CN107170941B - 一种锂空气电池纳米复合隔膜的制备方法 - Google Patents

一种锂空气电池纳米复合隔膜的制备方法 Download PDF

Info

Publication number
CN107170941B
CN107170941B CN201710393860.XA CN201710393860A CN107170941B CN 107170941 B CN107170941 B CN 107170941B CN 201710393860 A CN201710393860 A CN 201710393860A CN 107170941 B CN107170941 B CN 107170941B
Authority
CN
China
Prior art keywords
lithium
air battery
glass fiber
silicon dioxide
polyurethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710393860.XA
Other languages
English (en)
Other versions
CN107170941A (zh
Inventor
罗鲲
赵玉振
朱广彬
罗志虹
胡承亮
向利
诸葛祥群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN201710393860.XA priority Critical patent/CN107170941B/zh
Publication of CN107170941A publication Critical patent/CN107170941A/zh
Application granted granted Critical
Publication of CN107170941B publication Critical patent/CN107170941B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Hybrid Cells (AREA)
  • Cell Separators (AREA)

Abstract

本发明公开了一种锂空气电池纳米复合隔膜的制备方法。以溶胶凝胶法制备纳米二氧化硅颗粒,加去离子水配制质量分数为20~70%的分散液;玻璃纤维膜裁剪到适当尺寸,在二氧化硅水分散液中充分浸渍,然后在120~160℃干燥1 h,重复此操作三次;配制浓度为0.01~0.1 g/ml的聚氨酯溶液,按照1:50的体积比滴加碳酸丙烯酯后混匀。在无水环境下,将纳米二氧化硅浸渍处理后的膜放入聚氨酯溶液中浸渍,然后120~160℃干燥1h,重复此操作三次,最终得到复合隔膜。本方法制备的隔膜能够阻挡有机电解液中微量水份与溶解氧气向负极传质,防止正负极之间的交互影响,防止锂片的腐蚀,提高锂空气电池的循环性能;同时,制备工艺简单,生产成本低,便于推广和应用。

Description

一种锂空气电池纳米复合隔膜的制备方法
技术领域
本发明属于锂空气电池技术领域,具体涉及一种锂空气电池纳米复合隔膜的制备方法。该膜可隔离有机电解液中微量水份、溶解氧及其他杂质进入负极室腐蚀锂片,并具有一定的机械性能,从而改善锂空气电池循环性能。
背景技术
作为下一代高能量密度动力电池(理论比能量约11 kWh/kg),锂空气电池的充放电循环稳定性是当前关注的热点(参考文献:Y. Li, et al. Recent advances in non-aqueous electrolyte for rechargeable Li-O2 batteries, Advanced Energy Materials, 2016, 6(18), 1600751.)。在常见的有机电解质体系中,电池放电时氧在正极还原形成过氧化锂,充电时过氧化锂分解析出氧气和锂离子,形成充放电循环。但是,由于放电产物过氧化锂具有较强的氧化性,可能引发一些电解液的分解(参考文献:B. D.Adams, et al. Towards a stable organic electrolyte for the lithium oxgygenbattery, Advanced Energy Materials, 2015, 5(1), 1400867.),生成氢氧化锂、碳酸锂、烷基碳酸锂和羧酸锂等多种副产物(参考文献:Y. C. Lu, et al. Probing thereaction kinetics of the charge reactions of nonaqueous Li-O2 batteries,Journal of Physical Chemistry Letters, 2013, 4(1), 93-99.),这些副产物在正常充电过程中不能分解,会逐渐累积堵塞多孔正极;此外,多次充放电后不导电的过氧化锂可能形成薄膜,包覆正极引起电池失效。
事实上,电解液中微量的水、溶解氧和电解液分解副产物腐蚀锂负极对电池性能影响更加严重。在锂空气电池中,电解质与金属锂电极在其界面上发生反应,形成一层覆盖于电极材料表面的钝化层。这种钝化层具有固体电解质的特征, 它是电子绝缘体,却是锂离子的优良导体,被称为“固体电解质界面” ( solid electrolyte interface,简称SEI膜)。尽管SEI膜能一定程度上保护锂负极,但多次循环后难免受到损坏,导致锂枝晶的形成,并与电解质中的溶解氧、水份及其他正极分解产物反应,在金属锂表面形成碳酸锂、氢氧化锂、氧化锂、过氧化锂以及氢化锂等系列复杂化合物(参考文献:B. Liu, et al.Enhanced cycling stability of rechargeable Li-O2 batteries using high-concentration electrolytes, Advanced Functional Materials, 2016, 26, 605-613.)。如果电池使用可溶性氧化还原媒介体,还会出现穿梭效应,形成正负极交互影响。以上因素都显著影响充放电循环稳定性和使用寿命。因此,有效隔离锂空气电池正负极室,避免出现正负极交互影响,是改善锂空气电池循环性能关键的一环。
普遍使用的Celgard-2400、尼龙-66及硼硅酸盐玻璃纤维隔膜等具有电解液浸润性好、稳定性高以及离子导通率高等特点,但不能起到隔离溶解氧、水份及其他有害成分的作用。Kumar等(参考文献:J. Kumar, et al. Development of membranes and a studyof their interfaces for rechargeable lithium-air battery, Journal of Power Sources, 2009, 194, 1113-1119.)利用陶瓷掺杂物PC(BN)、PC(AlN)、PC(Si3N4)和PC(Li2O)混合制备复合隔膜保护锂负极,促进电极电荷转移反应和锂的SEI膜形成,提高了电池的性能。Amanchukwu等(参考文献:C. V. Amanchukwu, et al. Understanding thechemical stability of polymers for lithium−air batteries, Chemistry of Materials, 2015, 27, 550- 561.)在聚丙烯薄膜上叠层沉积PEO/GO/ PEO/PAA制备复合隔膜,有效抑制了锂枝晶的生长,维持了较高的离子导通率,但在部分有机溶剂中的稳定性较差。Kim等(参考文献:B. G. Kim, et al. A moisture-and oxygen-impermeableseparator for aprotic Li-O2 batteries, Advanced Functional Materials, 2016,26, 1747-1756.)利用聚氨酯薄膜结构致密,可以阻隔水和氧气通过且耐溶剂侵蚀的特点,制成锂空气电池的隔膜,以固定容量600 mAh g-1可以循环100圈,但是隔膜阻抗大,充电电压高达4.8 V,充放电效率低。Lee等(参考文献:D. J. Lee, et al. Sustainable redoxmediation for lithium-oxygen batteries by a composite protective layer on thelithium-metal anode, Advanced Materials, 2016, 28, 857–863.)利用Al2O3和PVdF-HFP制备复合薄膜包覆金属锂,可以用1000 mAh g-1的容量循环80圈,不过也是充放电效率较低。Kim等(参考文献:J. H. Kim, et al. Improved cycling performance oflithium-oxygen cells by use of a lithium electrode protected with conductivepolymer and aluminum fluoride, ACS Applied Materials Interfaces, 2016, 8,32300- 32306.)等将导电聚合物PEDOT-co-PEG与AlF3复合制备隔膜包覆金属锂,以1000mAh g-1可循环70圈,同样地充电电压接近5 V。由此可见,制备复合隔膜是目前锂空气电池隔膜研究开发的方向,但兼具隔离、稳定性和离子导通综合效能的隔膜尚未见报道。
本发明将聚氨酯、纳米二氧化硅与玻璃纤维膜进行复合,兼顾溶解氧、水份隔离、离子导通率及机械强度的要求,制备方法简单,操作方便,并且能明显改善锂空气电池的充放电循环性能。
发明内容
本发明的目的是提供一种锂空气电池纳米复合隔膜的制备方法。
本发明思路:先将纳米二氧化硅玻璃纤维膜复合,纳米二氧化硅用于填充膜内的大孔,并与玻璃纤维共同起到锂离子传导作用;然后,再与聚氨酯复合,使薄膜具备电解质化学成分隔离功能,并具有较好的机械性能,便于加工使用,有效地改善电池的循环性能。
具体步骤为:
(1)分别量取168~300 mL乙醇、51~90 mL氨水和100~200 mL去离子水,室温下依次加入到1000 mL的锥形瓶中混合均匀,随后在1 min内滴加20~50 mL正硅酸乙酯,磁力搅拌反应24~72 h后,反应产物用离心机在3000~5000 r/min的转速下分离,然后在所得固体沉积物中加入乙醇进行超声震荡再离心分离,该加入乙醇进行超声震荡再离心分离的操作重复3次,最后取出固体沉积物,在120~160℃下干燥4~6h,制得粉末状的纳米二氧化硅。
(2)称取步骤(1)制得的纳米二氧化硅分散到去离子水中,制得纳米二氧化硅质量百分比浓度为20~70%的分散液,该分散液在超声分散后需立即使用。
(3)无水环境下称取聚氨酯,搅拌溶解于有机溶剂制成浓度为0.01~0.1 g/mL的聚氨酯溶液,同时按照碳酸丙烯酯与聚氨酯溶液的体积比为1:50滴加碳酸丙烯酯,所得混合溶液超声分散后封闭保存备用。
(4)将玻璃纤维膜进行裁剪,再夹取放入步骤(2)制得并超声分散的分散液中充分浸渍,然后在120~160℃下干燥1h,重复此充分浸渍和干燥操作3次,制得纳米二氧化硅玻璃纤维复合膜。
(5)无水环境下,将步骤(4)制得的纳米二氧化硅玻璃纤维复合膜放入步骤(3)制得的混合溶液中充分浸渍,然后在120~160℃下干燥1h,重复此充分浸渍和干燥操作3次,即制得锂空气电池纳米复合隔膜。
所述聚氨酯为热塑性聚氨酯、热固性聚氨酯和聚氨酯弹性体中的一种。
所述有机溶剂为N,N-二甲基甲酰胺、N-甲基吡咯烷酮、二甲亚砜和四氢呋喃中的一种。
所述玻璃纤维膜为Celgard-2400膜、尼龙66膜和硼硅酸盐玻璃纤维膜中的一种。
本发明制得的锂空气电池纳米复合隔膜在锂空气电池中使用前,应在所用电解液中浸泡24 h以上。
本发明方法制备工艺简单,生产成本低,便于推广和应用,且所制得的锂空气电池纳米复合隔膜具有隔离效果好、离子导通率高、机械性能好、阻抗较小、循环性能好等优点。
附图说明
图1是普通玻璃纤维隔膜(a)和本发明实施例1所制备的锂空气电池纳米复合隔膜(b)的扫描电镜照片。
图2是普通玻璃纤维隔膜(a)和本发明实施例1所制备的锂空气电池纳米复合隔膜(b)润湿性观测结果。
图3是使用普通玻璃纤维隔膜和本发明实施例1所制备的锂空气电池纳米复合隔膜,锂空气电池循环保持率对比测试结果。
图4是使用普通玻璃纤维隔膜(a)和本发明实施例1所制备的锂空气电池纳米复合隔膜(b),锂空气电池循环曲线对比测试结果。
具体实施方式
实施例1:
(1)分别量取300 mL乙醇、90 mL氨水和200 mL去离子水,室温下依次加入到1000mL的锥形瓶中混合均匀,随后在1 min内滴加50 mL正硅酸乙酯,磁力搅拌反应72 h后,反应产物用离心机在5000 r/min的转速下分离,然后在所得固体沉积物中加入乙醇进行超声震荡再离心分离,该加入乙醇进行超声震荡再离心分离的操作重复3次,最后取出固体沉积物,在160℃下干燥6h,制得粉末状的纳米二氧化硅。
(2)称取10g步骤(1)制得的纳米二氧化硅分散到40 mL去离子水中,制得纳米二氧化硅质量百分比浓度为20%的分散液,该分散液在超声分散后需立即使用。
(3)无水环境下称取聚氨酯弹性体10g,搅拌溶解于100 mL N-甲基吡咯烷酮制成浓度为0.1 g/mL的聚氨酯溶液,同时滴加2 mL碳酸丙烯酯,所得混合溶液超声分散后封闭保存备用。
(4)将市购硼硅酸盐玻璃纤维膜用切片机裁剪为直径为16 mm的隔膜,再夹取放入步骤(2)制得并超声分散的分散液中充分浸渍,然后在120℃下干燥1h,重复此充分浸渍和干燥操作3次,制得纳米二氧化硅玻璃纤维复合膜。
(5)无水环境下,将步骤(4)制得的纳米二氧化硅玻璃纤维复合膜放入步骤(3)制得的混合溶液中充分浸渍,然后在120℃下干燥1h,重复此充分浸渍和干燥操作3次,制得锂空气电池纳米复合隔膜。
本实施例制得的锂空气电池纳米复合隔膜与水接触角达152.3o,而未与聚氨酯复合的硼硅酸盐玻璃纤维膜水滴可以完全润湿,详见图2所示;该复合隔膜在锂空气电池中使用前,在所用的电解液中浸泡24 h,隔膜的离子导通率达到2.2×10-3 S cm-1
使用普通玻璃纤维隔膜和本实施例制得的纳米复合隔膜分别制备锂空气电池。电池组装从负极开始,从下往上的依次顺序是负极盖、垫片、弹片、锂片、隔膜、正极、正极多孔盖。锂片负极从浸渍的碳酸丙烯酯(PC)中取出,用所用的电解液冲洗去多余的PC后放在弹片上;隔膜从所浸渍的电解液中取出后直接使用;空气正极是将市购多壁碳纳米管(MWNTs)制成分散液,通过喷枪喷涂在碳纸上,剪切烘干后制成的。电池封装后在无氧环境中静置24h,进行测试锂空气电池的性能测试。实验中以纯氧代替空气,电池循环性能的对比测试结果显示,使用硼硅酸盐玻璃纤维膜充放电循环60次电池即失效,而使用本实施例制得的纳米复合隔膜可稳定循环300次以上,如图3所示。
实施例2:
(1)分别量取168mL乙醇、51mL氨水和100mL去离子水,室温下依次加入到1000 mL的锥形瓶中混合均匀,随后在1 min内滴加20 mL正硅酸乙酯,磁力搅拌反应48 h后,反应产物用离心机在3000 r/min的转速下分离,然后在所得固体沉积物中加入乙醇进行超声震荡再离心分离,该加入乙醇进行超声震荡再离心分离的操作重复3次,最后取出固体沉积物,在120℃下干燥4h,制得粉末状的纳米二氧化硅。
(2)称取20g步骤(1)制得的纳米二氧化硅分散到20 mL去离子水中,制得纳米二氧化硅质量百分比浓度为50%的分散液,该分散液在超声分散后需立即使用。
(3)无水环境下称取1g聚氨酯弹性体,搅拌溶解于100mL N,N-二甲基甲酰胺制成浓度为0.01 g/mL的聚氨酯溶液,同时滴加2 mL碳酸丙烯酯,所得混合溶液超声分散后封闭保存备用。
(4)将市购尼龙66膜用切片机裁剪为直径为18 mm的隔膜,再夹取放入步骤(2)制得并超声分散的分散液中充分浸渍,然后在120℃下干燥1h,重复此充分浸渍和干燥操作3次,制得纳米二氧化硅玻璃纤维复合膜。
(5)无水环境下,将步骤(4)制得的纳米二氧化硅玻璃纤维复合膜放入步骤(3)制得的混合溶液中充分浸渍,然后在160℃下干燥1h,重复此充分浸渍和干燥操作3次,即制得锂空气电池纳米复合隔膜。
本实施例制得的复合隔膜在锂空气电池中使用前,在所用电解液中浸泡36 h,离子导通率达到1.8×10-3 S cm-1

Claims (2)

1.一种锂空气电池纳米复合隔膜的制备方法,其特征在于具体步骤为:
(1)分别量取168~300 mL乙醇、51~90 mL氨水和100~200 mL去离子水,室温下依次加入到1000 mL的锥形瓶中混合均匀,随后在1 min内滴加20~50 mL正硅酸乙酯,磁力搅拌反应24~72 h后,反应产物用离心机在3000~5000 r/min的转速下分离,然后在所得固体沉积物中加入乙醇进行超声震荡再离心分离,该加入乙醇进行超声震荡再离心分离的操作重复3次,最后取出固体沉积物,在120~160℃下干燥4~6h,制得粉末状的纳米二氧化硅;
(2)称取步骤(1)制得的纳米二氧化硅分散到去离子水中,制得纳米二氧化硅质量百分比浓度为20~70%的分散液,该分散液在超声分散后立即使用;
(3)无水环境下称取聚氨酯,搅拌溶解于有机溶剂制成浓度为0.01~0.1 g/mL的聚氨酯溶液,同时按照碳酸丙烯酯与聚氨酯溶液的体积比为1:50滴加碳酸丙烯酯,所得混合溶液超声分散后封闭保存备用;
(4)将玻璃纤维膜进行裁剪,再夹取放入步骤(2)制得并超声分散的分散液中充分浸渍,然后在120~160℃下干燥1h,重复此充分浸渍和干燥操作3次,制得纳米二氧化硅玻璃纤维复合膜;
(5)无水环境下,将步骤(4)制得的纳米二氧化硅玻璃纤维复合膜放入步骤(3)制得的混合溶液中充分浸渍,然后在120~160℃下干燥1h,重复此充分浸渍和干燥操作3次,即制得锂空气电池纳米复合隔膜;
所述聚氨酯为热塑性聚氨酯、热固性聚氨酯和聚氨酯弹性体中的一种;
所述有机溶剂为N,N-二甲基甲酰胺、N-甲基吡咯烷酮、二甲亚砜和四氢呋喃中的一种;
所述玻璃纤维膜为Celgard-2400膜、尼龙66膜和硼硅酸盐玻璃纤维膜中的一种。
2.根据权利要求1所述的锂空气电池纳米复合隔膜的制备方法,其特征在于,所述锂空气电池纳米复合隔膜在锂空气电池中使用前,应在所用电解液中浸泡24 h以上。
CN201710393860.XA 2017-05-28 2017-05-28 一种锂空气电池纳米复合隔膜的制备方法 Active CN107170941B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710393860.XA CN107170941B (zh) 2017-05-28 2017-05-28 一种锂空气电池纳米复合隔膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710393860.XA CN107170941B (zh) 2017-05-28 2017-05-28 一种锂空气电池纳米复合隔膜的制备方法

Publications (2)

Publication Number Publication Date
CN107170941A CN107170941A (zh) 2017-09-15
CN107170941B true CN107170941B (zh) 2020-04-14

Family

ID=59821936

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710393860.XA Active CN107170941B (zh) 2017-05-28 2017-05-28 一种锂空气电池纳米复合隔膜的制备方法

Country Status (1)

Country Link
CN (1) CN107170941B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112018308B (zh) * 2019-05-29 2023-01-31 中国科学院宁波材料技术与工程研究所 一种锂空气电池硅酸铝陶瓷纤维隔膜的制备方法及应用
CN110600740A (zh) * 2019-08-23 2019-12-20 广东工业大学 一种锂电池浆料、锂金属负极复合层和锂金属负极及其制备方法和应用
CN110797506A (zh) * 2019-10-10 2020-02-14 武汉瑞科美新能源有限责任公司 复合锂金属负极材料及其制备方法、应用和锂金属电池
CN111342120B (zh) * 2019-12-14 2021-08-31 武汉瑞科美新能源有限责任公司 聚合物固体电解质、纳米复合隔膜及其制备方法和锂金属电池
CN113078413B (zh) * 2019-12-17 2022-08-19 山东海科创新研究院有限公司 一种锂硫电池用二硫化钼复合隔膜及其制备方法、锂硫电池
CN112430089B (zh) * 2020-11-03 2022-09-30 桂林理工大学 一种ReO3剪切结构MoNb6O18材料的制备方法及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105529424A (zh) * 2016-02-03 2016-04-27 常州可赛成功塑胶材料有限公司 一种粘胶纤维纳米二氧化硅复合电池隔膜的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102155696B1 (ko) * 2013-09-13 2020-09-15 삼성전자주식회사 복합막, 그 제조방법 및 이를 포함한 리튬 공기 전지

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105529424A (zh) * 2016-02-03 2016-04-27 常州可赛成功塑胶材料有限公司 一种粘胶纤维纳米二氧化硅复合电池隔膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
All solid-state lithium-polymer battery using poly(urethane acrylate)/nano-SiO2 composite electrolytes;Guoxin Jiang, et al.;《Journal of Power Sources》;20041102;第141卷;143-148 *

Also Published As

Publication number Publication date
CN107170941A (zh) 2017-09-15

Similar Documents

Publication Publication Date Title
CN107170941B (zh) 一种锂空气电池纳米复合隔膜的制备方法
Mu et al. Li–CO2 and Na–CO2 batteries: toward greener and sustainable electrical energy storage
Zu et al. Highly reversible Li/dissolved polysulfide batteries with binder-free carbon nanofiber electrodes
CN102569816B (zh) 一种锂硫电池正极及其制备方法
CN109921090B (zh) 一种锂离子全固态全电池及其制备方法
CN105489855A (zh) 高容量型锂离子电池用核壳硅碳复合负极材料及其制备方法
Wang et al. Polymer matrix mediated solvation of LiNO 3 in carbonate electrolytes for quasi-solid high-voltage lithium metal batteries
Zhou et al. A bifunctional electrolyte additive for H 2 O/HF scavenging and enhanced graphite/LiNi 0.5 Co 0.2 Mn 0.3 O 2 cell performance at a high voltage
CN101192682A (zh) 一种锂离子二次电池及其制备方法
CN107195861A (zh) 一种锂离子电池负极导电浆料、制备方法、负极和电池
Dai et al. A solid state energy storage device with supercapacitor–battery hybrid design
CN108711636B (zh) 一种组合电解液型双离子摇椅式二次电池及其制备方法
CN109428126A (zh) 水系电解液和水系锂离子二次电池
CN108172893A (zh) 一种锂离子电池
CN109659540A (zh) 一种多孔碳包覆碲化锑纳米片的制备方法及其作为金属离子电池负极材料的应用
CN110364732A (zh) 一种水系电池中具有无机功能修饰层的复合锌负极及制备方法和应用
CN104466183A (zh) 一种聚吡咯锂硫电池正极材料及其制备方法
CN108539142A (zh) 一种锂硫电池正极材料的制备方法
CN109037552A (zh) 一种用于钠硫电池的隔膜材料的制备方法
CN110165152A (zh) 固态正极复合材料、其制备方法与应用
Xue et al. Tailoring of an ultralow temperature adaptive cellulose nanofiber-based flexible zinc-air battery with long cycle life
CN108054376B (zh) 硒基复合材料用作正极活性材料在钡离子电池中的应用、钡离子电池及其制备方法
CN105098189B (zh) 负极材料添加剂及其制备方法
JP5994982B2 (ja) 電解質としてイオン性液体、空気極としてカーボンを分散したイオン性ゲルを用いたリチウム−空気二次電池
CN109037560B (zh) 锂金属石墨烯电池以及石墨烯电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant