CN107154355B - 鳍状场效应晶体管及其制备方法 - Google Patents

鳍状场效应晶体管及其制备方法 Download PDF

Info

Publication number
CN107154355B
CN107154355B CN201610120862.7A CN201610120862A CN107154355B CN 107154355 B CN107154355 B CN 107154355B CN 201610120862 A CN201610120862 A CN 201610120862A CN 107154355 B CN107154355 B CN 107154355B
Authority
CN
China
Prior art keywords
layer
layers
substrate
isolation layer
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610120862.7A
Other languages
English (en)
Other versions
CN107154355A (zh
Inventor
肖德元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zing Semiconductor Corp
Original Assignee
Zing Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zing Semiconductor Corp filed Critical Zing Semiconductor Corp
Priority to CN201610120862.7A priority Critical patent/CN107154355B/zh
Priority to TW105118838A priority patent/TWI573182B/zh
Priority to US15/270,992 priority patent/US9773891B1/en
Publication of CN107154355A publication Critical patent/CN107154355A/zh
Application granted granted Critical
Publication of CN107154355B publication Critical patent/CN107154355B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28264Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being a III-V compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/7853Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET the body having a non-rectangular crossection
    • H01L29/7854Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET the body having a non-rectangular crossection with rounded corners

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Element Separation (AREA)

Abstract

本发明提供一种鳍状场效应晶体管及其制备方法,其中,鳍状场效应晶体管由两道选择性蚀刻程序形成沟道,鳍状场效应晶体管包括衬底、浅沟槽隔离层、缓冲层、III‑V族材料、氧化隔离层、高介电常数介电层及导电材料。浅沟槽隔离层形成于该衬底上,该浅沟槽隔离层具有沟槽,缓冲层形成于该沟槽中的该衬底上,III‑V族材料形成于该缓冲层上,且该III‑V族材料具有多个垂直堆栈碗形的截面形状,氧化隔离层形成于该衬底与该III‑V族材料之间,高介电常数介电层形成于该浅沟槽隔离层的上表面和该III‑V族材料周围,导电材料形成于该高介电常数介电层的周围。

Description

鳍状场效应晶体管及其制备方法
技术领域
本发明涉及半导体制造技术领域,尤其涉及一种鳍状场效应晶体管及其制备方法。
背景技术
III-V族半导体材料,例如砷化镓(GaAs)及砷化铟(InAs)具有较高的电子迁移率,因此用以传导较高的驱动电流。III-V族金属氧化半导体场效应晶体管(III-V MOSFET)的效能已证实具有显著的提升,并达到低栅极漏电流、高沟道迁移率及高驱动电流。于是,制造具有III-V族材料的高效能MOSFETs是可行的。
互补式金氧半导体(CMOS)器件的微小化衍生出许多物理上的限制以及问题,因此三维的鳍状场效应晶体管(FinFET)器件结构为一种具前景的替代,使晶体管的尺寸缩小化超越10纳米的技术节点。FinFET结构可优越地控制短沟道效应,然而,III-V FinFET的驱动电流仍须改善。
发明内容
本发明的目的在于,提供一种鳍状场效应晶体管及其制备方法。
为解决上述技术问题,本发明一种鳍状场效应晶体管的制备方法,包括:提供衬底;沉积浅沟槽隔离(STI)层于该衬底上;沉积多个含氧介电层和多个绝缘层的交替层于该STI层上;经由第一道蚀刻程序形成沟槽,该沟槽连通于该STI层和该些含氧介电层和该些绝缘层的该交替层;经由第二道蚀刻程序选择性蚀刻该沟槽的内侧壁的该交替层中的该些绝缘层,使该沟槽的该内侧壁具有多个垂直堆栈碗形的截面形状;选择性外延生长缓冲层于该沟槽中的该衬底上;选择性外延生长III-V族材料于该沟槽中的该缓冲层上;选择性移除该些含氧介电层和该些绝缘层的该交替层;热氧化该缓冲层,以形成介于该衬底与该III-V族材料之间的氧化隔离层;沉积高介电常数介电层于该STI层的上表面和该III-V族材料的周围,以形成栅极介电层;及沉积导电材料于该高介电常数介电层的周围,以形成栅极电极层。
根据一实施例,沉积该浅沟槽隔离(STI)层于该衬底上的步骤包括:该STI层的厚度介于10至100纳米之间。
根据一实施例,沉积该些含氧介电层和该些绝缘层的该交替层于该STI层的步骤包括:该些含氧介电层的材料为二氧化硅(SiO2)、氟氧化硅(SiOF)、氮氧化硅(SiON)、或其组合。
根据一实施例,沉积该些含氧介电层和该些绝缘层的该交替层于该STI层的步骤包括:该些含氧介电层的厚度分别为介于2至10纳米之间。
根据一实施例,沉积该些含氧介电层和该些绝缘层的该交替层于该STI层的步骤包括:该些绝缘层的材料为磷硅酸盐玻璃(PSG)、硼硅酸盐玻璃(BSG)、硼磷硅酸盐玻璃(BPSG)、或其组合。
根据一实施例,沉积该些含氧介电层和该些绝缘层的该交替层于该STI层的步骤包括:该些绝缘层的厚度分别为介于5至10纳米之间。
根据一实施例,选择性外延生长该缓冲层于该沟槽中的该衬底上的步骤包括:该缓冲层的材料为砷化镓(GaAs)或硅锗(SiGe)。
根据一实施例,选择性外延生长该缓冲层于该沟槽中的该衬底上的步骤包括:该缓冲层的厚度介于10至100纳米之间。
根据一实施例,选择性外延生长该III-V族材料于该沟槽中的该缓冲层上的步骤包括:该III-V族材料为砷化铟镓(InGaAs)、砷化铟(InAs)或锑化铟(InSb)。
根据一实施例,经由该第一道蚀刻程序形成该沟槽的步骤包括:该第一道蚀刻程序为采用干式蚀刻法。
根据一实施例,经由该第二道蚀刻程序选择性蚀刻该沟槽的内侧壁的该交替层中的该些绝缘层的步骤包括:该第二道蚀刻程序为采用湿式蚀刻法。
根据一实施例,热氧化该缓冲层,以形成介于该衬底与该III-V族材料之间的该氧化隔离层的步骤包括:采用原位蒸汽产生氧化法(in-situ steam generation oxidation,ISSG oxidation)或快速热氧化法(Rapid Thermal Oxidation,RT0)热氧化该缓冲层。
根据一实施例,采用原位蒸汽氧化法的步骤包括:以H2或N2O和H2的混合气体作为反应气体。
相应的,本发明还提供一种鳍状场效应晶体管,该鳍状场效应晶体管包括:衬底;浅沟槽隔离(STI)层,形成于该衬底上,该STI层具有沟槽;缓冲层,形成于该沟槽中的该衬底上;III-V族材料,形成于该缓冲层上,且该III-V族材料具有多个垂直堆栈碗形的截面形状;氧化隔离层,形成于该衬底与该III-V族材料之间;高介电常数介电层,形成于该STI层的上表面和该III-V族材料周围,以形成栅极介电层;及导电材料,形成于该高介电常数介电层的周围,以形成栅极电极层。
本发明提供的鳍状场效应晶体管的备制方法,采用两次选择性蚀刻与两次选择性外延生长以形成多个垂直堆栈碗形的III-V族鳍状结构,不仅可简化制程,亦可以实现具高迁移率的沟道。此外,本发明提供的鳍状场效应晶体管的备制方法,透过热氧化该缓冲层,以形成介于该衬底与该III-V族材料之间的氧化隔离层,藉此增进隔离效果,使鳍状场效应晶体管具有良好的器件特性。
附图说明
图1为本发明一实施例中制备鳍状场效应晶体管的方法流程图;
图2为本发明一实施例中STI层与交错层形成于衬底上的剖面结构示意图;
图3为本发明一实施例中于连通于STI层和多个含氧介电层和多个绝缘层的交替层的沟槽的剖面结构示意图;
图4为本发明一实施例中具有多个垂直堆栈碗形的截面形状的沟槽的剖面结构示意图;
图5为本发明一实施例中缓冲层形成于沟槽中的衬底上的剖面结构示意图;
图6为本发明一实施例中III-V族材料形成于沟槽中的缓冲层上的剖面结构示意图;
图7为本发明一实施例中选择性移除多个含氧介电层和多个绝缘层的交替层的剖面结构示意图;
图8为本发明一实施例中沉积高介电常数介电层于STI层的上表面和III-V族材料的周围的剖面结构示意图;
图9为本发明一实施例中形成介于该衬底与该III-V族材料之间的该氧化隔离层的剖面结构示意图;
图10为本发明一实施例中沉积导电材料于高介电常数介电层的周围的剖面结构示意图。
具体实施方式
下面将结合示意图对本发明的鳍状场效应晶体管及其制备方法进行更详细的描述,其中表示了本发明的较佳实施例,应该理解本领域技术人员可以修改在此描述的本发明,而仍然实现本发明的有利效果。因此,下列描述应当被理解为对于本领域技术人员的广泛知道,而并不作为对本发明的限制。
下文结合附图对本发明的鳍状场效应晶体管及其制备方法,图1为制备鳍状场效应晶体管的方法流程图,图2~图10为各步骤中的结构示意图,其制备过程包括如下步骤:
执行步骤S1,参考图2所示,提供一衬底100。根据一实施例,衬底100为单晶硅衬底。
执行步骤S2,再次参考图2所示,沉积浅沟槽隔离(STI)层120于衬底100上。根据一实施例,STI层120为二氧化硅。根据一实施例,STI层120的厚度介于10至100纳米之间。
执行步骤S3,再次参考图2所示,沉积多个含氧介电层130和多个绝缘层140的交替层150于STI层120上。根据一实施例,含氧介电层130的材料为二氧化硅(SiO2)、氟氧化硅(SiOF)、氮氧化硅(SiON)、或其组合。根据一实施例,每一层含氧介电层130的厚度为介于2至10纳米之间。根据一实施例,绝缘层140的材料为磷硅酸盐玻璃(PSG)、硼硅酸盐玻璃(BSG)、硼磷硅酸盐玻璃(BPSG)、或其组合。根据一实施例,每一层绝缘层140的厚度为介于5至10纳米之间。根据一实施例,步骤S2与S3分别采用化学气相沉积(CVD)、金属有机物化学气相沉积(MOCVD)、分子束外延(MBE)或原子层沉积(ALD)等方式沉积STI层120、含氧介电层130与绝缘层140。
执行步骤S4,参考图3所示,经由第一道蚀刻程序形成一沟槽210,沟槽210连通于STI层120和多个含氧介电层130和多个绝缘层140的交替层150。根据一实施例,第一道蚀刻程序为采用干式蚀刻法,且采用的气体为Cl2和Ar的混合气体,然不以此为限。
执行步骤S5,参考图4所示,经由第二道蚀刻程序选择性蚀刻沟槽210的内侧壁220的交替层150中的多个绝缘层140,使沟槽210的内侧壁220具有多个垂直堆栈碗形的截面形状。根据一实施例,第二道蚀刻程序为采用湿式蚀刻法,且使用的溶液为NH3和H2O的混合溶液、KOH溶液或者是TMAH溶液(羟化四甲铵,tetramethylazanium hydroxide)。
执行步骤S6,参考图5所示,选择性外延生长缓冲层300于沟槽210中的衬底100上。根据一实施例,缓冲层300的材料为砷化镓(GaAs)或硅锗(SiGe)。根据一实施例,缓冲层300的厚度大致与STI层120的厚度相同,也就是介于10至100纳米之间。
执行步骤S7,参考图6所示,选择性外延生长III-V族材料400于沟槽210中的缓冲层300上,以形成沟道区域。根据一实施例,III-V族材料400填满缓冲层300上的沟槽210。根据一实施例,III-V族材料400为砷化铟镓(InGaAs)、砷化铟(InAs)、磷化铟(InP)、砷化镓(GaAs)、铝砷化镓(AlGaAs)、铝锑化铟(AlInSb)、或锑化铟(InSb)。
执行步骤S8,参考图7所示,选择性移除多个含氧介电层130和多个绝缘层140的交替层150,使III-V族材料400暴露于STI层120上。
执行步骤S9,参考图8所示,以热氧化制程热氧化缓冲层300,以形成介于衬底100与III-V族材料400之间的氧化隔离层330,未氧化的缓冲层300′介于衬底100与氧化隔离层330之间。根据一实施例,热氧化制程采用原位蒸汽产生氧化法或快速热氧化法,例如:原位蒸汽氧化法采用的反应气体为O2或N2O和N2的混合气体。
执行步骤S10,参考图9所示,沉积高介电常数(high-K)介电层500于STI层120的上表面和III-V族材料400的周围,以形成栅极介电层。根据一实施例,高介电常数介电层500之介电材料,例如二氧化钛(TiO2)、二氧化铪(HfO2)、二氧化锆(ZrO2)等。
执行步骤S11,参考图10所示,沉积导电材料600于高介电常数介电层500的周围,以形成栅极电极层,栅极介电层500与栅极电极层600组成栅极堆栈。根据一实施例,采用微影与蚀刻技术以图案化定义栅极堆栈。根据一实施例,步骤S9与S11分别采用化学气相沉积(CVD)、金属有机物化学气相沉积(MOCVD)、分子束外延(MBE)或原子层沉积(ALD)等方式沉积高介电常数介电层500与导电材料600。根据一实施例,执行步骤S10之后,外延生长或植入源极/漏极材料于衬底100上,以作为鳍状场效应晶体管的源极/漏极。
再次参考图10,藉由上述方法步骤,本发明提供一种鳍状场效应晶体管1,包括衬底100、浅沟槽隔离(STI)层120、缓冲层300′、III-V族材料400、氧化隔离层330、高介电常数介电层500及导电材料600。STI层120形成于衬底100上,STI层120具有沟槽210′。缓冲层300′形成于沟槽210′中的衬底100上。氧化隔离层330形成于缓冲层300′上。III-V族材料400形成于氧化隔离层330上,且III-V族材料400具有多个垂直堆栈碗形的截面形状。高介电常数介电层500形成于STI层120的上表面和III-V族材料400的周围,以形成栅极介电层。导电材料600形成于高介电常数介电层500的周围,以形成栅极电极层。此外,源极/漏极材料可藉由外延生长或植入于衬底100上,以作为鳍状场效应晶体管1的源极/漏极。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明申请专利范围及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (13)

1.一种鳍状场效应晶体管的制备方法,其特征在于,包括:
提供衬底;
沉积浅沟槽隔离层于该衬底上;
沉积多个含氧介电层和多个绝缘层的交替层于该浅沟槽隔离层上;
经由第一道蚀刻程序形成沟槽,该沟槽贯穿该浅沟槽隔离层和该些含氧介电层和该些绝缘层的该交替层;
经由第二道蚀刻程序选择性蚀刻该沟槽的内侧壁的该交替层中的该些绝缘层,使该沟槽的该内侧壁具有多个垂直堆栈碗形的截面形状;
选择性外延生长缓冲层于该沟槽中的该衬底上;
选择性外延生长III-V族材料于该沟槽中的该缓冲层上;
选择性移除该些含氧介电层和该些绝缘层的该交替层;
热氧化该缓冲层,以形成介于该衬底与该III-V族材料之间的氧化隔离层;
沉积高介电常数介电层于该浅沟槽隔离层的上表面和该III-V族材料的周围;及
沉积导电材料于该高介电常数介电层的周围。
2.如权利要求1所述的鳍状场效应晶体管的制备方法,其特征在于,沉积该浅沟槽隔离层于该衬底上的步骤包括:该浅沟槽隔离层的厚度介于10至100纳米之间。
3.如权利要求1所述的鳍状场效应晶体管的制备方法,其特征在于,沉积该些含氧介电层和该些绝缘层的该交替层于该浅沟槽隔离层的步骤包括:该些含氧介电层的材料为二氧化硅、氟氧化硅、氮氧化硅、或其组合。
4.如权利要求1所述的鳍状场效应晶体管的制备方法,其特征在于,沉积该些含氧介电层和该些绝缘层的该交替层于该浅沟槽隔离层的步骤包括:该些含氧介电层的厚度分别介于2至10纳米之间。
5.如权利要求1所述的鳍状场效应晶体管的制备方法,其特征在于,沉积该些含氧介电层和该些绝缘层的该交替层于该浅沟槽隔离层的步骤包括:该些绝缘层的材料为磷硅酸盐玻璃、硼硅酸盐玻璃、硼磷硅酸盐玻璃、或其组合。
6.如权利要求1所述的鳍状场效应晶体管的制备方法,其特征在于,沉积该些含氧介电层和该些绝缘层的该交替层于该浅沟槽隔离层的步骤包括:该些绝缘层的厚度分别介于5至10纳米之间。
7.如权利要求1所述的鳍状场效应晶体管的制备方法,其特征在于,选择性外延生长该缓冲层于该沟槽中的该衬底上的步骤包括:该缓冲层的材料为砷化镓或硅锗。
8.如权利要求1所述的鳍状场效应晶体管的制备方法,其特征在于,选择性外延生长该缓冲层于该沟槽中的该衬底上的步骤包括:该缓冲层的厚度介于10至100纳米之间。
9.如权利要求1所述的鳍状场效应晶体管的制备方法,其特征在于,选择性外延生长该III-V族材料于该沟槽中的该缓冲层上的步骤包括:该III-V族材料为砷化铟镓、砷化铟或锑化铟。
10.如权利要求1所述的鳍状场效应晶体管的制备方法,其特征在于,经由该第一道蚀刻程序形成该沟槽的步骤包括:该第一道蚀刻程序采用干式蚀刻法。
11.如权利要求1所述的鳍状场效应晶体管的制备方法,其特征在于,经由该第二道蚀刻程序选择性蚀刻该沟槽的内侧壁的该交替层中的该些绝缘层的步骤包括:该第二道蚀刻程序采用湿式蚀刻法。
12.如权利要求1所述的鳍状场效应晶体管的制备方法,其特征在于,热氧化该缓冲层,以形成介于该衬底与该III-V族材料之间的该氧化隔离层的步骤包括:采用原位蒸汽产生氧化法或快速热氧化法热氧化该缓冲层。
13.如权利要求12所述的鳍状场效应晶体管的制备方法,其特征在于,采用原位蒸汽氧化法的步骤包括:以O2和N2的混合气体作为反应气体,或以N2O和N2的混合气体作为反应气体。
CN201610120862.7A 2016-03-03 2016-03-03 鳍状场效应晶体管及其制备方法 Active CN107154355B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201610120862.7A CN107154355B (zh) 2016-03-03 2016-03-03 鳍状场效应晶体管及其制备方法
TW105118838A TWI573182B (zh) 2016-03-03 2016-06-15 鰭狀場效電晶體及其製備方法
US15/270,992 US9773891B1 (en) 2016-03-03 2016-09-20 FinFET and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610120862.7A CN107154355B (zh) 2016-03-03 2016-03-03 鳍状场效应晶体管及其制备方法

Publications (2)

Publication Number Publication Date
CN107154355A CN107154355A (zh) 2017-09-12
CN107154355B true CN107154355B (zh) 2020-04-10

Family

ID=58766107

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610120862.7A Active CN107154355B (zh) 2016-03-03 2016-03-03 鳍状场效应晶体管及其制备方法

Country Status (3)

Country Link
US (1) US9773891B1 (zh)
CN (1) CN107154355B (zh)
TW (1) TWI573182B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10665666B2 (en) 2017-12-08 2020-05-26 International Business Machines Corporation Method of forming III-V on insulator structure on semiconductor substrate
US10818753B2 (en) 2019-03-18 2020-10-27 International Business Machines Corporation VTFET having a V-shaped groove at the top junction region

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6251737B1 (en) * 1999-11-04 2001-06-26 United Microelectronics Corp. Method of increasing gate surface area for depositing silicide material
CN101924105A (zh) * 2009-05-29 2010-12-22 台湾积体电路制造股份有限公司 集成电路结构
CN104282561A (zh) * 2013-07-02 2015-01-14 中国科学院微电子研究所 FinFET器件及其制作方法
CN104779283A (zh) * 2014-01-09 2015-07-15 中芯国际集成电路制造(上海)有限公司 增强栅控和电流驱动的finfet器件及制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7879659B2 (en) * 2007-07-17 2011-02-01 Micron Technology, Inc. Methods of fabricating semiconductor devices including dual fin structures
US8106459B2 (en) * 2008-05-06 2012-01-31 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs having dielectric punch-through stoppers
CN104218082B (zh) * 2013-06-04 2017-08-25 中芯国际集成电路制造(上海)有限公司 高迁移率鳍型场效应晶体管及其制造方法
CN104900521B (zh) * 2014-03-04 2018-08-10 中芯国际集成电路制造(上海)有限公司 鳍式场效应晶体管及其形成方法
CN105336772B (zh) * 2014-05-26 2021-11-30 中芯国际集成电路制造(上海)有限公司 鳍式tfet及其制造方法
US9608116B2 (en) * 2014-06-27 2017-03-28 Taiwan Semiconductor Manufacturing Company, Ltd. FINFETs with wrap-around silicide and method forming the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6251737B1 (en) * 1999-11-04 2001-06-26 United Microelectronics Corp. Method of increasing gate surface area for depositing silicide material
CN101924105A (zh) * 2009-05-29 2010-12-22 台湾积体电路制造股份有限公司 集成电路结构
CN104282561A (zh) * 2013-07-02 2015-01-14 中国科学院微电子研究所 FinFET器件及其制作方法
CN104779283A (zh) * 2014-01-09 2015-07-15 中芯国际集成电路制造(上海)有限公司 增强栅控和电流驱动的finfet器件及制备方法

Also Published As

Publication number Publication date
US20170256632A1 (en) 2017-09-07
US9773891B1 (en) 2017-09-26
CN107154355A (zh) 2017-09-12
TWI573182B (zh) 2017-03-01
TW201732901A (zh) 2017-09-16

Similar Documents

Publication Publication Date Title
US11437517B2 (en) Semiconductor structures and methods with high mobility and high energy bandgap materials
US10937909B2 (en) FinFET device including an dielectric region and method for fabricating same
US11637207B2 (en) Gate-all-around structure and methods of forming the same
US11127740B2 (en) Method of manufacturing a semiconductor device with separated merged source/drain structure
KR101788408B1 (ko) Fin-fet를 포함하는 반도체 디바이스 및 이의 제조 방법
CN110896055B (zh) 一种堆叠纳米线或片环栅cmos器件的制备方法
US9614087B1 (en) Strained vertical field-effect transistor (FET) and method of forming the same
US20130105859A1 (en) Semiconductor device and method of manufacturing the same
US10170374B2 (en) Semiconductor device and method for manufacturing the same
US9640660B2 (en) Asymmetrical FinFET structure and method of manufacturing same
TW202127524A (zh) 半導體裝置的製造方法
KR102636791B1 (ko) 반도체 디바이스 형성 방법
CN109103108A (zh) 一种半导体器件的形成方法
CN107154355B (zh) 鳍状场效应晶体管及其制备方法
CN107154429B (zh) 鳍状场效应晶体管及其制备方法
US20230290780A1 (en) Semiconductor device structure and methods of forming the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant