CN107153721A - 一种运动目标下的辛时域有限差分电磁仿真方法 - Google Patents

一种运动目标下的辛时域有限差分电磁仿真方法 Download PDF

Info

Publication number
CN107153721A
CN107153721A CN201710003182.1A CN201710003182A CN107153721A CN 107153721 A CN107153721 A CN 107153721A CN 201710003182 A CN201710003182 A CN 201710003182A CN 107153721 A CN107153721 A CN 107153721A
Authority
CN
China
Prior art keywords
pungent
finite
equation group
difference
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201710003182.1A
Other languages
English (en)
Inventor
高英杰
叶全意
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinling Institute of Technology
Original Assignee
Jinling Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinling Institute of Technology filed Critical Jinling Institute of Technology
Priority to CN201710003182.1A priority Critical patent/CN107153721A/zh
Publication of CN107153721A publication Critical patent/CN107153721A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明提供一种运动目标下的辛时域有限差分电磁仿真方法,包括以下步骤:步骤1,构建麦克斯韦方程组,采用辛时域有限差分法求解麦克斯韦方程组;步骤2,引入运动目标的速度至麦克斯韦方程组,采用辛时域有限差分法求解此时麦克斯韦方程组。

Description

一种运动目标下的辛时域有限差分电磁仿真方法
技术领域
本发明涉及一种地磁场数值计算基数,特别是一种运动目标下的辛时域有限差分电磁仿真方法。
背景技术
在电磁数值仿真过程中,首先,辛时域有限差分法相对于传统的时域有限差分法,针对麦克斯韦方程,空间上采用的是高阶的离散格式,具有较高的计算精度和较低的数值色散,在满足同样精度的情况下可以使用比传统的时域有限差分法更粗的网格单元。
针对计算电大尺寸目标所采用的传统的时域有限差分法计算内存大,数值色散性差等缺点,Jiayuan Fang等提出了高阶时域有限差分法,该算法在时间上的离散方式与传统的FDTD算法是一样的,而在空间上的离散格式则使用高阶精度的,结果明显提高了数值色散特性及计算的精度,而且还保留了以往传统FDTD 算法简单、直观的特点。可参考文献:(1)Jiayuan Fang,“A locally conformed finite-difference time-domain algorithmof modeling arbitrary shape planar metal strips,”IEEE Transactions onMicrowave Theory and Techniques,vol.41,No.5, pp:830-838,1989.和(2)TheodorosT.Zygiridis,Theodoros D.Tsiboukis,“A dispersion-reduction scheme for thehigher order(2,4)FDTD method,”IEEE Transactions on Magnetics,Vol.40,No.2,pp:1464-1467,March 2004.
辛时域有限差分法在空间离散上实质就是采用了高阶时域有限差分法的高阶离散格式。而且,针对麦克斯韦方程组,在对时间的离散上,由于对于任意取定的时间,哈密尔顿方程组的初值问题解都为辛变换,所以存在许多内在的守恒量。随着时间t的增大,尽管数值解与精确解相比,难免会产生一些误差,却能够始终保持这个误差为一个常数。这种算法则称之为辛算法。可参考文献:(3) 冯康,秦孟兆.哈密尔顿系统的辛几何算法[M].浙江:科学技术出版社.2003
麦克斯韦方程可被视为一个无穷维的哈密尔顿系统,而基于哈密尔顿系统的算法应该在辛几何框架内产生,并且随着时间的演化,推导出的离散算法应该永远是辛变换的,也就是说辛算法可以应用到对麦克斯韦方程组的离散计算中。可参考文献(4)HaruoYoshida,“Construction of higher order symplectic integrators,”Physics.Letters.A,Vol.150,No.5,6,7,pp.262-268,November 1990.和(5)EtienneForest,Ronald D.Ruth,“Fourth-order symplectlc integration,”Physica D:Nonlinear Phenomena,Vol.43,pp.105-117,1990.
传统的时域有限差分法破坏了麦克斯韦方程的辛结构,难免会引入人为耗散性而降低数值稳定性,使得哈密尔顿系统的总能量会随时间表现为线性变化,即计算误差会线性累积,最终导致计算的结果严重歪曲和失真。可参考文献(6) R Rieben,D White,GRodrigue,“High-Order Symplectic Integration Methods for Finite ElementSolutions to Time Dependent Maxwell Equation,”IEEE Transactions on Antennasand Propagation,Vol.52,No.8,pp.2190-2195,2004.
而辛时域有限差分法采用基于哈密尔顿系统的辛算子,可以降低高阶的离散格式下对数值稳定性的严格要求,进一步降低数值色散误差,提高计算精度。但是这样的辛时域有限差分法一般都是针对相对静止的目标来进行电磁仿真计算的,如果要应用到如高速运动的飞机、导弹,快速移动的汽车等运动目标上,就需要在原来麦克斯韦方程组中加入速度这个变量,改写整个方程组的离散格式。
发明内容
本发明的目的在于提供一种运动目标下的辛时域有限差分电磁仿真方法,包括以下步骤:
步骤1,构建麦克斯韦方程组,采用辛时域有限差分法求解麦克斯韦方程组;
步骤2,引入运动目标的速度至麦克斯韦方程组,采用辛时域有限差分法求解此时麦克斯韦方程组。
采用上述方法,步骤2的具体过程为:
步骤2.1,引入运动目标的速度至麦克斯韦方程组,麦克斯韦方程组的本构关系变为
其中,V位运动目标速度,σ为媒质的电导率,J为传导电流密度,B为磁通密度,c为光速;
步骤2.2,消除光速c对方程(5)的影响,方程简化为
J=σ·[E+V×B] (6)
步骤2.3,针对磁场的差分格式为
步骤2.4,针对电场,从第n时间步到第n+1步,经过5次迭代,第s-1级迭代到s级的离散格式变为如下:
其中
gbx(i)=σ·Δt/ε0
其中Dx为x方向的电位移矢量分量,Hy为y方向的磁场矢量分量,Ex为x 方向的电场矢量分量。ε=εrε0,εr为相对介电常数,ε0为真空介电常数;μ0为真空磁导率,s为辛传播子系数的级数,cs和ds为级数为s时的辛算子系数,,CFL为数值稳定性条件,Δt为时间步长,Δ为空间步长,并且Δt和Δ满足CFL 条件。
本发明将运动目标的速度引入麦克斯韦方程组中,解决了辛时域有限差分法不能针对高速运动目标进行测量的弊端,用过该本发明建立的仿真,可以很好的描述流动中的运动目标的相关参数。
下面结合说明书附图对本发明作进一步描述。
附图说明
图1是本发明的方法流程图。
图2是本发明的SFDTD(5;4,4)算法的电磁场值迭代过程示意图。
图3是等离子体光子晶体模型示意图。
图4是流速分别为500mm/s,1000mm/s及静态下的等离子体光子晶体透射系数图谱示意图。
具体实施方式
结合图1,本发明涉及的一种运动目标下的辛时域有限差分电磁仿真方法,包括两大步骤:
步骤1,构建麦克斯韦方程组,采用辛时域有限差分法求解麦克斯韦方程组;
步骤2,引入运动目标的速度至麦克斯韦方程组,采用辛时域有限差分法求解此时麦克斯韦方程组。
其中,步骤1主要包括以下要点:
(1)用哈密尔顿函数Hm表示的麦克斯韦方程组;
(2)在时间方向上用不同阶数辛算子对方程进行差分离散;
(3)在空间方向上用采用四阶精度的有限差分格式对方程进行离散;
(4)记m级p阶辛算法结合空间q阶的辛时域有限差分法为SFDTD(m: p,q),基于SFDTD(m:p,q)算法获取电磁场值随时间步长推进的方式。
具体地,电磁场中的麦克斯韦方程组可以用如下的哈密尔顿函数Hm表示:
其中H和E分别为磁场和电场,ε和μ分别为媒质的介电常数和磁导率,▽为旋度。
通过变分法,从t=0到t=Δt演化为:
其中,{0}3×3为3×3的零矩阵,R为三维旋度算子,ε为媒质的介电常数,μ为媒质的磁导率。通过上面的公式推导,即可以把适用于哈密尔顿系统的辛算法应用到求解麦克斯韦方程的辛时域有限差分法中来。
在时间方向上,用不同阶数的辛算子去近似:
其中,cl,dl为辛算子,m,p(m≥p)分别为辛算法的级数与阶数,下表展示了不同级数和阶数下的辛传播子系数。
表1不同级数和阶数下的辛传播子系数
在空间方向上,因为算符C,D中含有旋度算符R,所以为得到麦克斯韦方程的数值解,就必须在空间方向上对麦克斯韦方程做进一步离散。
目前采用四阶精度的离散近似为:
记m级p阶辛算法结合空间q阶的辛时域有限差分法为SFDTD(m:p,q),则基于SFDTD(5;4,4)算法的电磁场值随时间步长迭代的过程如图2所示。
步骤2中,将运动目标的速度V引入麦克斯韦方程组,麦克斯韦方程组的本构关系变为:
其中σ为媒质的电导率,J为传导电流密度,B为磁通密度,
由于运动目标的速度远小于光速,上式可简化为:J=σ·[E+V×B],由此可推出针对运动目标,速度V这个变量在磁场中的差分格式不变,所以在传统 FDTD算法中,针对磁场的差分格式依旧保持不变,同时在FDTD(5;4,4)算法中,针对磁场的差分格式依然是原来的辛差分格式,如下:
而针对电场,在SFDTD(5;4,4)算法中,从第n时间步到第n+1步,经过5 次迭代,第s-1级迭代到s级的离散格式变为如下:
其中:
gbx(i)=σ·Δt/ε0
其中Dx为x方向的电位移矢量分量,Hy为y方向的磁场矢量分量,Ex为x 方向的电场矢量分量。ε=εrε0,εr为相对介电常数,ε0为真空介电常数;μ0为真空磁导率,s为辛传播子系数的级数,cs和ds为级数为s时的辛算子系数,, CFL为数值稳定性条件,Δt为时间步长,Δ为空间步长,并且Δt和Δ满足CFL 条件。
由此完成针对动态目标的麦克斯韦方程组的求解。
实施例
本发明涉及的方法可以应用于高速飞行器轨迹测量问题中,特别是隐形高速飞行器的轨迹测量中。飞机采用等离子体隐身技术,将等离子体覆盖在飞行器体表上,可以达到隐身的效果。实际上等离子体就是一种光子晶体,等离子体光子晶体是由不同介质材料或真空和等离子体共同组成的人工周期性结构。其不仅具有不仅具有常规光子晶体的优点,可以对光的传播进行人为操控,而且具有光子禁带特性和光子局域态,可以很好地应用到高速飞行器,如隐身飞机上。而高速飞行器不是静态的目标,是带有较高速度的运动目标,这时就需要去考虑速度这个变量对于麦克斯韦方程组的影响。
8层介质和7层等离子体组成等离子体光子晶体模型,形成“介质-等离子体 -介质”的结构,介质厚度等于等离子体厚度,等离子频率为2GHz,等离子体碰撞频率为2Mrad/s,脉冲电磁波从模型左侧垂直入射,如图3所示。
整个等离子体光子晶体模型里的物质为流动的,其电导率为1s/m,流速分别为500mm/s,1000mm/s以及静态时,研究等离子体生物光子晶体带隙结构特性,得到的结果表明,增加流速对透射系数有一定的影响,流速越大,透射系数也相应地增大,仿真结果如图4所示。

Claims (6)

1.一种运动目标下的辛时域有限差分电磁仿真方法,其特征在于,包括以下步骤:
步骤1,构建麦克斯韦方程组,采用辛时域有限差分法求解麦克斯韦方程组;
步骤2,引入运动目标的速度至麦克斯韦方程组,采用辛时域有限差分法求解此时麦克斯韦方程组。
2.根据权利要求1所述的方法,其特征在于采用辛时域有限差分法求解麦克斯韦方程组,包括:
(1)用哈密尔顿函数Hm表示的麦克斯韦方程组;
(2)在时间方向上用不同阶数辛算子对方程进行差分离散;
(3)在空间方向上用采用四阶精度的有限差分格式对方程进行离散;
(4)记m级p阶辛算法结合空间q阶的辛时域有限差分法为SFDTD(m:p,q),基于SFDTD(m:p,q)算法获取电磁场值随时间步长推进的方式。
3.根据权利要求2所述的方法,其特征在于,用哈密尔顿函数Hm表示的麦克斯韦方程组为
其中,H和E分别为磁场和电场,ε和μ分别为媒质的介电常数和磁导率,▽为旋度。
4.根据权利要求2所述的方法,其特征在于,在时间方向上用不同阶数辛算子对方程进行差分离散,具体过程为:
步骤1.1.1,在时间方向上,从t=0到t=Δt,哈密尔顿方程演化为
其中, {0}3×3为3×3的零矩阵,R为三维旋度算子;
步骤1.1.2,用不同阶数的辛算子得到exp(Δt(C+D))不同阶的近似
其中,cl、dl为辛算子,m、p分别为辛算法的级数与阶数,m≥p。
5.根据权利要求2所述的方法,其特征在于,在空间方向上用采用四阶精度的有限差分格式对方程进行离散的具体过程为:
步骤1.2.1,引入记号fn(i,j,k);
步骤1.2.2,采用四阶精度的离散近似
6.根据权利要求1所述的方法,其特征在于,步骤2的具体过程为:
步骤2.1,引入运动目标的速度至麦克斯韦方程组,麦克斯韦方程组的本构关系变为
其中,V位运动目标速度,σ为媒质的电导率,J为传导电流密度,B为磁通密度,c为光速;
步骤2.2,消除光速c对方程(5)的影响,方程简化为
J=σ·[E+V×B] (6)
步骤2.3,针对磁场的差分格式为
步骤2.4,针对电场,从第n时间步到第n+1步,经过5次迭代,第s-1级迭代到s级的离散格式变为如下:
其中
gbx(i)=σ·Δt/ε0
其中Dx为x方向的电位移矢量分量,Hy为y方向的磁场矢量分量,Ex为x方向的电场矢量分量。ε=εrε0,εr为相对介电常数,ε0为真空介电常数;μ0为真空磁导率,s为辛传播子系数的级数,cs和ds为级数为s时的辛算子系数,CFL为数值稳定性条件,Δt为时间步长,Δ为空间步长,并且Δt和Δ满足CFL条件。
CN201710003182.1A 2017-01-03 2017-01-03 一种运动目标下的辛时域有限差分电磁仿真方法 Withdrawn CN107153721A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710003182.1A CN107153721A (zh) 2017-01-03 2017-01-03 一种运动目标下的辛时域有限差分电磁仿真方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710003182.1A CN107153721A (zh) 2017-01-03 2017-01-03 一种运动目标下的辛时域有限差分电磁仿真方法

Publications (1)

Publication Number Publication Date
CN107153721A true CN107153721A (zh) 2017-09-12

Family

ID=59791512

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710003182.1A Withdrawn CN107153721A (zh) 2017-01-03 2017-01-03 一种运动目标下的辛时域有限差分电磁仿真方法

Country Status (1)

Country Link
CN (1) CN107153721A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108090296A (zh) * 2017-12-28 2018-05-29 合肥师范学院 基于高阶辛紧致格式的波导全波分析方法
CN109948293A (zh) * 2019-04-02 2019-06-28 安徽大学 一种随机混合显隐式时域有限差分方法
CN111460593A (zh) * 2020-04-24 2020-07-28 安徽大学 一种空间域电磁分量确定方法及系统
CN112347679A (zh) * 2020-11-16 2021-02-09 北京环境特性研究所 一种带有电磁色散的超材料仿真方法及装置
CN116401921A (zh) * 2023-04-07 2023-07-07 安徽大学 一种各项异性磁化等离子体媒质处理方法及系统
CN117332658A (zh) * 2023-10-23 2024-01-02 安徽大学 一种各向异性时变等离子体的电磁特性确定方法及系统
CN117332658B (zh) * 2023-10-23 2024-06-07 安徽大学 一种各向异性时变等离子体的电磁特性确定方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU5604400A (en) * 1999-06-12 2001-01-02 American Applied Research, Inc. Improved simulation system for modeling the electromagnetic response of electronic design packages
CN104375975A (zh) * 2014-12-01 2015-02-25 天津工业大学 基于双线性变换的一维真空Crank-Nicolson完全匹配层实现算法
CN105550451A (zh) * 2015-12-18 2016-05-04 天津工业大学 基于辅助微分方程的一维左手材料Crank-Nicolson完全匹配层实现算法
CN105589678A (zh) * 2014-10-23 2016-05-18 天津职业技术师范大学 一种用数字信号处理技术实现的时域有限差分方法
CN105825015A (zh) * 2016-03-18 2016-08-03 中国人民解放军火箭军工程大学 一种用于磁化等离子体的时域有限差分方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU5604400A (en) * 1999-06-12 2001-01-02 American Applied Research, Inc. Improved simulation system for modeling the electromagnetic response of electronic design packages
CN105589678A (zh) * 2014-10-23 2016-05-18 天津职业技术师范大学 一种用数字信号处理技术实现的时域有限差分方法
CN104375975A (zh) * 2014-12-01 2015-02-25 天津工业大学 基于双线性变换的一维真空Crank-Nicolson完全匹配层实现算法
CN105550451A (zh) * 2015-12-18 2016-05-04 天津工业大学 基于辅助微分方程的一维左手材料Crank-Nicolson完全匹配层实现算法
CN105825015A (zh) * 2016-03-18 2016-08-03 中国人民解放军火箭军工程大学 一种用于磁化等离子体的时域有限差分方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YING JIE GAO等: ""A High-Order, Symplectic, Finite-Difference Time-Domain Scheme for Bioelectromagnetic Applications within theMother/FetusModel"", 《RESEARCH ARTICLE》 *
郑宏兴 等: ""用时域有限差分法分析涂敷目标的电磁散射特性"", 《云南民族大学学报(自然科学版)》 *
高英杰: ""ICCG-SFDTD算法在生物电磁计算中的应用"", 《中国博士学位论文全文数据库 基础科学辑 (月刊)》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108090296A (zh) * 2017-12-28 2018-05-29 合肥师范学院 基于高阶辛紧致格式的波导全波分析方法
CN108090296B (zh) * 2017-12-28 2021-10-29 合肥师范学院 基于高阶辛紧致格式的波导全波分析方法
CN109948293A (zh) * 2019-04-02 2019-06-28 安徽大学 一种随机混合显隐式时域有限差分方法
CN109948293B (zh) * 2019-04-02 2022-10-11 安徽大学 一种随机混合显隐式时域有限差分方法
CN111460593A (zh) * 2020-04-24 2020-07-28 安徽大学 一种空间域电磁分量确定方法及系统
CN112347679A (zh) * 2020-11-16 2021-02-09 北京环境特性研究所 一种带有电磁色散的超材料仿真方法及装置
CN116401921A (zh) * 2023-04-07 2023-07-07 安徽大学 一种各项异性磁化等离子体媒质处理方法及系统
CN116401921B (zh) * 2023-04-07 2024-01-30 安徽大学 一种各项异性磁化等离子体媒质处理方法及系统
CN117332658A (zh) * 2023-10-23 2024-01-02 安徽大学 一种各向异性时变等离子体的电磁特性确定方法及系统
CN117332658B (zh) * 2023-10-23 2024-06-07 安徽大学 一种各向异性时变等离子体的电磁特性确定方法及系统

Similar Documents

Publication Publication Date Title
CN107153721A (zh) 一种运动目标下的辛时域有限差分电磁仿真方法
Shankar et al. A time-domain differential solver for electromagnetic scattering problems
Peng et al. Domain decomposition preconditioning for surface integral equations in solving challenging electromagnetic scattering problems
Ergul et al. Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm
CN102156764B (zh) 一种分析天线辐射和电磁散射的多分辨预条件方法
CN109684740B (zh) 一种基于混合网格及时间步长的电磁学多尺度计算方法
CN111159637B (zh) 一种应用于磁化等离子体计算的电磁波时域精细积分方法
Christophe et al. An implicit hybridized discontinuous Galerkin method for the 3D time-domain Maxwell equations
CN113158527B (zh) 一种基于隐式fvfd计算频域电磁场的方法
Pan et al. An efficient high order multilevel fast multipole algorithm for electromagnetic scattering analysis
Wu et al. Performance enhanced Crank-Nicolson boundary conditions for EM problems
Fisher et al. A generalized mass lumping technique for vector finite-element solutions of the time-dependent Maxwell equations
Hu et al. A Chebyshev-based high-order-accurate integral equation solver for Maxwell’s equations
CN107944113A (zh) 一种计算三维高速平动目标电磁散射场的方法
CN106777472A (zh) 基于拉盖尔多项式的减少分裂误差的完全匹配层实现方法
Wang et al. Application of AIM and MBPE techniques to accelerate modeling of 3-D doubly periodic structures with nonorthogonal lattices composed of bianisotropic media
CN113919128A (zh) 一种适用于隐身灵敏度计算的电磁变分方法
CN104732050A (zh) 雷电脉冲下碳纤维材料飞行目标内的电磁分布预估方法
CN105205299B (zh) 电大目标电磁散射特性快速降维分析方法
Takasaki et al. Fast transient analysis of nonuniform multiconductor transmission lines using HIE-block-LIM
Kalantari et al. A TLM-based wideband adjoint variable method for sensitivity analysis of non-dispersive anisotropic structures
Zhao et al. Sparse matrix canonical grid method for three-dimension rough surface
Ergul et al. Stabilization of integral-equation formulations for the accurate solution of scattering problems involving low-contrast dielectric objects
Wu et al. Efficient incorporation of a PEC/PMC plane in the multiple-grid adaptive integral method
Liu et al. Efficient TDS-PO Hybrid Method for Scattering Analysis of Large-Scale PEC Target Partially Coated by Thin Dielectric Materials

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20170912

WW01 Invention patent application withdrawn after publication