CN107210318A - 高压半导体设备 - Google Patents

高压半导体设备 Download PDF

Info

Publication number
CN107210318A
CN107210318A CN201580062362.6A CN201580062362A CN107210318A CN 107210318 A CN107210318 A CN 107210318A CN 201580062362 A CN201580062362 A CN 201580062362A CN 107210318 A CN107210318 A CN 107210318A
Authority
CN
China
Prior art keywords
region
semiconductor
drift
lateral extensions
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201580062362.6A
Other languages
English (en)
Inventor
P·阔德
N·洛菲提斯
T·特拉伊科维奇
F·乌德雷亚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anvil Semiconductors Ltd
Original Assignee
Anvil Semiconductors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anvil Semiconductors Ltd filed Critical Anvil Semiconductors Ltd
Publication of CN107210318A publication Critical patent/CN107210318A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/266Bombardment with radiation with high-energy radiation producing ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1602Diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78642Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/26Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
    • H01L29/267Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • H01L29/475Schottky barrier electrodes on AIII-BV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B20/00Read-only memory [ROM] devices
    • H10B20/27ROM only
    • H10B20/40ROM only having the source region and drain region on different levels, e.g. vertical channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开了高电压半导体设备,其包括:第二导电类型的半导体基底;第二导电类型的半导体漂移区域被设置在半导体基底上,半导体基底区域具有比漂移区域更高的掺杂浓度;与第二导电类型相反的第一导电类型的半导体区域,被形成在设备的表面上并且在半导体漂移区域内,半导体区域具有比漂移区域更高的掺杂浓度;并且,第一导电类型的横向延伸部从半导体区域横向延伸到漂移区域中,该横向延伸部与设备的表面间隔开。

Description

高压半导体设备
技术领域
本发明涉及功率半导体设备,特别但不排他地涉及一种宽带隙材料基的功率半导体设备(power semiconductor device)
背景技术
SiC的宽带隙(不考虑多种类型)在雪崩击穿之前导致非常高的临界电场。该临界场大约是Si的十倍,因此需要将材料厚度的十分之一在截止状态下维持给定电压,这又导致了在导通状态下更低的电阻。这种较低的电阻降低了设备的功率损耗,从而实现了系统的整体节能。
然而,当计算真实设备的实际击穿电压时必须小心,因为理论临界电场假设无限平面结合。然而,在实际情况下,场加剧发生在扩散区域的边缘周围,并且击穿电压作为结构曲率半径的强函数而减小(参见例如:J Baliga所著,功率半导体设备的基础知识,第108页)。
这个问题在上下文中的Si设备是很好理解的,且解决方案被发现,通过在有源结合点的边缘周围添加进一步的场释放结构(J Baliga所著,功率半导体设备的基础知识,第130页)。这种场释放结构如图1所示。场释放结构可以逐渐释放设备边缘处的消耗区域。电压被提供在每对p+环之间,从而减少表面处电场的拥挤。环的间隔和深度被设计成使得在每对环之间表面处的电场峰值几乎相等,并且最终结构的击穿电压显着增加。
在Si基的设备中也提出了结合点终端扩展(JTE)结构。这样的JTE结构如图2所示。该结构使用多个区域,其中,掺杂级从有源区域向终端末端减小。效果类似于场环所实现的效果-即设备边缘处消耗区域的逐渐释放。电压理想地沿着JTE区域均匀地被提供。
然而,SiC在这一领域出现了新的挑战,最重要的是如上所述,SiC中的电场非常高,因此这种场加剧问题更严重。因此,将Si溶液外推到SiC上将导致非常复杂的结构且具有更小的,该尺寸在使用正常生产设备的情况下是不切实际。
此外,材料本身存在问题;由于掺杂物扩散在SiC中是可以忽略的,所以在Si中使用的深而缓慢弯曲的扩散结构不能被再生产,并且离子植入的替代掺杂物引入方法本身不能产生相同的结构。事实上,在SiC中引入局部掺杂的唯一实际方法是离子植入,但是将植入能量再次保持在生产设备范围内的结果是相当浅的结合点,深度为0.5微米,这加剧了整个问题。
本发明的目的是解决上述问题。
发明内容
方面和优选特征在所附权利要求中阐述。
在这里公开了一种宽带隙高压半导体设备,其包括:
半导体基底;
设置在半导体基底上的第二导电类型的半导体漂移区域;
位于半导体漂移区域内的与第二导电类型相反的第一导电类型的主体区域;
位于主体区域内的第二导电类型的源极区域;
位于源极区域上方并与其接触的栅极,其用于控制半导体漂移区域和源极区域之间的沟道区域中的电荷,从而控制半导体漂移区域内的电荷流动;
其中,主体区域包括横向延伸到漂移区域中的第一导电类型的横向延伸部,该横向延伸部与晶体管的表面间隔开。
晶体管的表面可以平行于沟道区域。设备的表面可以由形成晶体管的源极接触和栅极的平面限定。
横向延伸部可以与晶体管的表面垂直间隔开。术语“垂直”与栅极的横向距离有关。
整个横向延伸部可以与晶体管的表面垂直间隔开。
主体区域可以包括与栅极邻近(或紧挨着下方)的第一部分和位于比第一部分更深的第二部分,第一部分的掺杂浓度可高于第二部分的掺杂浓度。主体区域还可以包括与n+源极区域接触的p+区域。p+和n+区域与源极区域接触或电极短路。当短路时,p+区域也可以形成源极区域的一部分。应当理解,源极区域与绝缘栅双极型晶体管(IGBT)的集电极相同,因此当考虑IGBT结构时,源极区域也涵盖集电极操作。
横向延伸部可以仅从主体区域的第二较深部分横向延伸。术语“横向”涉及在与设备的栅极或其他触点平行的方向上延伸。
横向延伸部的掺杂浓度可以与主体区域的第二较深部分的掺杂浓度基本相同。术语“实质上”涉及几乎相同。应当理解,可以在制造过程期间优化横向延伸部的掺杂浓度或剂量,从而可以实现改进的(期望的)击穿电压。
横向延伸部可以在横向方向上从主体区域延伸,该方向与栅极从源极延伸到漂移区域的方向相反。晶体管可以包括与源极终端/电极邻近或接触的场氧化层或绝缘体。源极电极可以在场氧化层上延伸以形成场板。与场氧化层上的场板延伸部相比,横向延伸部可以进一步横向延伸到漂移区域中。场板的厚度可以被优化并与场板延伸部和横向延伸部的剂量优化相结合以实现改进的击穿电压。可以改变横向延伸部的长度以实现改进的击穿电压。应当理解,术语“长度”是指p+区域的边缘与横向延伸部的外边缘之间的距离。
横向延伸部可以作为晶体管中的终端结构而操作。横向延伸部可以用在位于通常需要终端结构(或保护环)的设备外围的晶体管结构中。
晶体管可以被配置为使得在横向延伸部和漂移区域之间的垂直结合点形成的电场减小在晶体管表面处的主体区域和漂移区域之间形成的电场。应当理解,垂直结合点是在p区域和n区域相互垂直定位的p-n结合点。由横向延伸部和漂移区域之间的垂直结合点产生的电场是特别有利的。由于p区域(主体区域)和n区域(漂移区域)彼此横向形成,所以由主体区域和漂移区域的表面产生的p-n结合点是横向结合点。因此,横向延伸部被配置为减小设备的有源和终端区域中的峰值电场。
漂移区域可以被配置为在晶体管的截止状态阻断模式期间在击穿电压下耗尽移动载体,并且能够在晶体管的导通状态导通模式期间导通电荷。
半导体基底可以包括单晶硅材料。
半导体漂移区域、主体区域和源极区域可以各自包括含有3步立方碳化硅(3C-SiC)的材料。
半导体基底、半导体漂移区域、主体区域和源极区域可以各自包括含有4步六方碳化硅(4H-SiC)的材料。
半导体基底、半导体漂移区域、主体区域、横向延伸部和源极区域可以各自包括含有氮化镓(GaN)的材料。
半导体基底可以包括单晶硅材料,并且半导体漂移区域、主体区域,横向延伸部和源极区域可以各自包括含有GaN的材料。或者,半导体基底可以包括SiC材料,并且半导体漂移区域、主体区域、横向延伸部和源极区域可以各自包括含有GaN的材料。
晶体管还可以包括被设置在半导体基底和漂移区域之间的第一半导体区域,第一半导体区域包括含有3C-SiC、4H-SiC或GaN的材料。应当理解,晶体管结构可以由诸如6H-SiC和金刚石的其它宽带隙材料制成。还应当理解,如上所述的横向延伸部可以用于使用GaN材料的横向高电子迁移率晶体管(HEMT)中。本领域技术人员应当理解,HEMT通常是横向半导体设备,其中,横向延伸部可以用作终端结构。
第一半导体区域可以是第二导电类型,并且半导体基底可以是第二导电类型。晶体管可以是垂直功率金属氧化物半导体场效应晶体管(MOSFET)。
第一半导体区域可以是第一导电类型,并且半导体基底是第一导电类型。晶体管可以是垂直功率绝缘栅双极型晶体管(IGBT)。
本文还公开了一种宽带隙高电压半导体设备,其包括:
第二导电类型的半导体基底;
第二导电类型的第一半导体区域被设置在半导体基底上;
第二导电类型的半导体漂移区域被设置在第一半导体区域上,第一半导体区域的掺杂浓度高于漂移区域的掺杂浓度;
与第二导电类型相反的第一导电类型的主体区域位于半导体漂移区域内;
其中,主体区域包括横向延伸到漂移区域中的第一导电类型的横向延伸部,该横向延伸部与设备的表面间隔开。
横向延伸部可以与设备的表面垂直间隔开。整个横向延伸部可以与设备的表面垂直间隔开。该设备可以是垂直PIN二极管。
半导体基底可以包括单晶硅材料。第一半导体区域、半导体漂移区域、横向延伸部和主体区域可以各自包括含有3步立方碳化硅(3C-SiC)的材料。
半导体基底、第一半导体区域、半导体漂移区域、横向延伸部和主体区域可以各自包括含有4H-SiC的材料。
半导体基底、第一半导体区域、半导体漂移区域、横向延伸部和主体区域可以各自包括含有GaN的材料。
半导体基底可以包括单晶硅材料,并且第一半导体区域、半导体漂移区域、横向延伸部和主体区域可以各自包括含有GaN的材料。
半导体基底可以包括SiC材料,并且第一半导体区域、半导体漂移区域、横向延伸部和主体区域可以各自包括含有GaN的材料。
在此公开了一种高压半导体设备,其包括:
第二导电类型的半导体基底;
第二导电类型的第一半导体区域,其被设置在半导体基底上;
第二导电类型的半导体漂移区域,其设置在第一半导体区域上,该第一半导体区域的掺杂浓度高于漂移区域的掺杂浓度;
肖特基金属接触,其直接地被形成在设备表面的半导体漂移区域上;
与第二导电类型相反的第一导电类型的第二半导体区域,其形成在设备表面上,并且在半导体漂移区域内,第二半导体区域的掺杂浓度高于漂移区域的掺杂浓度;以及
第一导电类型的横向延伸部,其从第二半导体区域横向延伸到漂移区域中,该横向延伸部与设备的表面间隔开。
横向延伸部可以与设备的表面垂直间隔开。整个横向延伸部可以与设备的表面垂直间隔开。
横向延伸部可仅从第二半导体区域的较深部分横向延伸。横向延伸部的掺杂浓度可以低于第二半导体区域的掺杂浓度。横向延伸部可横向延伸到肖特基金属接触。可以调整横向延伸部的长度以在肖特基二极管中实现最佳结果。这里,术语“长度”是指在肖特基接触下从第二半导体区域的边缘到横向延伸部边缘的距离。在肖特基区域的边缘下方的横向延伸部可以作为反向偏压操作中的屏蔽。
设备还可包括可操作地连接到第一半导体区域的第一欧姆接触和形成在第二半导体区域上的第二欧姆接触。
半导体基底、第一半导体区域、漂移区域、第二半导体区域和横向延伸部可以各自包括单晶硅材料。
半导体基底、第一半导体区域、漂移区域、第二半导体区域和横向延伸部可以各自包括4H-SiC。
半导体基底可以包括单晶硅材料,并且第一半导体区域、漂移区域、第二半导体区域和横向延伸部可以各自包括3C-SiC。
半导体基底、第一半导体区域、漂移区域、第二半导体区域和横向延伸部可以各自包括GaN。
半导体基底可以包括单晶硅材料,并且第一半导体区域、漂移区域、第二半导体区域和横向延伸部可以各自包括GaN。
半导体基底可以包括SiC材料,并且第一半导体区域、漂移区域、第二半导体区域和横向延伸部可以各自包括GaN。
在此公开了制造宽带隙高压半导体晶体管的方法,该方法包括:
形成半导体基底;
在半导体基底上形成第二导电类型的半导体漂移区域;
形成位于半导体漂移区域内的与第二导电类型相反的第一导电类型的主体区域;形成从主体区域横向延伸到漂移区域中的第一导电类型的横向延伸部,该横向延伸部与晶体管的表面间隔开;
形成位于主体区域内的第二导电类型的源极区域;
形成放置在源极区域上方并与源极区域接触的栅极,以控制半导体漂移区域和源极区域之间的沟道区域中的电荷,从而控制半导体漂移区域内的电荷流动。
横向延伸部的形成可以包括施加两级光掩模以植入横向延伸部。通过使用铝或硼材料,横向延伸部被离子植入。应当理解,使用硼可以是有利的,因为硼具有较轻的原子,因此通常使用该材料更容易形成更深的植入。
该方法还可以包括将横向延伸部与晶体管的表面垂直间隔开。
该方法还可以包括在半导体基底和漂移区域之间形成第一半导体区域。
该方法还可以包括使用包括单晶硅的材料形成半导体基底,并且使用包括3步立方碳化硅(3C-SiC)的材料形成半导体漂移区域、第一半导体区域、主体区域、横向延伸和源极区域中的每一个。
该方法还可以包括使用包括4H-SiC的材料来形成半导体基底、第一半导体区域、半导体漂移区域、主体区域、横向延伸部和源极区域中的每一个。
该方法还可以包括使用包括GaN的材料来形成半导体基底、半导体漂移区域、主体区域、横向延伸部和源极区域中的每一个。
该方法还可以包括使用单晶硅材料形成半导体基底,并且使用包括GaN的材料形成半导体漂移区域、主体区域、横向延伸部和源极区域中的每一个。
该方法还可以包括使用SiC材料形成半导体基底,并且使用包括GaN的材料形成半导体漂移区域、主体区域和源极区域中的每一个。
在此公开了制造高电压半导体设备的方法,该方法包括:
形成第二导电类型的半导体基底;
形成设置在半导体基底上的第二导电类型的第一半导体区域;
形成设置在第一半导体区域上的第二导电类型的半导体漂移区域,所述第一半导体区域具有比所述漂移区域更高的掺杂浓度;
形成直接形成在设备表面上的半导体漂移区域上的肖特基金属接触;
形成在设备的表面上和半导体漂移区域内形成的与第二导电类型相反的第一导电类型的第二半导体区域,该第二半导体区域具有比该漂移区域更高的掺杂浓度;以及
形成从第二半导体区域横向延伸到漂移区域中的第一导电类型的横向延伸部,该横向延伸部与设备的表面间隔开。
形成横向延伸的步骤可以包括施加两级光掩模以植入横向延伸部。通过使用铝或硼材料,横向延伸部被离子植入。
该方法还可以包括将横向延伸部从设备的表面垂直地间隔开。
该方法还可以包括在第二半导体材料上形成欧姆接触,欧姆接触包括二硅化钛材料。
该方法还可以包括使用与用于形成欧姆接触相比较低的温度形成肖特基接触,该肖特基接触包括镍材料。
附图说明
从下面的详细描述和附图中将更全面地理解本发明,然而,不应将本发明限制于所示的具体实施例,这些实施例仅用于解释和理解。
图1示出了现有技术中Si基的设备,其中形成浮场环以减小曲率效应;
图2示出了现有技术中Si基的设备,其中形成结合点终端结构以减小曲率效应;
图3示出了位于与MOSFET的终端区域邻近的垂直MOSFET的示意性横截面;
图4示出了位于MOSFET的有源极区域中的替代垂直MOSFET的示意性横截面;
图5示出了位于与IGBT的终端区域邻近的垂直IGBT的示意性截面图;
图6示出了位于IGBT的有源极区域中的替代垂直IGBT的示意性横截面;
图7示出了垂直PIN二极管的示意性横截面;
图8示出了终端结构的示意性横截面;以及
图9示出了垂直肖特基二极管的示意性横截面。
具体实施方式
参考图3,示出了金属氧化物半导体场效应晶体管(MOSFET)形式的SiC基的垂直功率半导体晶体管100的示例。晶体管100是有源晶体管,其可以被布置为位于邻近终端区域的晶体管阵列中最后的有源晶体管。在n型基底110上形成高掺杂的n型层(或第一半导体区域)120。在第一半导体120上形成漂移区域130。在漂移区域内形成p型阱140。在p型阱区域140内形成n型高掺杂源极区域150。在p型阱140内形成p型高掺杂区域。高掺杂p型和n型区域150、155使用源极区域接触或电极185被电路。并在高掺杂p型区域155邻近形成场氧化层或绝缘体195,并且源极区域接触延伸到场氧化层195上。延伸的源极区域接触185通常被称为场板。外延层或漂移区域130表面160处的p型阱140提供主体区域。p型阱140内的N型阱150提供接触区域并提供源极。沟道170形成在栅极180下方,该栅极180使用栅极电介质层190被分离。
MOSFET 100还包括从主体区域140延伸的横向延伸区域145。横向延伸部145从主体区域140的下部横向延伸到漂移区域130中。横向延伸部145使用离子注入和两级光掩模形成,以横向地延伸接到结合点的下部。该下部植入在剂量和尺寸方面进行了优化,并与优化的场氧化层195厚度和金属场板185组合。横向延伸部145朝着场板185在与源极区域邻近的场氧化层195上延伸的方向延伸。通常,横向延伸部145进一步延伸/超过场板195延伸部。横向延伸部145允许比给定掺杂级预测的理论极限更高的击穿电压(Vbr)。由于横向延伸部145的存在,在横向延伸部的上表面145a和漂移区域130之间形成垂直的p-n结合点,其降低了峰值电场(EF)。这种结构与使用横向p-n结合点实现类似结果的现有解决方案不同。另外的垂直p-n结合点由横向延伸部145的下表面145b和漂移区域130形成。该p-n结合点还可以有助于实现更高的击穿电压。
p型主体区域140可以具有两部分。第一部分是形成沟道区域170的顶部。高掺杂p区域155也形成在主体区域140的顶部。顶部包括相对较高的掺杂浓度。第二部分在顶部下方,因此比顶部更深。较深的部分包括比顶部相对较少的掺杂浓度。横向延伸部145从主体区域145的较深部分延伸出来。横向延伸部的掺杂浓度通常与主体区域145较深部分的掺杂浓度基本相同。横向延伸部的掺杂浓度为通常约1016cm-3至1018cm-3,优选地约为1017cm-3。横向延伸部145以在横向延伸部145与设备的表面160之间存在垂直间隔的方式形成。在一个示例中,设备的横向延伸部145和表面160之间的垂直间隔约为0.05μm至0.6μm,优选地约为0.1μm。
所提出的横向延伸145(深的p-植入)也可以帮助减少有源区域(例如,在漂移区域130中)的峰值电场,该横向延伸部在设备表面160处主体区域140的顶部和漂移区域结合点(p+/n-epi结合点)。通常,在常规设备中,与设备有源区域中的垂直p+主体/n-epi结合点处的电场(EF)相比(当结构中没有横向延伸部时),高漂移区域(n-epi)掺杂和p+主体区域(在主体区域的顶部)的曲率可以导致在p+主体边缘处的较高电场(EF)。降低漂移区域(n-epi)掺杂并不总是可能的,没有它,最大可实现的击穿电压(Vbr)将受到p+/n-epi结合点的曲率的限制。同时,使用这种低掺杂的深p-植入145或横向延伸145作为有源区域中主体区域140的延伸部,峰值电场(EF)可以被减小,导致设备的击穿电压增加(提供终端中的击穿电压总是高于有源区域中的击穿电压)。横向延伸部145通过在宽带隙材料(例如SiC)基制造技术中完全兼容的铝材料的离子植入形成。
应当理解,在图3的示例中,p型横向延伸部145在高压设备的终端区域附近被使用。横向延伸部145可以植入位于设备阵列的周边、外部或外部设备附近的设备中。位于阵列中心部分的设备可能没有这样的横向延伸部145结构。在图3的例子中,横向延伸结构145通常沿着与栅极从源极延伸到漂移区域的方向相反的方向横向延伸到漂移区域中。换句话说,横向延伸部145通常不在如图3示例中的设备中的沟道区域170下方。
图3的晶体管可以使用宽带隙半导体材料制造,例如SiC、GaN和/或金刚石。在一个实施例中,基底110、第一半导体层120、漂移区域130、主体区域140、横向延伸部145、源极区域150各自包括4H-SiC材料。或者,基底110可以包括硅材料,其余区域可以具有3C-SiC材料。在该特定示例中,由于在外延漂移区域130中使用3C-SiC,所以图3所示的MOSFET能够提供更大的击穿电压。同时,3C-SiC MOSFET的导通电阻可以显著低于4H-SiC MOSFET。这是因为在3C-SiC(与4H-SiC相比)中观察到更好的沟道迁移率,因此可以显著减少在漂移区域130和源极区域150之间形成的沟道区域的导通电阻。应当理解,在替代实施例中,基底110可以包括GaN,并且其余区域也可以具有GaN。基底也可以包括硅材料,其余的区域各自包括GaN。在一个实施例中,基底110可以包括SiC,并且其余区域可以各自包括GaN。
应当理解,第一半导体区域/层120具有两个目的:(1)其用作基底110和漂移区域130之间的缓冲层,以形成穿通结构,使得在截止状态操作期间消耗区域不从漂移区域130接触基底110;(2)它减少了通常由硅材料制成的基底与通常由诸如3C-SiC、4H-SiC或GaN的宽带隙材料制成的漂移区域130之间的界面缺陷。
参考图4,示出了垂直功率MOSFET的替代示例。图4中MOSFET的许多特征与图3的MOSFET相同,因此带有相同的附图标记。然而,图4的MOSFET是位于芯片上MOSFET阵列的有源区域中的有源晶体管。图4晶体管的横向延伸部145向着栅极180延伸到漂移区域130内。换句话说,横向延伸部145形成在MOSFET沟道区域的下方。图4的MOSFET的操作和特征与图3的MOSFET的操作基本相同。
参考图5,示出了绝缘栅双极型晶体管(IGBT)形式的垂直功率半导体晶体管200的示例。图5中IGBT的许多特征与图3的MOSFET相同,因此除了IGBT 200包括p+型基底215和p+型集电极层或第一半导体区域225之外,其具有相同的附图标记。第一半导体区域225在IGBT中形成载体注射区域。应当理解,IGBT 200的截止状态操作基本上类似于图3的MOSFET100。在截止状态下,横向延伸部和漂移区域130之间的垂直接合点145a、145b有助于减小设备表面160处的峰值电场。因此,IGBT中的p横向延伸部145可以用作设备中的终端结构。横向延伸部145的掺杂浓度基本上与图1中的MOSFET结构100所述的相同。p横向延伸部145与设备表面160之间的垂直距离也与图3的MOSFET 100基本相同。在该示例中,图5的IGBT是有源晶体管,其可被布置为晶体管阵列中的最后一个晶体管,并且图5的有源晶体管可以位于邻近终端区域。
在一个实施例中,IGBT的所有层可以具有4H-SiC。或者,p+基底可以由硅制成,其余层可以包括3C-SiC。应当理解,在p+硅基底215和p+3C-SiC层225之间形成异质结构。位于SiC/Si界面正上方的第一半导体(外延)区域225(~2微米)的3C-SiC材料,由于两种材料之间的晶格失配以及严重掺杂有生成的Al而导致非常严重的缺陷,因此该缺陷区域是非常导电的。以这种方式,由于存在位移,外延生成期间的Al掺杂和来自Si基底的硼向上扩散,可以通过成为准金属界面来克服异质结结构和随后的潜在障碍。应当理解,在替代实施例中,基底215可以包括GaN,并且其余区域也可以具有GaN。基底215也可以包括硅材料,其余的区域可以包括GaN。在一个实施例中,基底215可以包括SiC,并且其余区域各自可以包括GaN。
参考图6,示出了垂直功率IGBT的替代示例。图6的IGBT的许多特征与图5的IGBT相同,因此携带相同的附图标记。然而,图5的IGBT是位于芯片上的IGBT阵列的有源区域中的有源晶体管。图6的晶体管的横向延伸部145朝向栅极180延伸到漂移区域130中。换句话说,横向延伸部145形成在IGBT的沟道区域和累积区域(与累积区域邻近)的下方。图6的IGBT的操作和特征与图5的IGBT的操作基本相同。图5和图6的IGBT之间的另外区域别在于它包括在漂移区域130和第一半导体区域225之间的n型缓冲层265。缓冲层265在设备的截止状态操作期间从漂移区域130阻止消耗区域延伸到第一半导体区域225。
参考图7,示出了垂直PIN二极管700的示例。PIN二极管700包括其上形成有n型外延层(或第一半导体区域)720以提供阴极接触的基底710。n型低掺杂漂移区域730形成在n型外延层720上。p+掺杂区域750形成在漂移区域730中并形成阳极接触区域770。阳极接触770在场氧化层780上延伸以形成场板。横向延伸部745由从横向延伸到漂移区域730的p+掺杂区域750的较深部分形成。邻近横向延伸部745和p+掺杂区域的区域掺杂浓度可略高于漂移区域的掺杂浓度。换句话说,可以在横向延伸部745和p+掺杂区域750附近形成具有比漂移区域稍高的掺杂区域。在一个实例中,在横向延伸和p+掺杂区域旁边的区域掺杂浓度通常约高于1016cm-3,漂移区域的掺杂浓度约为1015cm-3。横向延伸部745的掺杂浓度约为1017cm-3
在截止状态下,横向延伸部745的操作方式与上述关于上述MOSFET和IGBT的操作方式相同。横向延伸部745和漂移区域730之间的垂直结合点有助于减小由于设备表面处的p+掺杂区域750的曲率而在设备表面处另外产生的峰值电场。场板还有助于减小设备表面的峰值电场。类似于上述实施例,基底710可以包括硅材料,其余层可以包括3C-SiC。或者,PIN二极管700的所有层可以由4H-SiC制成。或者,基底215可以包括GaN,并且其余区域也可以具有GaN。基底215也可以包括硅材料,其余的区域各自包括GaN。在一个实施例中,基底215可以包括SiC,并且其余区域各自可以包括GaN。应当理解,第一半导体区域720用作缓冲层,其防止消耗区域从漂移区域730延伸到基底710。第一半导体层720还用于减少衬底710和第一半导体区域720之间界面中的缺陷。
在一个示例中,图7的二极管是分立二极管或二极管阵列的一部分。在另一示例中,图7的二极管可以位于图3至6中描述的任何设备的终端区域中。
图8示出了提供根据本发明的横向延伸部的功率半导体区域的终端结构800的示例。图8的许多特征与图7的特征相同,因此携带相同的附图标记。然而,图8的终端结构包括横向远离p+掺杂区域750的浮动保护环885。在图8中缺少图7的场板和场氧化层,但应当理解,这些特征通常可以存在于图8的终端结构中。P型横向延伸部890从浮动保护环885的下部延伸到漂移区域730。来自浮动保护环885的横向延伸部890的存在改善了终端区域中的击穿电压。图8的终端结构800可以用在上述参照图3至图7描述的设备的终端区域中。
参考图9,示出了垂直肖特基二极管900的示例。肖特基二极管800包括基底810,在其上形成有n型外延层(或第一半导体区域)820以提供阴极接触。基底810和n型外延层820都被高度掺杂,因此阴极接触是欧姆接触。n型低掺杂漂移区域830形成在n型外延层820上。在漂移区域830内形成高度掺杂的p+掺杂区域850(或第二半导体区域)。首先使用高温形成p+掺杂区域850上的局部阳极欧姆金属接触855。之后,直接在漂移区域830上形成肖特基阳极金属接触865。与用于在p+掺杂区域850上形成欧姆接触的温度相比,使用相对较低的温度形成肖特基接触865。肖特基阳极接触865可以由镍制成,并且欧姆阳极接触855可以由二硅化钛(TiSi 2)制成,尽管可以使用其它合适的材料。应当理解,当肖特基二极管使用3C-SiC材料时,可以使用TiSi 2。此外,在肖特基接触865和欧姆接触855上形成铝接触(未示出),以将它们短路在一起并形成高导电性连接层。应当理解,欧姆接触855和肖特基接触865可以使用相同的材料制成。
在图9中,横向延伸部845由p+掺杂区域850的较深部分横向延伸到漂移区域830中形成。P+掺杂区域850用于连接保护环结构。在高电压/电流下,p+掺杂区域850正向偏置,导电性调制漂移区域830,降低其电阻并减缓功率损耗。这对于强大的功率部件是有利的。横向延伸部845在肖特基接触865的边缘下方延伸以作为反向偏压操作中的屏蔽。在一个示例中,肖特基接触865的长度可以为约8μm。在替代示例中,肖特基接触865的长度可以为约2μm至40μm,优选地约为5至15μm。横向延伸部845朝向肖特基接触865的长度可以为约2μm。在替代实施例中,横向延伸部845的长度(在p+掺杂区域850之后)可以为大约0μm至100μm,优选地约为0μm至40μm(取决于设备的应用)。二极管结构900包括两个区域:(1)刚好在p+掺杂区域850下方的PIN二极管区域860和横向延伸部区域845,(2)肖特基接触865下方的肖特基二极管区域870。PIN二极管和肖特基二极管在图9的结构900中的组合效果有助于在相对较低的电压(约0.1V)下导通设备,并且实现更高的电流,而不会变成设备特性的饱和区域。
在图9的结构中,所有的层可以包括硅材料。或者,基底810可能具有硅材料,其余层具有3C-SiC材料。二极管900的所有区域也可以具有4H-SiC材料。可以使用其它宽带隙半导体材料,诸如GaN或金刚石。例如,二极管的所有区域都可以具有GaN材料。或者,基底可以具有SiC材料,并且其余层可以具有GaN。或者,基底810可以具有硅材料,其余层可以具有GaN。
在一个实施例中,当图9的二极管的所有层包括硅材料时,半导体层820用作缓冲层,其主要在穿通布置中停止延伸到基底810的消耗。在这种布置中,缓冲层820可以是可选的。
在另一个实施例中,当基底810包括硅材料并且其余层包括诸如SiC的宽带隙材料时,第一半导体层820还用于减小硅基底810和SiC第一层820之间的界面缺陷。在这种布置中,第一半导体层820通常被设置在结构中(即使不是穿通布置)。
尽管上述描述说明主要使用SiC和GaN,但是对于本领域技术人员显而易见的是,宽带隙半导体材料的其它多型同样可以在上述设备中被使用。
虽然上述描述主要示出了垂直半导体设备,但是应当理解,横向延伸部也可以用于横向功率设备,诸如横向MOSFET、IGBT和二极管。在横向设备中,横向延伸部将用作来自周围低压设备的互连和/或绝缘措施。还应当理解,上面公开的横向延伸部也可以用于使用GaN材料的横向高电子迁移率晶体管(HEMT)中。
可以理解,横向延伸部可以被引入宽带隙半导体基晶闸管、栅极截止(GTO)晶闸管、栅极换流突变晶闸管(GCT)和/或双极结合点晶体管(BJT)。应当理解,延伸到漂移区域的横向延伸部的布局不限于上述内容,只要该概念相同即可。
还应该意识到,“顶”和“底”、“上”和“下”、“横向”和“垂直”、“下”和“上”、“前”、“后”和“下面”等,可以按照惯例在本说明书中使用,并且设备作为整体没有暗示特定的物理方向。
应当理解,参考图3至图9讨论的晶体管的各个层的掺杂浓度是在相应的现有技术晶体管中使用的掺杂浓度。
应当注意,术语“第一导电类型”可以指p型掺杂极性,术语“第二导电性”可以指n型掺杂极性。然而,这些术语并不是限制性的。应当理解,上述的所有掺杂极性可以颠倒,所得到的设备仍然符合本发明。应当理解的是,发射极、集电极和栅极可以被布置为不在同一平面或不同地对准,使得载体的方向不完全如上所述,所得到的设备仍然符合本发明。
虽然已经根据上述优选实施例描述了本发明,但是应当理解,这些实施例仅是说明性的,并且权利要求不限于那些实施例。本领域技术人员将能够根据所公开的内容进行修改和替换,这些修改和替换被认为落在所附权利要求的范围内。本说明书中公开或示出的每个特征可以并入本发明中,无论是单独地还是与本文公开或图示的任何其它特征的任何适当组合。

Claims (64)

1.一种高压半导体设备,包括:
第二导电类型的半导体基底;
所述第二导电类型的半导体漂移区域,所述半导体漂移区域被设置在所述半导体基底上,所述半导体基底区域具有比所述漂移区域更高的掺杂浓度;
第一导电类型的半导体区域,所述第一导电类型与所述第二导电类型相反,所述半导体区域形成在所述设备的表面上并且在所述半导体漂移区域内,所述半导体区域具有比所述漂移区域更高的掺杂浓度;以及
所述第一导电类型的横向延伸部,所述横向延伸部从所述半导体区域横向延伸到所述漂移区域中,所述横向延伸部与所述设备的表面间隔开。
2.如权利要求1所述的设备,还包括位于所述半导体基底和所述半导体漂移区域之间的所述第二导电类型的第一半导体区域。
3.如权利要求1或2所述的设备,其中,所述漂移区域内的所述半导体区域是第二半导体区域。
4.如上述权利要求中任一项所述的设备,其中,所述横向延伸部与所述设备的所述表面垂直间隔开。
5.如上述权利要求中任一项所述的设备,其中,所述整个横向延伸部与所述设备的所述表面垂直间隔开。
6.如权利要求3、4或5所述的设备,其中,所述横向延伸部仅从所述第二半导体区域的较深部分横向延伸。
7.如权利要求3至6中任一项所述的设备,其中,所述横向延伸部的掺杂浓度低于所述第二半导体区域的掺杂浓度。
8.如上述权利要求中任一项所述的设备,还包括可操作地连接到所述基底的第一欧姆接触和形成在所述第二半导体区域上的第二欧姆接触。
9.如权利要求8所述的设备,还包括在所述漂移区域上从所述第二欧姆接触延伸的场板。
10.如权利要求9所述的设备,其中,所述横向延伸部朝向所述场板延伸进入所述漂移区域中。
11.如上述权利要求中任一项所述的设备,其中,所述设备是垂直PIN二极管。
12.如上述权利要求中任一项所述的设备,还包括至少一个所述第一导电类型的浮动保护环,所述浮动保护环与所述漂移区域内的所述第一导电类型的高掺杂半导体区域横向间隔开。
13.如权利要求12所述的设备,还包括所述第一导电类型的横向延伸部,所述横向延伸部从所述至少一个保护环横向延伸到所述漂移区域中。
14.如权利要求11、12或13所述的设备,其中,所述设备是终端结构。
15.如上述权利要求1至8中任一项所述的设备,还包括肖特基金属接触,所述肖特基金属接触直接形成在所述设备的所述表面上的所述半导体漂移区域上。
16.如权利要求15所述的设备,其中,所述横向延伸部朝所述肖特基金属接触横向延伸。
17.如上述权利要求2至16中任一项所述的设备,其中,所述半导体基底、所述第一半导体区域、所述漂移区域、所述第二半导体区域和所述横向延伸部各自包括单晶硅材料。
18.如上述权利要求2至16中任一项所述的设备,其中,所述半导体基底、所述第一半导体区域、所述漂移区域、所述第二半导体区域和所述横向延伸部各自包括4H-SiC。
19.如上述权利要求2至16中任一项所述的设备,其中,所述半导体基底包括单晶硅材料,并且所述第一半导体区域、所述漂移区域、所述第二半导体区域和所述横向延伸部各自包括3C-SiC。
20.如上述权利要求2至16中任一项所述的设备,其中,所述半导体基底、所述第一半导体区域、所述漂移区域、所述第二半导体区域和所述横向延伸部各自包括GaN。
21.如上述权利要求2至16中任一项所述的设备,其中,所述半导体基底包括单晶硅材料,并且所述第一半导体区域、所述漂移区域、所述第二半导体区域和所述横向延伸部各自包括GaN。
22.如上述权利要求2至16中任一项所述的设备,其中,所述半导体基底包括SiC材料,并且所述第一半导体区域、所述漂移区域、所述第二半导体区域和所述横向延伸部各自包括GaN。
23.一种宽带隙高压半导体晶体管,包括:
半导体基底;
第二导电类型的半导体漂移区域,所述半导体漂移区域被设置在所述半导体基底上;
第一导电类型的主体区域,所述第一导电类型与所述第二导电类型相反,所述主体区域位于所述半导体漂移区域内;
所述第二导电类型的源极区域,所述源极区域位于所述主体区域内;
栅极,其位于所述源极区域上方并与所述源极区域接触,所述栅极用于控制所述半导体漂移区域和所述源极区域之间的沟道区域中的电荷,从而控制所述半导体漂移区域内的电荷流动;
其中,所述主体区域包括所述第一导电类型的横向延伸部,所述横向延伸部横向延伸到所述漂移区域中,所述横向延伸部与所述晶体管的表面间隔开。
24.如权利要求23所述的晶体管,其中,所述晶体管的所述表面平行于所述沟道区域。
25.如权利要求23或24所述的晶体管,其中,所述横向延伸部与所述晶体管的所述表面垂直间隔开。
26.如权利要求23、24或25所述的晶体管,其中,所述主体区域包括邻近所述栅极的第一部分和位于比所述第一部分较深处的第二部分,所述第一部分的掺杂浓度高于所述第二部分的掺杂浓度。
27.如权利要求26所述的晶体管,其中,所述横向延伸部仅从所述主体区域的较深的所述第二部分横向延伸。
28.如权利要求26或27所述的晶体管,其中,所述横向延伸部的掺杂浓度基本上与所述主体区域的较深的所述第二部分的掺杂浓度相同。
29.如上述权利要求23至28中任一项所述的晶体管,其中,所述横向延伸部从所述主体区域在横向方向上延伸,所述横向方向与所述栅极从所述源极延伸到所述漂移区域的方向相反。
30.如权利要求29所述的晶体管,其中,所述晶体管在与所述晶体管的终端结构邻近的位置形成。
31.如权利要求29或30所述的晶体管,还包括邻近所述源极区域的场绝缘体和在所述场绝缘体上延伸的源极电极,其中,与所述场绝缘体上延伸的场板相比,所述横向延伸部进一步延伸到所述漂移区域内。
32.如权利要求31所述的晶体管,其中,所述场绝缘体的厚度、所述横向延伸部的掺杂浓度和所述场绝缘体上的场板延伸部被一起调节,以实现改进的击穿电压。
33.如上述权利要求23至28中任一项所述的晶体管,其中,所述横向延伸部从所述主体区域在横向方向上延伸,所述横向方向与所述栅极从所述源极延伸到所述漂移区域的方向相同。
34.如上述权利要求23至33中任一项所述的晶体管,其中,所述晶体管被配置为使得在所述横向延伸部和所述漂移区域之间的垂直结合点处形成的电场减小在所述主体区域和所述晶体管的表面处的漂移区域之间形成的电场。
35.如上述权利要求23至34中任一项所述的晶体管,其中,所述半导体基底包括单晶硅材料。
36.如权利要求35所述的晶体管,其中,所述半导体漂移区域、所述主体区域、所述横向延伸部和所述源极区域各自包括含有3步立方碳化硅(3C-SiC)的材料。
37.如上述权利要求23至34中任一项所述的晶体管,其中,所述半导体基底、所述半导体漂移区域、所述主体区域、所述横向延伸部和所述源极区域各自包括含有4H-SiC的材料。
38.如上述权利要求23至34中任一项所述的晶体管,其中,所述半导体基底、所述半导体漂移区域、所述主体区域、所述横向延伸部和所述源极区域各自包括含有GaN的材料。
39.如上述权利要求23至34中任一项所述的晶体管,其中,所述半导体基底包括单晶硅材料,并且所述半导体漂移区域、所述主体区域、所述横向延伸部和所述源极区域各自包括含有GaN的材料。
40.如上述权利要求23至34中任一项所述的晶体管,其中,所述半导体基底包括SiC材料,并且所述半导体漂移区域、所述主体区域、所述横向延伸部和所述源极区域各自包括含有GaN的材料。
41.如上述权利要求23至40中任一项所述的晶体管,还包括设置在所述半导体衬底和所述漂移区之间的第一半导体区域,所述第一半导体区域包括含有3C-SiC、4H-SiC或GaN的材料。
42.如权利要求41所述的晶体管,其中,所述第一半导体区域是所述第二导电类型并且所述半导体基底是所述第二导电类型。
43.如权利要求42所述的晶体管,其中,所述晶体管是垂直功率金属氧化物半导体场效应晶体管(MOSFET)。
44.如权利要求41所述的晶体管,其中,所述第一半导体区域是所述第一导电类型并且所述半导体基底是所述第一导电类型。
45.如权利要求44所述的晶体管,其中,所述晶体管是垂直功率绝缘栅双极型晶体管(IGBT)。
46.一种制造高压半导体设备的方法,所述方法包括:
形成第二导电类型的半导体基底;
形成所述第二导电类型的半导体漂移区域,所述半导体漂移区域设置在所述半导体漂移区域上,所述半导体基底具有高于所述漂移区域的掺杂浓度;
在所述设备的表面和所述半导体漂移区域内形成第一导电类型的半导体区域,所述第一导电类型与所述第二导电类型相反,所述半导体区域具有比所述漂移区域更高的掺杂浓度;以及
形成所述第一导电类型的横向延伸部,所述横向延伸部从所述半导体区域横向延伸到所述漂移区域中,所述横向延伸部与所述设备的所述表面间隔开。
47.如权利要求46所述的方法,还包括在所述半导体基底和所述半导体漂移基底之间形成所述第二导电类型的第一半导体区域。
48.如权利要求46或47所述的方法,其中,所述漂移区域内的所述半导体区域是第二半导体区域。
49.如上述权利要求46至48中任一项所述的方法,其中,形成所述横向延伸部包括施加两级光掩模以植入所述横向延伸部。
50.如上述权利要求46至49中任一项所述的方法,其中,所述横向延伸部使用铝或硼材料被离子植入。
51.如上述权利要求46至50中任一项所述的方法,还包括使所述横向延伸部与所述设备的所述表面垂直地间隔开。
52.如上述权利要求48至51中任一项所述的方法,还包括在所述第二半导体材料上形成欧姆接触,所述欧姆接触包括二硅化钛材料。
53.如上述权利要求46至52中任一项所述的方法,还包括直接在所述漂移区域上形成肖特基金属接触。
54.如权利要求53所述的方法,还包括使用比用于形成所述欧姆接触的温度相对低的温度形成所述肖特基接触,所述肖特基接触包括镍材料。
55.如上述权利要求48至54中任一项所述的方法,还包括使用包括单晶硅的材料形成所述半导体基底,并且使用包括3步立方碳化硅(3C-SiC)的材料形成所述半导体漂移区、所述第一半导体区、所述横向延伸部和所述第二半导体区域中的每一个。
56.如上述权利要求48至54中任一项所述的方法,还包括使用包括4H-SiC的材料来形成所述半导体基底、所述第一半导体区域、所述半导体漂移区域、所述横向延伸部和所述第二半导体区域中的每一个。
57.如上述权利要求48至54中任一项所述的方法,还包括使用包括GaN的材料来形成所述半导体基底、所述第一半导体区域、所述半导体漂移区域、所述横向延伸部和所述第二半导体区域中的每一个。
58.如上述权利要求48至54中任一项所述的方法,还包括使用单晶硅材料形成所述半导体基底,并且使用包括GaN的材料形成所述第一半导体区域、所述半导体漂移区域、所述横向延伸部和所述第二半导体区域中的每一个。
59.如上述权利要求48至54中任一项所述的方法,还包括使用SiC材料形成所述半导体基底,并且使用包括GaN的材料形成所述第一半导体区域、所述半导体漂移区域和所述第二半导体区域中的每一个。
60.一种制造宽带隙高压半导体晶体管的方法,所述方法包括:
形成半导体基底;
在所述半导体基底上形成第二导电类型的半导体漂移区域;
形成位于所述半导体漂移区域内的第一导电类型的主体区域,所述第一导电类型与所述第二导电类型相反;
形成所述第一导电类型的横向延伸部,所述横向延伸部从所述主体区域横向延伸到所述漂移区域中,所述横向延伸部与所述晶体管的表面间隔开;
形成所述第二导电类型的源极区域,所述源极区域位于所述主体区域内;
形成栅极,所述栅极位于所述源极区域上方并与所述源极区域接触,所述栅极用于控制所述半导体漂移区域和所述源极区域之间的沟道区域中的电荷,从而控制所述半导体漂移区域内的电荷流动。
61.如权利要求60所述的方法,其中,形成所述横向延伸部包括施加两级光掩模以植入所述横向延伸部。
62.如权利要求60或61所述的方法,其中,所述横向延伸部使用铝或硼材料被离子植入。
63.如权利要求60、61或62所述的方法,还包括从所述晶体管的所述表面垂直地间隔所述横向延伸部。
64.如上述权利要求60至63中任一项所述的方法,还包括在所述半导体基底和所述漂移区域之间形成第一半导体区域。
CN201580062362.6A 2014-09-17 2015-09-17 高压半导体设备 Pending CN107210318A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1416403.2A GB2530284A (en) 2014-09-17 2014-09-17 High voltage semiconductor devices
GB1416403.2 2014-09-17
PCT/GB2015/052689 WO2016042330A1 (en) 2014-09-17 2015-09-17 High voltage semiconductor devices

Publications (1)

Publication Number Publication Date
CN107210318A true CN107210318A (zh) 2017-09-26

Family

ID=51869730

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580062362.6A Pending CN107210318A (zh) 2014-09-17 2015-09-17 高压半导体设备

Country Status (5)

Country Link
US (1) US10157979B2 (zh)
EP (1) EP3195369A1 (zh)
CN (1) CN107210318A (zh)
GB (1) GB2530284A (zh)
WO (1) WO2016042330A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110828549A (zh) * 2019-11-14 2020-02-21 西安微电子技术研究所 一种保护环掺杂抗辐射晶体管结构及其制备方法
CN111316447A (zh) * 2017-11-07 2020-06-19 美高森美公司 用于减轻碳化硅mosfet器件中的短沟道效应的方法和组件
CN113314600A (zh) * 2021-06-22 2021-08-27 珠海市浩辰半导体有限公司 埋层终端结构及其制备方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10290711B2 (en) * 2015-01-27 2019-05-14 Mitsubishi Electric Corporation Semiconductor device
US9887288B2 (en) * 2015-12-02 2018-02-06 Texas Instruments Incorporated LDMOS device with body diffusion self-aligned to gate
KR101870809B1 (ko) * 2016-06-21 2018-08-02 현대오트론 주식회사 전력 반도체 소자
CN105931963B (zh) * 2016-07-06 2019-12-03 株洲中车时代电气股份有限公司 一种碳化硅PiN二极管的结终端结构的制造方法
US10340332B2 (en) 2016-09-17 2019-07-02 University Of Electronic Science And Technology Of China Folded termination with internal field plate
US10559681B2 (en) 2017-12-21 2020-02-11 Texas Instruments Incorporated High voltage lateral junction diode device
US11069770B2 (en) * 2018-10-01 2021-07-20 Ipower Semiconductor Carrier injection control fast recovery diode structures
FR3093598B1 (fr) * 2019-03-05 2023-08-04 St Microelectronics Srl Dispositif de protection contre les surtensions
US11876093B2 (en) * 2020-03-24 2024-01-16 Richtek Technology Corporation Power device including lateral insulated gate bipolar transistor (LIGBT) and manufacturing method thereof
US11476370B2 (en) * 2020-08-06 2022-10-18 Alpha Power Solutions Limited Semiconductor device with embedded Schottky diode and manufacturing method thereof
KR102417145B1 (ko) * 2020-12-11 2022-07-05 현대모비스 주식회사 전력 반도체 소자
US11901446B2 (en) 2021-08-18 2024-02-13 Unity Power Technology Limited SiC MOSFET with transverse P+ region
CN114937690B (zh) * 2022-06-06 2023-04-28 电子科技大学 一种平面型碳化硅绝缘栅双极晶体管及其制作方法
JP2024046441A (ja) * 2022-09-22 2024-04-03 株式会社東芝 半導体装置およびその製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05259443A (ja) * 1992-01-16 1993-10-08 Fuji Electric Co Ltd 絶縁ゲート型半導体装置
US6198129B1 (en) * 1999-08-31 2001-03-06 Oki Electric Industry Co., Ltd. Vertical type insulated gate transistor
US20070272979A1 (en) * 2006-05-16 2007-11-29 Kabushiki Kaisha Toshiba Semiconductor device
CN101258608A (zh) * 2005-09-08 2008-09-03 三菱电机株式会社 半导体装置以及半导体装置的制造方法
US20090206913A1 (en) * 2008-02-14 2009-08-20 Maxpower Semiconductor Inc. Edge Termination with Improved Breakdown Voltage
CN102097478A (zh) * 2010-12-19 2011-06-15 电子科技大学 一种极低导通电阻浅槽埋沟vdmos器件
WO2013172059A1 (ja) * 2012-05-15 2013-11-21 富士電機株式会社 半導体装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4837606A (en) * 1984-02-22 1989-06-06 General Electric Company Vertical MOSFET with reduced bipolar effects
US5917203A (en) * 1996-07-29 1999-06-29 Motorola, Inc. Lateral gate vertical drift region transistor
US5780878A (en) * 1996-07-29 1998-07-14 Motorola, Inc. Lateral gate, vertical drift region transistor
US5917204A (en) * 1997-03-31 1999-06-29 Motorola, Inc. Insulated gate bipolar transistor with reduced electric fields
EP1396030B1 (en) * 2001-04-11 2011-06-29 Silicon Semiconductor Corporation Vertical power semiconductor device and method of making the same
KR100425435B1 (ko) * 2002-02-08 2004-03-30 페어차일드코리아반도체 주식회사 감소된 표면 전계 구조를 갖는 수평형 디모스 트랜지스터및 그 제조방법
US6878993B2 (en) * 2002-12-20 2005-04-12 Hamza Yilmaz Self-aligned trench MOS junction field-effect transistor for high-frequency applications
JP5188037B2 (ja) 2006-06-20 2013-04-24 株式会社東芝 半導体装置
JP4420062B2 (ja) 2007-05-10 2010-02-24 株式会社デンソー ジャンクションバリアショットキーダイオードを備えた炭化珪素半導体装置
JP4798119B2 (ja) * 2007-11-06 2011-10-19 株式会社デンソー 炭化珪素半導体装置およびその製造方法
JP2009130266A (ja) * 2007-11-27 2009-06-11 Toshiba Corp 半導体基板および半導体装置、半導体装置の製造方法
US8389366B2 (en) * 2008-05-30 2013-03-05 Freescale Semiconductor, Inc. Resurf semiconductor device charge balancing
US20110241114A1 (en) * 2010-04-02 2011-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. High voltage mos transistor
CN201725794U (zh) * 2010-06-23 2011-01-26 苏州硅能半导体科技股份有限公司 一种沟槽式肖特基势垒二极管整流器件
FR2963985A1 (fr) 2010-08-18 2012-02-24 St Microelectronics Tours Sas Diode schottky verticale au nitrure de gallium

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05259443A (ja) * 1992-01-16 1993-10-08 Fuji Electric Co Ltd 絶縁ゲート型半導体装置
US6198129B1 (en) * 1999-08-31 2001-03-06 Oki Electric Industry Co., Ltd. Vertical type insulated gate transistor
CN101258608A (zh) * 2005-09-08 2008-09-03 三菱电机株式会社 半导体装置以及半导体装置的制造方法
US20070272979A1 (en) * 2006-05-16 2007-11-29 Kabushiki Kaisha Toshiba Semiconductor device
US20090206913A1 (en) * 2008-02-14 2009-08-20 Maxpower Semiconductor Inc. Edge Termination with Improved Breakdown Voltage
CN102097478A (zh) * 2010-12-19 2011-06-15 电子科技大学 一种极低导通电阻浅槽埋沟vdmos器件
WO2013172059A1 (ja) * 2012-05-15 2013-11-21 富士電機株式会社 半導体装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111316447A (zh) * 2017-11-07 2020-06-19 美高森美公司 用于减轻碳化硅mosfet器件中的短沟道效应的方法和组件
CN110828549A (zh) * 2019-11-14 2020-02-21 西安微电子技术研究所 一种保护环掺杂抗辐射晶体管结构及其制备方法
CN110828549B (zh) * 2019-11-14 2022-08-16 西安微电子技术研究所 一种保护环掺杂抗辐射晶体管结构及其制备方法
CN113314600A (zh) * 2021-06-22 2021-08-27 珠海市浩辰半导体有限公司 埋层终端结构及其制备方法
CN113314600B (zh) * 2021-06-22 2022-04-15 珠海市浩辰半导体有限公司 埋层终端结构及其制备方法

Also Published As

Publication number Publication date
EP3195369A1 (en) 2017-07-26
GB201416403D0 (en) 2014-10-29
WO2016042330A1 (en) 2016-03-24
US10157979B2 (en) 2018-12-18
US20170243937A1 (en) 2017-08-24
GB2530284A (en) 2016-03-23

Similar Documents

Publication Publication Date Title
CN107210318A (zh) 高压半导体设备
JP7182594B2 (ja) ゲート・トレンチと、埋め込まれた終端構造とを有するパワー半導体デバイス、及び、関連方法
US10840367B2 (en) Transistor structures having reduced electrical field at the gate oxide and methods for making same
CN205542793U (zh) 级联开关结构
CN104011865B (zh) 在GaN材料中制造浮置保护环的方法及系统
US9337268B2 (en) SiC devices with high blocking voltage terminated by a negative bevel
CN101467262B (zh) 结势垒肖特基整流器及其制造方法
US20130137230A1 (en) Semiconductor Device with Field Electrode
CN106098553A (zh) 通过外延生长制造半导体装置
KR101167530B1 (ko) 수퍼 헤테로 접합 반도체소자 및 그 제작방법
US9960268B2 (en) Semiconductor devices, power semiconductor devices, and methods for forming a semiconductor device
US10256352B2 (en) Structures for nitride vertical transistors
JP2003101022A (ja) 電力用半導体素子
CN102468298A (zh) 带有集成箝位电路的累积型场效应管
US20200219972A1 (en) Silicon carbide device with schottky contact
US7897998B2 (en) III-nitride power semiconductor device
CN105702719A (zh) 具有改进稳定性的功率半导体器件及其生产方法
JP2007027440A (ja) 半導体装置
US20220246744A1 (en) Transistor device and method of manufacturing
US20200243513A1 (en) A concept for silicon carbide power devices
JP6932998B2 (ja) 炭化ケイ素mosfet及びその製造方法
US20190355840A1 (en) Semiconductor device and method for manufacturing semicondcutor device
US20220173227A1 (en) Finfet power semiconductor devices
US20230326974A1 (en) Semiconductor diode and manufacturing method
JP2020511773A (ja) 炭化ケイ素スーパージャンクションパワー半導体デバイスおよびその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170926

WD01 Invention patent application deemed withdrawn after publication