CN107162574A - 氧化铝陶瓷材料及其制备方法 - Google Patents

氧化铝陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN107162574A
CN107162574A CN201710567105.9A CN201710567105A CN107162574A CN 107162574 A CN107162574 A CN 107162574A CN 201710567105 A CN201710567105 A CN 201710567105A CN 107162574 A CN107162574 A CN 107162574A
Authority
CN
China
Prior art keywords
parts
ceramic material
alumina ceramic
hot pressing
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710567105.9A
Other languages
English (en)
Inventor
杨大胜
施纯锡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJIAN HUAQING ELECTRONIC MATERIAL TECHNOLOGY CO LTD
Original Assignee
FUJIAN HUAQING ELECTRONIC MATERIAL TECHNOLOGY CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJIAN HUAQING ELECTRONIC MATERIAL TECHNOLOGY CO LTD filed Critical FUJIAN HUAQING ELECTRONIC MATERIAL TECHNOLOGY CO LTD
Priority to CN201710567105.9A priority Critical patent/CN107162574A/zh
Publication of CN107162574A publication Critical patent/CN107162574A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/408Noble metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及氧化铝陶瓷材料及其制备方法,氧化铝陶瓷材料按重量份数计,由原料80~89份的基料氧化铝、8~15份的钙镁硅成分、2~3份的荧光粉和1~2份的稀土组成,经流延法制坯、再经热压炉进行热压烧结而成,其中所述的钙镁硅成分为氧化镁或滑石粉与二氧化硅及碳酸钙的混合物。相对现有技术,本发明的稀土能降低玻璃中的铁含量,以达到脱除材料中绿色,增高热导率和折射率,能使材料更加耐高温,延长使用寿命。

Description

氧化铝陶瓷材料及其制备方法
技术领域
本发明涉及半导体技术领域,涉及氧化铝陶瓷材料及其制备方法。
背景技术
LED灯丝灯因具有360度全发光、无频闪、不发烫、长寿命、缓衰减等特性广受关注,LED发光是靠芯片激发荧光粉产生均匀照明,特别是纳米半透明陶瓷灯丝的发明成功使用,不仅降低了产品成本,有效解决相关灯丝灯的技术,达到高“性价比”产品。许多真正实现360度均匀发光这就需要材料的透光性增加,玻璃有好的透光性但它有一个致命缺陷是导热性极差,导热系数只有0.5左右,蓝宝石具有好的透光性但价格太高,纳米半透明陶瓷虽有高性价比产品,但透明度还没有达到更好;现有技术中申请号为201610071904.2的《一种氧化铝荧光陶瓷材料及其制备方法和应用》,其内容为按质量百分比计的70-99%的基料氧化铝和1-30%的钙镁硅成分添加荧光粉经流延法制坯、再经烧结而成,其中所述的钙镁硅成分是指氧化镁或滑石粉与二氧化硅及碳酸钙的混合物,所述的荧光粉添加量以氧化铝和钙镁硅成分总质量计为1-10%,但是存在耐高温性差,导热率和折射率低,所以有必要对这些问题进行解决。
发明内容
本发明的目的是提供一种氧化铝陶瓷材料及其制备方法,所要解决的技术问题是:耐高温性差,导热率和折射率低,所以有必要对这些问题进行解决。
本发明解决上述技术问题的技术方案如下:氧化铝陶瓷材料,按重量份数计,由原料80~89份的基料氧化铝、8~15份的钙镁硅成分、2~3份的荧光粉和1~2份的稀土组成,经流延法制坯、再经热压炉进行热压烧结而成,其中所述的钙镁硅成分为氧化镁或滑石粉与二氧化硅及碳酸钙的混合物。
本发明的有益效果是:稀土能降低玻璃中的铁含量,以达到脱除材料中绿色,增高热导率和折射率,能使材料更加耐高温,延长使用寿命。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,所述热压炉进行热压烧结时,其内部充满氦气,且气压为210Mpa~230Mpa;所述热压炉内热压烧结温度为1630℃~1725℃。
采用上述进一步方案的有益效果是:通过充满氦气,隔绝氧气,能提高材料的光学性能,使得折射率大于1.7。
进一步,所述荧光粉的化学式为(Tb,Ce)3Al5O12
采用上述进一步方案的有益效果是:(Tb,Ce)3Al5O12能增强荧光效果。
本发明解决上述技术问题的另一技术方案如下:氧化铝荧光陶瓷材料的制备方法,包括以下步骤:
步骤S1.按照重量份数计,取原料80~89份的基料氧化铝、8~15份的钙镁硅成分、2~3份的荧光粉和1~2份的稀土进行混合得混合粉料;
步骤S2.混合粉料中加入0.5~1份的分散剂送入球磨罐中进行球磨处理10~14小时,然后加入45~50份的溶剂和2~3份粘结剂,再加入荧光粉再次进行球磨处理21~34小时,得到流延浆料;
步骤S3.将流延浆料进行过滤,过滤后输入真空脱泡机进行1~1.5小时的脱泡处理;然后进行热压成型,再对成型坯料进行素烧,素烧温度为310℃~420℃,素烧时间为1~2小时,得粗制品;
步骤S4.向热压炉内充满氦气,且气压为210Mpa~230Mpa;将粗制品送入热压炉进行热压烧结,热压烧结温度为1630℃~1725℃,热压烧结时间为20~36小时;
步骤S5.将烧结成型的粗制品进行退火处理,再对退火处理后的粗制品涂抹紫外线吸收剂,得氧化铝荧光陶瓷材料。
本发明的有益效果是:稀土能降低玻璃中的铁含量,以达到脱除材料中绿色,增高热导率和折射率,能使材料更加耐高温,延长使用寿命;对成型坯料进行素烧,素烧可以去除一些添加剂,提升材料的热导率和折射率;通过充满氦气,隔绝氧气,能提高材料的光学性能,使得折射率大于1.7;涂抹紫外线吸收剂能吸收紫外线。
进一步,所述溶剂为甲苯或酒精;粘结剂为PVB和PEG;分散剂为W-S80,紫外线吸收剂为邻羟基苯甲酸苯酯。
进一步,所述步骤S1中,还向混合粉料中加入1~2份的银金属粒子,银金属粒子的粒径介于50nm~85nm之间。
采用上述进一步方案的有益效果是:加入银金属粒子,提高了材料的反射和散射能力,使得后续制备的LED器件出光均匀。
进一步,所述步骤S3中,通过100~200目的不锈钢过滤网对流延浆料进行过滤。
采用上述进一步方案的有益效果是:过滤效果佳,能获取理想浆料。
附图说明
图1为本发明氧化铝陶瓷材料的制备方法的流程图。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
实施例1:
氧化铝陶瓷材料,按重量份数计,由原料89份的基料氧化铝、8份的钙镁硅成分、2份的荧光粉和1份的稀土组成,经流延法制坯、再经热压炉进行热压烧结而成,所述热压炉进行热压烧结时,其内部充满氦气,且气压为210Mpa;所述热压炉内热压烧结温度为1725℃;其中所述的钙镁硅成分为氧化镁或滑石粉与二氧化硅及碳酸钙的混合物;所述荧光粉的化学式为(Tb,Ce)3Al5O12
本实施例中稀土能降低玻璃中的铁含量,以达到脱除材料中绿色,增高热导率和折射率,能使材料更加耐高温,延长使用寿命;通过充满氦气,隔绝氧气,能提高材料的光学性能,使得折射率大于1.7。
如图1所示,氧化铝陶瓷材料的制备方法,包括以下步骤:
步骤S1.按照重量份数计,取原料89份的基料氧化铝、8份的钙镁硅成分、2份的荧光粉和1份的稀土进行混合得混合粉料,还向混合粉料中加入2份的银金属粒子,银金属粒子的粒径为50nm;
步骤S2.混合粉料中加入0.5份的W-S80送入球磨罐中进行球磨处理14小时,然后加入45份的甲苯或酒精,以及2份PVB和PEG,再加入荧光粉再次进行球磨处理34小时,得到流延浆料;
步骤S3.将流延浆料通过100目的不锈钢过滤网进行过滤,过滤后输入真空脱泡机进行1.5小时的脱泡处理;然后进行热压成型,再对成型坯料进行素烧,素烧温度为420℃,素烧时间为1小时,得粗制品;
步骤S4.向热压炉内充满氦气,且气压为230Mpa;将粗制品送入热压炉进行热压烧结,热压烧结温度为1630℃,热压烧结时间为36小时;
步骤S5.将烧结成型的粗制品进行退火处理,再对退火处理后的粗制品涂抹邻羟基苯甲酸苯酯,得氧化铝荧光陶瓷材料。
本实施例中稀土能降低玻璃中的铁含量,以达到脱除材料中绿色,增高热导率和折射率,能使材料更加耐高温,延长使用寿命;对成型坯料进行素烧,素烧可以去除一些添加剂,提升材料的热导率和折射率;通过充满氦气,隔绝氧气,能提高材料的光学性能,使得折射率大于1.7;涂抹紫外线吸收剂能吸收紫外线。
实施例2:
氧化铝陶瓷材料,按重量份数计,由原料80份的基料氧化铝、15份的钙镁硅成分、3份的荧光粉和2份的稀土组成,经流延法制坯、再经热压炉进行热压烧结而成,所述热压炉进行热压烧结时,其内部充满氦气,且气压为210Mpa;所述热压炉内热压烧结温度为1725℃;其中所述的钙镁硅成分为氧化镁或滑石粉与二氧化硅及碳酸钙的混合物;所述荧光粉的化学式为(Tb,Ce)3Al5O12
本实施例中稀土能降低玻璃中的铁含量,以达到脱除材料中绿色,增高热导率和折射率,能使材料更加耐高温,延长使用寿命;通过充满氦气,隔绝氧气,能提高材料的光学性能,使得折射率大于1.7。
如图1所示,氧化铝陶瓷材料的制备方法,包括以下步骤:
步骤S1.按照重量份数计,取原料80份的基料氧化铝、15份的钙镁硅成分、3份的荧光粉和2份的稀土进行混合得混合粉料,还向混合粉料中加入1份的银金属粒子,银金属粒子的粒径为85nm;
步骤S2.混合粉料中加入1份的W-S80送入球磨罐中进行球磨处理10小时,然后加入50份的甲苯或酒精,以及3份PVB和PEG,再加入荧光粉再次进行球磨处理21小时,得到流延浆料;
步骤S3.将流延浆料通过200目的不锈钢过滤网进行过滤,过滤后输入真空脱泡机进行1小时的脱泡处理;然后进行热压成型,再对成型坯料进行素烧,素烧温度为310℃,素烧时间为2小时,得粗制品;
步骤S4.向热压炉内充满氦气,且气压为210Mpa;将粗制品送入热压炉进行热压烧结,热压烧结温度为1725℃,热压烧结时间为20小时;
步骤S5.将烧结成型的粗制品进行退火处理,再对退火处理后的粗制品涂抹邻羟基苯甲酸苯酯,得氧化铝荧光陶瓷材料。
本实施例中稀土能降低玻璃中的铁含量,以达到脱除材料中绿色,增高热导率和折射率,能使材料更加耐高温,延长使用寿命;对成型坯料进行素烧,素烧可以去除一些添加剂,提升材料的热导率和折射率;通过充满氦气,隔绝氧气,能提高材料的光学性能,使得折射率大于1.7;邻羟基苯甲酸苯酯能吸收紫外线。
实施例3:
氧化铝陶瓷材料,按重量份数计,由原料85份的基料氧化铝、12份的钙镁硅成分、2份的荧光粉和1份的稀土组成,经流延法制坯、再经热压炉进行热压烧结而成,所述热压炉进行热压烧结时,其内部充满氦气,且气压为220Mpa;所述热压炉内热压烧结温度为1680℃;其中所述的钙镁硅成分为氧化镁或滑石粉与二氧化硅及碳酸钙的混合物;所述荧光粉的化学式为(Tb,Ce)3Al5O12
本实施例中稀土能降低玻璃中的铁含量,以达到脱除材料中绿色,增高热导率和折射率,能使材料更加耐高温,延长使用寿命;通过充满氦气,隔绝氧气,能提高材料的光学性能,使得折射率大于1.7。
如图1所示,氧化铝陶瓷材料的制备方法,包括以下步骤:
步骤S1.按照重量份数计,取原料85份的基料氧化铝、12份的钙镁硅成分、2份的荧光粉和1份的稀土进行混合得混合粉料,还向混合粉料中加入1.5份的银金属粒子,银金属粒子的粒径为70nm;
步骤S2.混合粉料中加入0.8份的W-S80送入球磨罐中进行球磨处理12小时,然后加入48份的甲苯或酒精,以及2.5份PVB和PEG,再加入荧光粉再次进行球磨处理28小时,得到流延浆料;
步骤S3.将流延浆料通过150目的不锈钢过滤网进行过滤,过滤后输入真空脱泡机进行1.2小时的脱泡处理;然后进行热压成型,再对成型坯料进行素烧,素烧温度为365℃,素烧时间为1.5小时,得粗制品;
步骤S4.向热压炉内充满氦气,且气压为220Mpa;将粗制品送入热压炉进行热压烧结,热压烧结温度为1680℃,热压烧结时间为28小时;
步骤S5.将烧结成型的粗制品进行退火处理,再对退火处理后的粗制品涂抹邻羟基苯甲酸苯酯,得氧化铝荧光陶瓷材料。
本实施例中稀土能降低玻璃中的铁含量,以达到脱除材料中绿色,增高热导率和折射率,能使材料更加耐高温,延长使用寿命;对成型坯料进行素烧,素烧可以去除一些添加剂,提升材料的热导率和折射率;通过充满氦气,隔绝氧气,能提高材料的光学性能,使得折射率大于1.7;邻羟基苯甲酸苯酯能吸收紫外线。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.氧化铝陶瓷材料,其特征在于,按重量份数计,由原料80~89份的基料氧化铝、8~15份的钙镁硅成分、2~3份的荧光粉和1~2份的稀土组成,经流延法制坯、再经热压炉进行热压烧结而成,其中所述的钙镁硅成分为氧化镁或滑石粉与二氧化硅及碳酸钙的混合物。
2.根据权利要求1所述的氧化铝陶瓷材料,其特征在于,所述热压炉进行热压烧结时,其内部充满氦气,且气压为210Mpa~230Mpa;所述热压炉内热压烧结温度为1630℃~1725℃。
3.根据权利要求1所述的氧化铝陶瓷材料,其特征在于,所述荧光粉的化学式为(Tb,Ce)3Al5O12
4.氧化铝陶瓷材料的制备方法,其特征在于,包括以下步骤:
步骤S1.按照重量份数计,取原料80~89份的基料氧化铝、8~15份的钙镁硅成分、2~3份的荧光粉和1~2份的稀土进行混合得混合粉料;
步骤S2.混合粉料中加入0.5~1份的分散剂送入球磨罐中进行球磨处理10~14小时,然后加入45~50份的溶剂和2~3份粘结剂,再加入荧光粉再次进行球磨处理21~34小时,得到流延浆料;
步骤S3.将流延浆料进行过滤,过滤后输入真空脱泡机进行1~1.5小时的脱泡处理;然后进行热压成型,再对成型坯料进行素烧,素烧温度为310℃~420℃,素烧时间为1~2小时,得粗制品;
步骤S4.向热压炉内充满氦气,且气压为210Mpa~230Mpa;将粗制品送入热压炉进行热压烧结,热压烧结温度为1630℃~1725℃,热压烧结时间为20~36小时;
步骤S5.将烧结成型的粗制品进行退火处理,再对退火处理后的粗制品涂抹紫外线吸收剂,得氧化铝荧光陶瓷材料。
5.根据权利要求4所述的氧化铝陶瓷材料的制备方法,其特征在于,所述溶剂为甲苯或酒精;粘结剂为PVB和PEG;分散剂为W-S80,紫外线吸收剂为邻羟基苯甲酸苯酯。
6.根据权利要求4所述的氧化铝陶瓷材料的制备方法,其特征在于,所述步骤S1中,还向混合粉料中加入1~2份的银金属粒子,银金属粒子的粒径介于50nm~85nm之间。
7.根据权利要求4所述的氧化铝陶瓷材料的制备方法,其特征在于,所述步骤S3中,通过100~200目的不锈钢过滤网对流延浆料进行过滤。
CN201710567105.9A 2017-07-12 2017-07-12 氧化铝陶瓷材料及其制备方法 Pending CN107162574A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710567105.9A CN107162574A (zh) 2017-07-12 2017-07-12 氧化铝陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710567105.9A CN107162574A (zh) 2017-07-12 2017-07-12 氧化铝陶瓷材料及其制备方法

Publications (1)

Publication Number Publication Date
CN107162574A true CN107162574A (zh) 2017-09-15

Family

ID=59818345

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710567105.9A Pending CN107162574A (zh) 2017-07-12 2017-07-12 氧化铝陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107162574A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101696085A (zh) * 2009-09-27 2010-04-21 南通大学 钇铝石榴石荧光玻璃及其制造方法和用途
CN102320840A (zh) * 2011-06-08 2012-01-18 徐晓峰 一种荧光粉和透明陶瓷掺杂共烧的工艺方法
CN105753457A (zh) * 2016-02-02 2016-07-13 横店集团浙江英洛华电子有限公司 一种氧化铝荧光陶瓷材料及其制备方法和应用
CN105906328A (zh) * 2016-04-22 2016-08-31 横店集团浙江英洛华电子有限公司 一种氧化铝荧光陶瓷材料及其制备方法和应用
CN106145922A (zh) * 2016-07-03 2016-11-23 江苏罗化新材料有限公司 一种led用yag透明荧光陶瓷的制备方法
US20170137328A1 (en) * 2014-06-18 2017-05-18 Osram Sylvania Inc. Method of making a ceramic wavelength converter assembly
CN105753480B (zh) * 2016-02-22 2019-02-26 厦门大学 一种发光陶瓷材料及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101696085A (zh) * 2009-09-27 2010-04-21 南通大学 钇铝石榴石荧光玻璃及其制造方法和用途
CN102320840A (zh) * 2011-06-08 2012-01-18 徐晓峰 一种荧光粉和透明陶瓷掺杂共烧的工艺方法
US20170137328A1 (en) * 2014-06-18 2017-05-18 Osram Sylvania Inc. Method of making a ceramic wavelength converter assembly
CN105753457A (zh) * 2016-02-02 2016-07-13 横店集团浙江英洛华电子有限公司 一种氧化铝荧光陶瓷材料及其制备方法和应用
CN105753480B (zh) * 2016-02-22 2019-02-26 厦门大学 一种发光陶瓷材料及其制备方法和应用
CN105906328A (zh) * 2016-04-22 2016-08-31 横店集团浙江英洛华电子有限公司 一种氧化铝荧光陶瓷材料及其制备方法和应用
CN106145922A (zh) * 2016-07-03 2016-11-23 江苏罗化新材料有限公司 一种led用yag透明荧光陶瓷的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DAISUKE NAKAUCHI ET AL.: "Luminescent and scintillation properties of Ce-doped Tb3Al5O12 crystal grown from Al-rich composition", 《APPLIED PHYSICS EXPRESS》 *
徐光宪: "《稀土 下册》", 31 December 1995, 冶金工业出版社 *
李明利等: "Tb3Al5O12:Ce3+发光粉的微波辅助合成和性能表征", 《发光学报》 *

Similar Documents

Publication Publication Date Title
CN104193346B (zh) 一种半透明的荧光粉/玻璃复合发光陶瓷片及其制备方法
JP5633114B2 (ja) 蛍光体複合材料に用いられるSnO−P2O5系ガラス
JP6273799B2 (ja) 波長変換材料に用いられるガラス、波長変換材料、波長変換部材及び発光デバイス
JP5939463B2 (ja) ガラスおよび当該ガラスを用いた波長変換部材
JP6906277B2 (ja) 波長変換部材及びそれを用いてなる発光デバイス
JP2022184915A (ja) 波長変換部材及びそれを用いてなる発光デバイス
WO2017211135A1 (zh) 一种发光陶瓷
EP2543646A1 (en) Luminous nano-glass-ceramics used as white led source and preparing method of luminous nano-glass-ceramics
JP5765526B2 (ja) 光反射基材およびそれを用いた発光デバイス
WO2019169868A1 (zh) 荧光陶瓷及其制备方法
CN112939578B (zh) 荧光陶瓷及其制备方法、发光装置以及投影装置
CN107265873A (zh) 一种白光led封装用低熔点荧光玻璃片及其制备方法
JP6222452B2 (ja) 波長変換部材及び発光デバイス
JP2014172940A (ja) 蛍光体分散セラミックプレート
CN114455976B (zh) 荧光玻璃-陶瓷复合材料的制备方法及复合材料
JP2011210911A (ja) 半導体発光素子デバイスの製造方法
JP2020090424A (ja) セラミックス複合体、それを用いた発光装置及びセラミックス複合体の製造方法
CN104003726B (zh) 一种用于白光led灯的yag透明陶瓷及其制备方法
CN107500529A (zh) 一种Ce:YAG荧光玻璃及其制备方法和在白光LED中的应用
JP6701566B2 (ja) 複合粉末、グリーンシート、光反射基材及びこれらを用いた発光デバイス
JP6902199B2 (ja) 波長変換部材及びそれを用いてなる発光デバイス
CN107162574A (zh) 氧化铝陶瓷材料及其制备方法
JPH11157933A (ja) 透光性セラミックス及びその製造方法と、透光性セラミックスを用いた発光管と高圧放電灯
CN104230348B (zh) Led半透明陶瓷灯丝支架及其加工工艺
CN106698933A (zh) 一种透明低熔点的微晶玻璃及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170915