合金中的至少20%的Zn转变为Mg7Zn3相的形式;然后以150℃/s以上的冷却速度将医学植入物冷却至室温,得到成品。
本申请由于Mg7Zn3相以及在自然时效后Mg7Zn3相分解形成的MgZn2相的存在,显著提高医学植入物的强度和耐腐蚀性能。同时申请人发现Nd的添加对于保证在均匀化退火过程中含Zn相充分转变为Mg7Zn3相十分有利,因此本申请要求添加至少0.6%的Nd,但Nd对细胞具有轻微毒性,为此控制Nd含量不高于1.1%。同时,申请人发现通过使Nd与Zr和Sn形成复合相可以消除Nd的毒性,为此,经过大量实现发现,控制(2Sn+3Zr)/10-Nd≥0.5可以充分保证上述复合相的形成。Sn可以提高细化镁合金的晶粒,提高镁合金力学性能和耐腐蚀性能,但其含量过高会影响镁合金的加工性能。因此,本发明Sn的添加量为3~5%%。Zr作为晶粒细化剂,可以显著提高合金的强韧性和加工性能。因此,本发明Zr的添加量为1~2%。
本申请得到的可降解医学植入物的强度可以达到580MPa以上,降解速度低于0.15mm/年。
具体实施方式
首先采用本领域的常规制备方法生产本申请的镁合金,具体成分如表1所示。
表1 镁合金成分列表
试样号 Zn Nd Zr Sn (2Sn+3Zr)/10-Nd
实施例1 15 0.8 1.2 4.9 0.54
实施例2 17 0.6 1.3 3.7 0.53
实施例3 19 0.9 1.5 4.9 0.53
实施例4 20 1 1.9 5 0.57
对比例1 13 0.7 1.1 4.8 0.59
对比例2 17 0.7 1.3 3.7 0.43
对比例3 19 0.9 1.5 4.9 0.53
对比例4 19 0.9 1.5 4.9 0.53
试样制备:将表1的实施例1-4和对比文件1-4加工成直径12 mm、高度1 mm的圆柱体状试样,表面抛光,用无水乙醇超声清洗10 min,在室温空气中晾干。
然后,在真空或氩气保护气氛下,在310~340℃下进行4-10h的均匀化退火处理,然后快速冷却得到的成品样品。具体处理条件见表2。
表2 样品加工条件及实验结果
Figure DEST_PATH_IMAGE002
静态浸泡实验:静态浸泡实验在(37.0±0.5) ℃水浴中进行,将实施例和对比例获得的成品样品分别浸入250 mL模拟体液中,浸泡过程中不搅拌振荡。其中模拟体液的成分如表3。
表3模拟体液的成分
组成 质量浓度
NaCl 6.800 g/L
CaCl<sub>2</sub> 0.200 g/L
KCl 0.400 g/L
MgSO<sub>4</sub> 100 g/L
NaHCO<sub>3</sub> 2.200 g/L
Na<sub>2</sub>HPO<sub>4</sub> 0.126 g/L
NaH<sub>2</sub>PO<sub>4</sub> 0.026 g/L
得到的实验结果如表2。可以看到,当Zn含量过低时,无法保证得到成品的强度和降解速度。另外,当退火时间过短时,Mg7Zn3相的转变不充分,造成成品的性能显著减低;当冷却速度过低时,不能保证保温时形成的Mg7Zn3相保留到到室温下,同样造成成品的性能显著减低。
另外根据GB/T 16886.5-2003对实施例1-4和对比例2的成品样品进行了体外细胞(L-929成纤维细胞)毒性测试,结果显示本申请实施例1-4物对于细胞活性没有影响,细胞毒性为0级,显示出优良的生物相容性。而对比例2中由于不满足本申请要求的(2Sn+3Zr)/10-Nd≥0.5,细胞毒性为1级。

Claims (3)

1. 一种可生物降解血管支架,其包括可生物降解的镁合金,该镁合金按照质量百分比由以下组分构成:Zn 15-19%,Nd 0.6-1.1%,Zr 1~2%,Sn 3~5%,其余为Mg以及的不可避免的杂质元素,且满足(2Sn+3Zr)/10-Nd≥0.5;
所述支架的制备方法包括将得到的可生物降解血管支架进行如下处理:
在真空或氩气保护气氛下,在310~340℃下进行4-10h的均匀化退火处理,然后以150℃/s以上的冷却速度将血管支架冷却至室温,得到成品。
2.如权利要求1所述的血管支架,其中Zn含量为17-19%。
3.一种如权利要求1-2所述的可生物降解血管支架的制备方法,包括将得到的可生物降解血管支架进行如下处理:
在真空或氩气保护气氛下,在310~340℃下进行4-10h的均匀化退火处理,然后以150℃/s以上的冷却速度将血管支架冷却至室温,得到成品。
CN201710410135.9A 2017-06-03 2017-06-03 一种可降解医学植入物 Expired - Fee Related CN107217185B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710410135.9A CN107217185B (zh) 2017-06-03 2017-06-03 一种可降解医学植入物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710410135.9A CN107217185B (zh) 2017-06-03 2017-06-03 一种可降解医学植入物

Publications (2)

Publication Number Publication Date
CN107217185A CN107217185A (zh) 2017-09-29
CN107217185B true CN107217185B (zh) 2021-02-12

Family

ID=59947475

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710410135.9A Expired - Fee Related CN107217185B (zh) 2017-06-03 2017-06-03 一种可降解医学植入物

Country Status (1)

Country Link
CN (1) CN107217185B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014001191A1 (en) * 2012-06-26 2014-01-03 Biotronik Ag Magnesium alloy, method for the production thereof and use thereof
WO2014203566A1 (ja) * 2013-06-18 2014-12-24 オリンパス株式会社 生体用インプラント

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102031432A (zh) * 2010-12-22 2011-04-27 重庆市科学技术研究院 一种含Sn细晶镁锂锡合金
CN104630587A (zh) * 2015-02-28 2015-05-20 天津理工大学 一种骨折内固定用可降解镁合金板、棒材及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014001191A1 (en) * 2012-06-26 2014-01-03 Biotronik Ag Magnesium alloy, method for the production thereof and use thereof
WO2014203566A1 (ja) * 2013-06-18 2014-12-24 オリンパス株式会社 生体用インプラント

Also Published As

Publication number Publication date
CN107217185A (zh) 2017-09-29

Similar Documents

Publication Publication Date Title
Shuai et al. Biodegradable metallic bone implants
JP6431957B2 (ja) 生分解性金属合金
Ma et al. Effect of heat treatment on Cu distribution, antibacterial performance and cytotoxicity of Ti–6Al–4V–5Cu alloy
Wątroba et al. Design of novel Zn-Ag-Zr alloy with enhanced strength as a potential biodegradable implant material
Ma et al. Research progress of titanium-based high entropy alloy: methods, properties, and applications
CN109097629B (zh) 一种可生物降解Zn-Mo系锌合金及其制备方法
US10604827B2 (en) Biodegradable metal alloys
CN102978493B (zh) 一种Mg-Li系镁合金及其制备方法
CN108754232B (zh) 一种高强高塑可生物降解Zn-Mn-Li系锌合金及其用途
CN109966568B (zh) 一种Zn-Ge-X三元生物医用材料及其制备方法
Azzeddine et al. Corrosion behaviour and cytocompatibility of selected binary magnesium-rare earth alloys
CN112494725B (zh) 一种可生物降解的复合材料及其制备方法和应用
CN110241380B (zh) 一种医用无镍不锈钢的处理工艺
CN111187957A (zh) 生物可降解镁合金及其制备方法
CN107217185B (zh) 一种可降解医学植入物
CN110656260A (zh) 一种可降解医用Zn合金材料及其制备方法
Wang et al. Incorporation of Mg-phenolic networks as a protective coating for magnesium alloy to enhance corrosion resistance and osteogenesis in vivo
Idris et al. Characteristics of as-cast and forged biodegradable Mg-Ca binary alloy immersed in Kokubo simulated body fluid
CN107158479B (zh) 可生物降解的金属血管支架
CN114438371A (zh) 一种高性能生物可降解Zn-Cu-Ti-xFe合金及应用
CN112192919B (zh) 具有抗菌功能、可降解、强韧性的复合材料及其制备方法
JP6258113B2 (ja) 抗菌性チタン合金材の製造方法
US20220275477A1 (en) Magnesium alloy based objects and methods of making and use thereof
CN113528870A (zh) 一种可降解Zn-Li-X系合金丝材及其制备方法
CN107519531B (zh) 一种生物涂层结构的钛合金骨植入体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Feng Jing

Inventor after: Wang Yangen

Inventor after: Zhao Xingquan

Inventor after: Zhao Xingwang

Inventor before: Wang Yangen

Inventor before: Zhao Xingquan

Inventor before: Zhao Xingwang

CB03 Change of inventor or designer information
TA01 Transfer of patent application right

Effective date of registration: 20210126

Address after: 640000 No.1, Section 1, Xianglin Road, Longmatan District, Luzhou City, Sichuan Province

Applicant after: SOUTHWEST MEDICAL University

Applicant after: Feng Jing

Address before: 35008, No. 2 Building, 25 Wenboxi Road, Jinshui District, Zhengzhou City, Henan Province, 450000

Applicant before: ZHENGZHOU HANDONG TECHNOLOGY Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210212

CF01 Termination of patent right due to non-payment of annual fee