CN107207274A - 一种具有多核共壳结构的微米氧化铈颗粒及其制备方法 - Google Patents

一种具有多核共壳结构的微米氧化铈颗粒及其制备方法 Download PDF

Info

Publication number
CN107207274A
CN107207274A CN201580073404.6A CN201580073404A CN107207274A CN 107207274 A CN107207274 A CN 107207274A CN 201580073404 A CN201580073404 A CN 201580073404A CN 107207274 A CN107207274 A CN 107207274A
Authority
CN
China
Prior art keywords
cerium oxide
cerium
oxide particle
micron
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580073404.6A
Other languages
English (en)
Other versions
CN107207274B (zh
Inventor
沈美庆
王军
王建强
魏光曦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rare earth catalysis Innovation Research Institute (Dongying) Co.,Ltd.
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Publication of CN107207274A publication Critical patent/CN107207274A/zh
Application granted granted Critical
Publication of CN107207274B publication Critical patent/CN107207274B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0072Preparation of particles, e.g. dispersion of droplets in an oil bath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • B01J27/045Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

本发明涉及一种具有多核共壳结构的微米氧化铈颗粒,其包括:氧化铈壳层,该壳层由晶态和/或非晶态纳米氧化铈颗粒构成;和位于所述壳层内部的多个纳米氧化铈晶粒核聚集体。本发明还涉及具有多核共壳结构的微米氧化铈颗粒的制备方法。以本发明的微米氧化铈颗粒为载体的负载型催化剂水热稳定性好、抗硫性好且负载的催化剂活性组分不易被包埋,在CO、NO或挥发性有机物等的尾气催化氧化领域具有很好的应用前景。

Description

一种具有多核共壳结构的微米氧化铈颗粒及其制备方法 技术领域
本发明涉及无机先进纳微米材料技术领域,尤其涉及催化剂载体技术领域。
背景技术
氧化铈是一种重要的稀土氧化物,其作为催化剂载体及载体的添加剂具有许多优良的性能,在催化研究中已得到人们的充分肯定。在后续的研究中,人们发现氧化铈以其良好的储放氧性能及较强的三价铈离子和四价铈离子之间的氧化还原性能,作为催化剂载体时在氧化反应、甲醇裂解及氮氧化物的还原等反应中显示了其独特的优势。
氧化铈的物理和化学性能极大地依赖于本身的微观结构,如尺度、形貌、比表面积等,具有微纳米分级多孔结构的氧化铈材料不仅能很好的满足高效吸附材料对自身微观结构的要求,同时也可以通过增大比表面积来增加表面催化活性位点,从而提高氧化铈的催化性能,因此研究制备此类材料具有重要的现实意义。但采用目前已有方法制得的具有大比表面积的纳微米氧化铈颗粒、氧化铈气凝胶等作为催化剂载体,在使用过程中又发现其机械强度和耐高温性能差,容易在高温状态下发生烧结及中空结构塌陷的情况。
当应用于含有CO、NO或挥发性有机物等的尾气催化后处理领域时,以常规结构的氧化铈作为催化剂载体制备的负载型催化剂具有以下缺点:
1)水热稳定性差;载体本身容易在高温状态下发生烧结及中空结构塌陷的现象,造成比表面积和孔隙率降低;
2)所负载的贵金属或过渡金属等活性组分在高温水热老化过程中易被包埋;
3)抗硫性差,长期暴露在含硫气氛中会导致催化剂失活。
上述问题严重限制了氧化铈材料在包括固定源和移动源在内的尾气催化后处理领域的应用。因此,如何在维持纳米氧化铈载体的高比表面积的同时又保证其机械强度和耐高温等性能成为目 前值得关注的课题。
发明内容
为了解决上述问题,提出本发明。
本发明第一方面涉及一种具有多核共壳结构的微米氧化铈颗粒,其包括:
氧化铈壳层,该壳层由晶态和/或非晶态纳米氧化铈颗粒构成;和
位于所述壳层内部的多个纳米氧化铈晶粒核聚集体。
优选地,所述壳层由晶态纳米氧化铈颗粒构成。所述纳米氧化铈晶粒核的数目可以是数千个、数万个、甚至数百万个。本发明的具有多核共壳结构的微米氧化铈颗粒,其中的壳层可以对内部的纳米氧化铈晶粒核聚集体进行保护,从而提高其各方面性能。
在优选的实施方案中,所述微米氧化铈颗粒为球型或类球形颗粒,平均粒径为0.5μm-50μm,优选1-10μm;BET比表面积为50-200m2/g,孔体积为0.1-0.8cm3/g,平均孔径为2-40nm;其中所述壳层内部的多个纳米氧化铈晶粒核聚集体的质量占所述微米氧化铈颗粒总质量的99-85%,所述氧化铈壳层的质量占所述微米氧化铈颗粒总质量的1-15%,其中,所述壳层内部的多个纳米氧化铈晶粒核聚集体的质量和所述氧化铈壳层的质量可以通过控制沉积条件来控制;所述氧化铈壳层的厚度为10-200nm,优选20-100nm;所述纳米氧化铈晶粒的平均粒径为2-50nm,优选2-40nm,优选2-30nm,优选2-20nm,优选2-10nm;所述氧化铈壳层中的晶态和/或非晶态纳米氧化铈颗粒的平均粒径为2-50nm。
所述纳米氧化铈晶粒核聚集体和所述氧化铈壳层都具是多孔的,即具有很多微观孔道或孔口,以便于反应物和反应产物的扩散进出。这些微观孔道或孔口形成过程如下:由众多微粒团聚在一起时的微粒间隙构成的;或者,如下文所述当在制备过程中使用有机助剂时,有机助剂在沉淀过程中被夹带在固体颗粒中,煅烧后有机助剂被烧掉,而在原来其占据的位置处产生孔道或孔口。
本发明第二方面涉及一种具有多核共壳结构的微米氧化铈颗 粒的制备方法,其包括以下步骤:
A.使铈盐溶液与沉淀剂反应生成悬浮液,向生成的悬浮液中通入空气进行氧化,得到纳米氧化铈前驱体的液相分散体系;其中所述纳米氧化铈前驱体中包含铈的氢氧化物和铈的氧化物;
B.将所述纳米氧化铈前驱体的液相分散体系进行喷雾干燥、焙烧,得到纳米氧化铈晶粒核聚集体胚体;
C.将所述纳米氧化铈晶粒核聚集体胚体分散到溶剂中得到悬浮液并向所述悬浮液中加入铈盐溶液和沉淀剂在所述纳米氧化铈晶粒核聚集体周围进行沉积包壳反应,得到第二悬浮液;
D.将所述第二悬浮液进行喷雾干燥、焙烧,得到所述具有多核共壳结构的微米氧化铈颗粒命名为C1。
在优选的实施方案中,在步骤A和步骤B之间增加如下步骤:向所述纳米氧化铈前驱体的液相分散体系中加入有机助剂。其中,所述有机溶剂起到助分散和造孔剂的作用。
在优选的实施方案中,所述有机助剂包括甲基纤维素、淀粉、氨基乙酸、6-氨基己酸、草酸、柠檬酸、聚合度在400-20000范围内的聚乙二醇中的一种或几种。
在优选的实施方案中,所述铈盐包括硝酸铈(III)、醋酸铈(III)或硫酸铈(III);所述铈盐溶液的浓度为0.005mol/L-1mol/L;所述沉淀剂包括氨水、尿素、氢氧化钠或氢氧化钾;独立地,步骤A中在氧化前将所述悬浮液的pH值调至7-11.5;独立地,步骤C中的所述溶剂包括水、无水乙醇、水-乙醇混合体系或水-乙二醇混合体系;独立地,步骤B和/或步骤D中的所述焙烧温度为450-750℃。
本发明第三方面涉及另一种具有多核共壳结构的微米氧化铈颗粒的制备方法,其包括以下步骤:
A.使铈盐溶液与沉淀剂反应生成悬浮液,向生成的悬浮液中通入空气进行氧化,得到纳米氧化铈前驱体的液相分散体系;
B.向所述纳米氧化铈前驱体的液相分散体系中加入有机助剂和铈盐溶液,得到分散均匀的液相分散体系;
C.将所述分散均匀的液相分散体系进行喷雾干燥、焙烧,得到具有多核共壳结构的微米氧化铈颗粒。将通过此方法制备的具有多核共壳结构的微米氧化铈颗粒命名为C2。
在优选的实施方案中,所述铈盐包括硝酸铈(III)、醋酸铈(III)或硫酸铈(III);所述铈盐溶液的浓度为0.005mol/L-1mol/L;所述沉淀剂包括氨水、尿素、氢氧化钠或氢氧化钾;独立地,步骤A中在氧化前将所述悬浮液的pH值调至7-11.5;所述有机助剂包括甲基纤维素、淀粉、氨基乙酸、6-氨基己酸、草酸、柠檬酸中、聚合度在400-20000范围内的聚乙二醇的一种或几种;独立地,步骤C中所述焙烧温度为450-750℃。
本发明第四方面涉及另一种具有多核共壳结构的微米氧化铈颗粒的制备方法,其包括以下步骤:
A.使铈盐溶液与沉淀剂反应生成悬浮液,其中所述铈盐溶液和/或沉淀剂中含有有机助剂,且其中所述铈盐相对于沉淀剂来说是化学计量过量的;向生成的悬浮液中通入空气进行氧化,得到纳米氧化铈前驱体的液相分散体系;
B.将所述纳米氧化铈前驱体的液相分散体系进行喷雾干燥、焙烧,得到具有多核共壳结构的微米氧化铈颗粒。将通过此方法制备的具有多核共壳结构的微米氧化铈颗粒命名为C3。
在该种制备方法中,过量的铈盐中的铈离子会与有机助剂结合,在喷雾干燥、焙烧过程中形成氧化铈壳层。
在优选的实施方案中,所述铈盐包括硝酸铈(III)、醋酸铈(III)或硫酸铈(III);所述铈盐溶液的浓度为0.005mol/L-1mol/L;所述沉淀剂包括氨水、尿素、氢氧化钠或氢氧化钾;独立地,所述有机助剂包括聚合度在400-20000范围内的聚乙二醇、甲基纤维素、淀粉、氨基乙酸、6-氨基己酸、草酸、柠檬酸中的一种或几种;独立地,步骤A中在氧化前将所述悬浮液的pH值调至8-11.5;独立地,步骤B中所述焙烧温度为450-750℃。
本发明第五方面涉及一种负载型催化剂,该负载型催化剂包括载体和负载于载体上的活性组分,其中:
所述载体为本发明第一方面所述的具有多核共壳结构的微米氧化铈颗粒;
所述活性组分为贵金属或过渡金属纳米颗粒,其分散在所述多个纳米氧化铈晶粒核上和/或所述氧化铈壳层上。
在优选的实施方案中,所述贵金属为Pt或Pd,所述贵金属呈氧化态或单质态,以其中的贵金属质量计算,所述贵金属的负载量为所述具有多核共壳结构的微米氧化铈颗粒质量的0.02-5%;独立地,所述过渡金属为Mn、Fe、CO、Ni或Cu,所述过渡金属呈氧化态,以其中的过渡金属质量计算,所述过渡金属的负载量为所述具有多核共壳结构的微米氧化铈颗粒质量的0.1-20%。
本发明第六方面涉及本发明第五方面所述的负载型催化剂的用途,其中所述负载型催化剂用于催化NO氧化反应、CO氧化反应、汽车尾气三效催化反应或挥发性有机物氧化脱除反应。
本发明的有益效果:
1、本发明的具有多核共壳结构的微米氧化铈颗粒比表面积大,机械强度高且水热稳定性好。
2、以本发明的具有多核共壳结构的微米氧化铈颗粒为载体制备的负载型催化剂具有水热稳定性好、抗硫性好和所负载的贵金属或过渡金属等活性组分在高温水热老化过程中不易被包埋等优点。
附图说明
图1是本发明具有多核共壳结构的微米氧化铈颗粒的结构示意图。
图2中图2-1和图2-2均为在本发明对比例中制备的没有多核共壳结构的纳米氧化铈聚集体颗粒C-0的扫描电子显微镜(SEM)照片,从中可以看出颗粒表面粗糙,明显呈多孔结构,且微米氧化铈聚集体颗粒表面是由更小的纳米级氧化铈颗粒紧密聚集而成。
图3中图3-1和图3-2均为本发明实施例1制备的具有多核共壳结构的微米氧化铈颗粒C1-1的扫描电子显微镜(SEM)照片,从中可以看出本发明的微米氧化铈颗粒具有球型或类球型结构。 其中图3-2为图3-1中虚线圈出处的部分破损的多核共壳结构的微米氧化铈颗粒的放大图,图3-2可以证明壳层的存在。
图4为本发明实施例1制备的具有多核共壳结构的微米氧化铈颗粒C1-1的X-射线衍射(XRD)图,从图中可以看出该材料为立方萤石结构,所有衍射峰均归属为CeO2的立方萤石结构;根据(111)晶面衍射峰展宽计算CeO2晶粒尺寸约为8.6nm。且证明本发明的具有多核共壳结构的微米氧化铈颗粒的核为晶态。
图5为本发明实施例5制备的具有多核共壳结构的微米氧化铈颗粒C2-1的扫描电子显微镜(SEM)照片。由图5可以看出通过本发明的方法制备的具有多核共壳结构的微米氧化铈颗粒具有相对光滑的表面。
图6为将本发明实施例5制备的具有多核共壳结构的微米氧化铈颗粒C2-1研磨后的扫描电子显微镜(SEM)照片。由图6可以看出具有多核共壳结构的微米氧化铈颗粒研磨后壳层部分破损,可以看到内部纳米氧化铈晶粒核聚集体呈多孔结构。
图7为本发明实施例9制备的具有多核共壳结构的微米氧化铈颗粒C3-1的扫描电子显微镜(SEM)照片。由图7可以看出通过本发明的方法制备的具有多核共壳结构的微米氧化铈颗粒具有相对光滑的表面。
图8为将本发明实施例9制备的具有多核共壳结构的微米氧化铈颗粒C3-1研磨后的扫描电子显微镜(SEM)照片。由图8可以看出具有多核共壳结构的微米氧化铈颗粒研磨后壳层部分破损,可以看到内部纳米氧化铈晶粒核聚集体呈多孔结构。
图9为将本发明实施例9制备的具有多核共壳结构的微米氧化铈颗粒C3-1作为载体负载Pd与在对比例中制备的C-0作为载体负载Pd并将两者经过水热处理后催化含有CO和C3H6的混合气体的催化活性曲线。其中图9-1为气体中CO的转化率曲线,图9-2为气体中C3H6的转化率曲线,图中A表示经过水热处理后的负载型催化剂Pd/C3-1,B表示经过水热处理后的负载型催化剂Pd/C-0。
图10为将本发明实施例9制备的具有多核共壳结构的微米氧化铈颗粒C3-1作为载体负载Pd与在对比例中制备的C-0作为载 体负载Pd并将两者经过硫化处理后催化含有CO和C3H6的混合气体的催化活性曲线。其中图10-1为气体中CO的转化率曲线,图10-2为气体中C3H6的转化率曲线,图中A表示经过硫化处理后的负载型催化剂Pd/C3-1,B表示经过硫化处理后的负载型催化剂Pd/C-0。
图11为将本发明实施例9制备的具有多核共壳结构的微米氧化铈颗粒C3-1作为载体负载Mn与在对比例中制备的C-0作为载体负载Mn并将两者经过水热处理后催化含有NO的气体的催化活性曲线。图中A表示经过水热处理后的负载型催化剂Mn/C3-1,B表示经过水热处理后的负载型催化剂Mn/C-0。
图12为将本发明实施例9制备的具有多核共壳结构的微米氧化铈颗粒C3-1作为载体负载Mn与在对比例中制备的C-0作为载体负载Mn并将两者经过硫化处理后催化含有CO的气体的催化活性曲线。图中A表示经过硫化处理后的负载型催化剂Mn/C3-1,B表示经过硫化处理后的负载型催化剂Mn/C-0。
具体实施方式
给出以下实施例以举例说明本发明,这些实施例并非限制性的。
对比例
通过以下步骤制备没有多核共壳结构的纳米氧化铈晶粒聚集体:
A.使0.005mol/L的硝酸铈(III)溶液与氨水反应生成悬浮液,并将悬浮液的pH值调至7,再向生成的悬浮液中通入空气进行氧化,得到纳米氧化铈前驱体的液相分散体系;
B.将所述纳米氧化铈前驱体的液相分散体系进行喷雾干燥、在450℃下焙烧,得到纳米氧化铈晶粒聚集体;将通过此方法制备的没有多核共壳结构的纳米氧化铈晶粒聚集体命名为C-0。其中A步骤的制备方法详见参考文献:X.-D.Zhou,W.Huebner,H.U.Anderson,Processing of nanometer-scale CeO2 particles[J],Chemical Materials,2003,15:378-382.通过引用将其并入本文中。
实施例1-4:
通过以下步骤制备具有多核共壳结构的微米氧化铈颗粒C1:
A.使铈盐溶液与沉淀剂反应生成悬浮液,调节所述悬浮液的pH值,向生成的悬浮液中通入空气进行氧化,得到纳米氧化铈前驱体的液相分散体系;任选地,向所述纳米氧化铈前驱体的液相分散体系中加入有机助剂;
B.将所述纳米氧化铈前驱体的液相分散体系进行喷雾干燥、焙烧,得到纳米氧化铈晶粒核聚集体胚体;
C.将所述纳米氧化铈晶粒核聚集体胚体分散到溶剂中得到悬浮液并向所述悬浮液中加入铈盐溶液和沉淀剂在所述纳米氧化铈晶粒核聚集体周围进行沉积包壳反应,得到第二悬浮液;
D.将所述第二悬浮液进行喷雾干燥、焙烧,得到所述具有多核共壳结构的微米氧化铈颗粒命名为C1。
具体实验情况如表1所示:
表1:实施例1-4的制备条件
实施例5-8
通过以下步骤制备具有多核共壳结构的微米氧化铈颗粒C2:
A.使铈盐溶液与沉淀剂反应生成悬浮液,调节所述悬浮液的pH值,向生成的悬浮液中通入空气进行氧化,得到纳米氧化铈前驱体的液相分散体系;
B.向所述纳米氧化铈前驱体的液相分散体系中加入有机助剂和铈盐溶液,得到分散均匀的液相分散体系;
C.将所述分散均匀的液相分散体系进行喷雾干燥、焙烧,得到具有多核共壳结构的微米氧化铈颗粒。将通过此方法制备的具有多核共壳结构的微米氧化铈颗粒命名为C2。
具体实验情况如表2所示:
表2:实施例5-8的制备条件
实施例9-12
通过以下步骤制备具有多核共壳结构的微米氧化铈颗粒C3:
A.使铈盐溶液与沉淀剂反应生成悬浮液,其中所述铈盐溶液和/或沉淀剂中含有有机助剂,且其中所述铈盐相对于沉淀剂来说是化学计量过量的;调节所述悬浮液的pH值,向生成的悬浮液中通入空气进行氧化,得到纳米氧化铈前驱体的液相分散体系;
B.将所述纳米氧化铈前驱体的液相分散体系进行喷雾干燥、焙烧,得到具有多核共壳结构的微米氧化铈颗粒。将通过此方法制备的具有多核共壳结构的微米氧化铈颗粒命名为C3。
具体实验情况如表3所示:
表3:实施例9-12的制备条件
实施例13
本实施例以C1-1、C2-1、C3-1及对比例C-0的材料为样品,对它们进行了水热稳定性方面的测试,其中“新鲜”表示新制得的样品,“老化”表示水热反应后的样品。水热稳定性测试条件为在750℃、10%H2O的空气气氛中水热老化处理20小时。结果如表4所示:
表4:水热稳定性测试结果
备注:孔体积数据选用氮气等温吸附中最大压力下对应的吸附体积;平均孔径选用BJH算法中脱附值计算;平均晶粒直径选用X射线衍射图样(XRD)中立方萤石结构CeO2(111)晶面衍射峰半峰宽计算,在铜靶XRD中2θ=28.5~28.9°(范围因仪器系统误差导致)。
如表4所示,对于新鲜样品,具有多核共壳结构的样品C1-1、C2-1、C3-1的BET比表面积、孔体积、平均孔径和平均晶粒直径与对比样品C-0相差小于20%。说明多核共壳结构本身对材料的物性参数影响较小。水热老化后所有样品的物理结构参数均发生变化,包括BET比表面积的减少、孔体积的减小、平均孔径的增加及平均晶粒直径的增加。此时所有具有多核共壳结构的样品上物性参数变化幅度均小于C-0样品的变化幅度,BET比表面积降幅从77%降低到46-65%,孔体积降幅从70%降低到40-52%,平均孔径的增幅从40%降低到4-15%,平均晶粒直径增幅从175%降低到63-86%。该结果说明通过本发明的方法制备的样品的多核共壳结构显著提高了样品抵抗水热老化中结构变化的能力,具有较好的水热稳定性。
实施例14
将在实施例9中制备的具有多核共壳结构的微米氧化铈颗粒C3-1和在对比例中制备的没有多核共壳结构的纳米氧化铈晶粒聚集体C-0,分别负载氧化铈材料质量2%的单质态贵金属Pd。将负载了Pd的C3-1和负载了Pd的C-0分别进行水热处理,条件为在750℃、10%H2O的空气气氛中水热老化处理20小时。
水热处理后将负载了Pd的C3-1(简称Pd/C3-1)和负载了Pd的C-0(简称Pd/C-0)分别用于催化含有CO和C3H6混合气体的氧 化反应实验,实验条件为:总反应气氛为1000ppm CO、150ppmC3H6、5%CO2、5%O2、5%H2O、余量为N2;催化剂用量为0.2g、总气体流量1L/min、程序升温速率为10C/min。实验结果如图9所示。可见,在同样温度下,Pd/C3-1催化剂所呈现的CO转化率和C3H6转化率均高于Pd/C-0催化剂。或者说,在相同转化率水平下,Pd/C3-1催化剂所需要的反应温度更低,这有利于延长催化剂寿命。以上实验说明Pd/C3-1催化剂抗水热老化能力强,也说明活性组分不容易被包埋。
实施例15
将在实施例9中制备的具有多核共壳结构的微米氧化铈颗粒C3-1和在对比例中制备的没有多核共壳结构的纳米氧化铈晶粒聚集体C-0,分别负载氧化铈材料质量2%的单质态贵金属Pd。将负载了Pd的C3-1和负载了Pd的C-0分别进行硫化处理,条件为在300℃、40ppm SO2、10%H2O的空气气氛中硫化处理20小时。
硫化处理后将负载了Pd的C3-1和负载了Pd的C-0分别用于催化含有CO和C3H6混合气体的氧化反应实验,实验条件为:总反应气氛为1000ppm CO、150ppm C3H6、5%CO2、5%O2、5%H2O、余量为N2;催化剂用量为0.2g、总气体流量1L/min、程序升温速率为10C/min。实验结果如图10所示。可见,经过同样的硫化处理后,在同样温度下,Pd/C3-1催化剂所呈现的CO转化率和C3H6转化率均高于Pd/C-0催化剂。或者说,在相同转化率水平下,Pd/C3-1催化剂所需要的反应温度更低。这说明Pd/C3-1催化剂的耐硫性更强。
实施例16
将在实施例9中制备的具有多核共壳结构的微米氧化铈颗粒C3-1和在对比例中制备的没有多核共壳结构的纳米氧化铈晶粒聚集体C-0,分别负载氧化铈材料质量2%的氧化态过渡金属Mn(以金属质量百分数计)。将负载了Mn的C3-1和负载了Mn的C-0分别进行水热处理,条件为在750℃、10%H2O的空气气氛中水热老化处理20小时。
水热处理后将负载了Mn的C3-1(简称为Mn/C3-1)和负载了Pd的C-0(简称为Mn/C-0)分别用于催化NO氧化反应实验,实验条件为:总反应气氛为100ppm NO、5%CO2、5%O2、余量 为N2;催化剂用量为0.2g、总气体流量1L/min、程序升温速率为10C/min。实验结果如图11所示。可见,在同样温度下,Mn/C3-1催化剂所呈现的NO转化率高于Mn/C-0催化剂。或者说,在相同转化率水平下,Mn/C3-1催化剂所需要的反应温度更低,这有利于延长催化剂寿命。以上实验说明Mn/C3-1催化剂抗水热老化能力强,也说明活性组分不容易被包埋。
实施例17
将在实施例9中制备的具有多核共壳结构的微米氧化铈颗粒C3-1和在对比例中制备的没有多核共壳结构的纳米氧化铈晶粒聚集体C-0,分别负载氧化铈材料质量2%的氧化态过渡金属Mn(以金属质量百分数计)。将负载了Mn的C3-1和负载了Mn的C-0分别进行硫化处理,条件为在300℃、40ppm SO2、10%H2O的空气气氛中硫化处理20小时。
硫化处理后将负载了Mn的C3-1和负载了Mn的C-0分别用于催化含有CO气体的氧化反应实验,实验条件为:总反应气氛为1000ppm CO、5%CO2、5%O2、5%H2O、余量为N2;催化剂用量为0.2g、总气体流量1L/min、程序升温速率为10C/min。实验结果如图12所示。可见,经过同样的硫化处理后,在同样温度下,Mn/C3-1催化剂所呈现的CO转化率高于Mn/C-0催化剂。或者说,在相同转化率水平下,Mn/C3-1催化剂所需要的反应温度更低。这说明Mn/C3-1催化剂的耐硫性更强。
由实施例14和16可以看出,本发明制备的具有多核共壳结构的微米氧化铈颗粒与传统的无壳氧化铈相比,在负载贵金属或过渡金属制备成功能催化剂后,具有明显优越的抗水热老化能力。在750℃、10%H2O的空气气氛中水热老化处理20小时后,本发明所涉及的催化剂的活性明显优于常规的(无壳)催化剂。
由实施例15和17可以看出,本发明制备的具有多核共壳结构的微米氧化铈颗粒与传统的无壳氧化铈相比,在负载贵金属或过渡金属制备成功能催化剂后,具有明显优越的抗硫中毒能力,在300℃、40ppm SO2、10%H2O的空气气氛中硫化处理20小时后,本发明所涉及的催化剂活性明显优于常规的(无壳)催化剂。

Claims (10)

  1. 一种具有多核共壳结构的微米氧化铈颗粒,其特征在于,所述微米氧化铈颗粒包括:
    氧化铈壳层,该壳层由晶态和/或非晶态纳米氧化铈颗粒构成;和
    位于所述壳层内部的多个纳米氧化铈晶粒核聚集体。
  2. 根据权利要求1所述的具有多核共壳结构的微米氧化铈颗粒,其特征在于,所述微米氧化铈颗粒为球型或类球形颗粒,平均粒径为0.5μm-50μm,BET比表面积为50-200m2/g;其中所述壳层内部的多个纳米氧化铈晶粒核聚集体的质量占所述微米氧化铈颗粒总质量的99-85%,所述氧化铈壳层的质量占所述微米氧化铈颗粒总质量的1-15%,所述氧化铈壳层的厚度为10-200nm;所述纳米氧化铈晶粒的平均粒径为2-50nm,所述氧化铈壳层中的晶态和/或非晶态纳米氧化铈颗粒的平均粒径为2-50nm。
  3. 一种具有多核共壳结构的微米氧化铈颗粒的制备方法,其包括以下步骤:
    A.使铈盐溶液与沉淀剂反应生成悬浮液,向生成的悬浮液中通入空气进行氧化,得到纳米氧化铈前驱体的液相分散体系;
    B.将所述纳米氧化铈前驱体的液相分散体系进行喷雾干燥、焙烧,得到纳米氧化铈晶粒核聚集体胚体;
    C.将所述纳米氧化铈晶粒核聚集体胚体分散到溶剂中得到悬浮液并向所述悬浮液中加入铈盐溶液和沉淀剂在所述纳米氧化铈晶粒核聚集体周围进行沉积包壳反应,得到第二悬浮液;
    D.将所述第二悬浮液进行喷雾干燥、焙烧,得到所述具有多核共壳结构的微米氧化铈颗粒。
  4. 根据权利要求3所述的制备方法,其特征在于,在步骤A和步骤B之间增加如下步骤:向所述纳米氧化铈前驱体的液相分散体系中加入有机助剂。
  5. 根据权利要求4所述的制备方法,其特征在于,所述有机助剂包括甲基纤维素、淀粉、氨基乙酸、6-氨基己酸、草酸、柠檬酸、聚合度在400-20000范围内的聚乙二醇中的一种或几种。
  6. 根据权利要求3-5中的任一项所述的制备方法,其特征在于,所述铈盐包括硝酸铈(III)、醋酸铈(III)或硫酸铈(III);所述铈盐溶液的浓度为0.005mol/L-1mol/L;所述沉淀剂包括氨水、尿素、氢氧化钠或氢氧化钾;独立地,步骤A中在氧化前将所述悬浮液的pH值调至7-11.5;独立地,步骤C中的所述溶剂包括水、无水乙醇、水-乙醇混合体系或水-乙二醇混合体系;独立地,步骤B和/或步骤D中的所述焙烧温度为450-750℃。
  7. 一种具有多核共壳结构的微米氧化铈颗粒的制备方法,其包括以下步骤:
    A.使铈盐溶液与沉淀剂反应生成悬浮液,向生成的悬浮液中通入空气进行氧化,得到纳米氧化铈前驱体的液相分散体系;
    B.向所述纳米氧化铈前驱体的液相分散体系中加入有机助剂和铈盐溶液,得到分散均匀的液相分散体系;
    C.将所述分散均匀的液相分散体系进行喷雾干燥、焙烧,得到具有多核共壳结构的微米氧化铈颗粒。
  8. 根据权利要求7所述的制备方法,其特征在于,所述铈盐包括硝酸铈(III)、醋酸铈(III)或硫酸铈(III);所述铈盐溶液的浓度为0.005mol/L-1mol/L;所述沉淀剂包括氨水、尿素、氢氧化钠或氢氧化钾;独立地,步骤A中在氧化前将所述悬浮液的pH值调至7-11.5;所述有机助剂包括甲基纤维素、淀粉、氨基乙酸、6-氨基己酸、草酸、柠檬酸、聚合度在400-20000范围内的聚乙二醇中的一种或几种;独立地,步骤C中所述焙烧温度为450-750℃。
  9. 一种具有多核共壳结构的微米氧化铈颗粒的制备方法,其包括以下步骤:
    A.使铈盐溶液与沉淀剂反应生成悬浮液,其中所述铈盐溶液和/或沉淀剂中含有有机助剂,且其中所述铈盐相对于沉淀剂来说是化学计量过量的;向生成的悬浮液中通入空气进行氧化,得到纳米 氧化铈前驱体的液相分散体系;
    B.将所述纳米氧化铈前驱体的液相分散体系进行喷雾干燥、焙烧,得到具有多核共壳结构的微米氧化铈颗粒。
  10. 根据权利要求9所述的制备方法,其特征在于,所述铈盐包括硝酸铈(III)、醋酸铈(III)或硫酸铈(III);所述铈盐溶液的浓度为0.005mol/L-1mol/L;所述沉淀剂包括氨水、尿素、氢氧化钠或氢氧化钾;独立地,所述有机助剂包括甲基纤维素、淀粉、氨基乙酸、6-氨基己酸、草酸、柠檬酸、聚合度在400-20000范围内的聚乙二醇中的一种或几种;独立地,步骤A中在氧化前将所述悬浮液的pH值调至7-11.5;独立地,步骤B中所述焙烧温度为450-750℃。
CN201580073404.6A 2015-02-15 2015-02-15 一种具有多核共壳结构的微米氧化铈颗粒及其制备方法 Active CN107207274B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/073103 WO2016127430A1 (zh) 2015-02-15 2015-02-15 一种具有多核共壳结构的微米氧化铈颗粒及其制备方法

Publications (2)

Publication Number Publication Date
CN107207274A true CN107207274A (zh) 2017-09-26
CN107207274B CN107207274B (zh) 2019-05-14

Family

ID=56614063

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580073404.6A Active CN107207274B (zh) 2015-02-15 2015-02-15 一种具有多核共壳结构的微米氧化铈颗粒及其制备方法

Country Status (4)

Country Link
US (1) US10512897B2 (zh)
EP (1) EP3257815B1 (zh)
CN (1) CN107207274B (zh)
WO (1) WO2016127430A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111151280A (zh) * 2019-12-30 2020-05-15 同济大学 一种含双活性位点的铈基臭氧催化剂及其制备方法与应用
CN112239223A (zh) * 2020-10-26 2021-01-19 江西理工大学 一种大比表面稀土氧化物粉体的制备方法
CN112512686A (zh) * 2019-02-06 2021-03-16 古河电气工业株式会社 纳米晶体复合体
CN112958113A (zh) * 2021-02-08 2021-06-15 中国科学院化学研究所 一种用于VOCs催化燃烧的铈钴双金属氧化物催化剂及其制备方法
CN113226989A (zh) * 2018-12-28 2021-08-06 罗地亚经营管理公司 氧化铈颗粒及其生产方法
CN115869966A (zh) * 2021-09-28 2023-03-31 中国石油化工股份有限公司 一种氧化铈纳米球以及其制备方法和应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102367577B1 (ko) * 2013-12-16 2022-02-25 로디아 오퍼레이션스 세륨 옥사이드 입자의 액체 현탁액
IT201700070360A1 (it) * 2017-06-23 2018-12-23 Univ Degli Studi Udine Catalizzatori a base di Pd/CeO2 e metodo per la loro preparazione
CN108408756B (zh) * 2018-03-02 2020-07-07 复旦大学 具有多级核壳结构的二氧化铈微球及其制备方法和应用
WO2022189598A1 (en) * 2021-03-12 2022-09-15 Rhodia Operations Cerium oxide particles, making process thereof and use thereof in chemical mechanical polishing
CN114181068A (zh) * 2021-11-25 2022-03-15 江西省科学院能源研究所 一种铈掺杂草酸铜纳米材料及其制备方法
CN114558566B (zh) * 2022-03-12 2023-08-25 福州大学 一种硫化氢选择性氧化催化剂及其制备方法和应用
CN116251585A (zh) * 2023-02-27 2023-06-13 武汉科技大学 一种用于甲苯的催化氧化的铈锰催化剂及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101164889A (zh) * 2007-09-28 2008-04-23 上海师范大学 一种具有核壳结构的纳米氧化铈及其制备方法
CN101433831A (zh) * 2008-12-17 2009-05-20 天津大学 共沉淀法制备均一固溶体铈锆铝涂层材料及其工艺方法
CN103387256A (zh) * 2013-07-19 2013-11-13 山东大学 一种制备二氧化铈介孔空心球的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003211127B2 (en) * 2002-02-15 2006-06-15 Nanophase Technologies Corporation Composite nanoparticle materials and method of making the same
JP4165443B2 (ja) * 2004-04-27 2008-10-15 トヨタ自動車株式会社 金属酸化物粒子の製造方法、及び排ガス浄化触媒
WO2010093909A1 (en) * 2009-02-12 2010-08-19 The Regents Of The University Of California Hollow metal oxide spheres and nanoparticles encapsulated therein

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101164889A (zh) * 2007-09-28 2008-04-23 上海师范大学 一种具有核壳结构的纳米氧化铈及其制备方法
CN101433831A (zh) * 2008-12-17 2009-05-20 天津大学 共沉淀法制备均一固溶体铈锆铝涂层材料及其工艺方法
CN103387256A (zh) * 2013-07-19 2013-11-13 山东大学 一种制备二氧化铈介孔空心球的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANRAN XIE ET AL.: "Template-free synthesis of core–shell CeO2", 《RSC ADV.》 *
X.-D. ZHOU ET AL.: "Processing of Nanometer-Scale CeO2 Particles", 《CHEM. MATER.》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113226989A (zh) * 2018-12-28 2021-08-06 罗地亚经营管理公司 氧化铈颗粒及其生产方法
CN112512686A (zh) * 2019-02-06 2021-03-16 古河电气工业株式会社 纳米晶体复合体
CN111151280A (zh) * 2019-12-30 2020-05-15 同济大学 一种含双活性位点的铈基臭氧催化剂及其制备方法与应用
CN112239223A (zh) * 2020-10-26 2021-01-19 江西理工大学 一种大比表面稀土氧化物粉体的制备方法
CN112239223B (zh) * 2020-10-26 2023-01-10 赣州湛海新材料科技有限公司 一种大比表面稀土氧化物粉体的制备方法
CN112958113A (zh) * 2021-02-08 2021-06-15 中国科学院化学研究所 一种用于VOCs催化燃烧的铈钴双金属氧化物催化剂及其制备方法
CN112958113B (zh) * 2021-02-08 2022-04-08 中国科学院化学研究所 一种用于VOCs催化燃烧的铈钴双金属氧化物催化剂及其制备方法
CN115869966A (zh) * 2021-09-28 2023-03-31 中国石油化工股份有限公司 一种氧化铈纳米球以及其制备方法和应用

Also Published As

Publication number Publication date
EP3257815A4 (en) 2018-03-21
CN107207274B (zh) 2019-05-14
WO2016127430A1 (zh) 2016-08-18
EP3257815B1 (en) 2020-07-08
US20180029012A1 (en) 2018-02-01
EP3257815A1 (en) 2017-12-20
US10512897B2 (en) 2019-12-24

Similar Documents

Publication Publication Date Title
CN107207274B (zh) 一种具有多核共壳结构的微米氧化铈颗粒及其制备方法
Imagawa et al. Monodisperse CeO2 nanoparticles and their oxygen storage and release properties
CN103212413B (zh) 一种热稳定核壳结构纳米三效催化剂及其制备方法
CN107824172B (zh) 一种表面富含缺陷位的纳米氧化铝载体的制备方法
Peng et al. Recent advances in the preparation and catalytic performance of Mn-based oxide catalysts with special morphologies for the removal of air pollutants
CN113422073A (zh) 钴修饰的碳载超细铂纳米合金催化剂的制备方法
CN104874397A (zh) 一种二氧化锰载银纳米粒子材料的制备方法和应用
CN107185581B (zh) 一种负载钴基的sba15催化剂
CN103394351A (zh) 三维有序大孔Mn2O3负载Au催化剂、制备方法及应用
Ying et al. Thermally stable ultra-small Pd nanoparticles encapsulated by silica: elucidating the factors determining the inherent activity of noble metal catalysts
CN116351477B (zh) 一种除甲醛负载型Pt6团簇催化剂及其制备方法
Xie et al. A γ-Fe 2 O 3-modified nanoflower-MnO 2/attapulgite catalyst for low temperature SCR of NO x with NH 3
Xu et al. CeO 2 hollow nanospheres synthesized by a one pot template-free hydrothermal method and their application as catalyst support
CN112844444A (zh) 一种利用载体孔道自吸附原理制备二氧化铈催化材料的方法
CN108380203B (zh) 一种介孔壁中空核壳球形LaMnO3钙钛矿催化剂及其制备方法
CN110813303B (zh) 一种具有多孔结构的花状铁掺杂二氧化铈的制备及其脱硫应用
Li et al. Synthesis of mesoporous PrxZr1− xO2− δ solid solution with high thermal stability for catalytic soot oxidation
CN101269832A (zh) 一种高比表面积高孔容纳米二氧化铈的制备方法
JP5025148B2 (ja) 排ガス浄化用触媒
JP4233572B2 (ja) 排ガス浄化用ハニカム触媒
CN114588892A (zh) 一种钛改性的锰基催化剂及其制备方法
JP2002173370A (ja) チタニア系多孔体及び触媒
CN116196952B (zh) 原位生长于固定床上的氨裂解制氢催化剂及其制备方法
Yang et al. A composite material with CeO 2-ZrO 2 nanocrystallines embedded in SiO 2 matrices and its enhanced thermal stability and oxygen storage capacity
CN115672299B (zh) 二氧化钛纳米线及其制备方法、脱硝催化剂及其制备方法、烟气脱硝的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210720

Address after: 257091 room 326, building B, No. 59, Fuqian street, Dongying District, Dongying City, Shandong Province

Patentee after: Rare earth catalysis Innovation Research Institute (Dongying) Co.,Ltd.

Address before: 300072 Tianjin City, Nankai District Wei Jin Road No. 92

Patentee before: Tianjin University

TR01 Transfer of patent right