CN107110779A - 对光带上的沟槽结构的衍射成像 - Google Patents

对光带上的沟槽结构的衍射成像 Download PDF

Info

Publication number
CN107110779A
CN107110779A CN201580070224.2A CN201580070224A CN107110779A CN 107110779 A CN107110779 A CN 107110779A CN 201580070224 A CN201580070224 A CN 201580070224A CN 107110779 A CN107110779 A CN 107110779A
Authority
CN
China
Prior art keywords
light
light source
monitoring system
belt surface
nanometers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580070224.2A
Other languages
English (en)
Other versions
CN107110779B (zh
Inventor
S·D·威尔逊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oracle International Corp
Original Assignee
Oracle International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oracle International Corp filed Critical Oracle International Corp
Publication of CN107110779A publication Critical patent/CN107110779A/zh
Application granted granted Critical
Publication of CN107110779B publication Critical patent/CN107110779B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4788Diffraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N2021/556Measuring separately scattering and specular
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • G01N2021/8905Directional selective optics, e.g. slits, spatial filters
    • G01N2021/8907Cylindrical optics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N2021/8909Scan signal processing specially adapted for inspection of running sheets
    • G01N2021/891Edge discrimination, e.g. by signal filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details
    • G01N21/8903Optical details; Scanning details using a multiple detector array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/002Recording, reproducing or erasing systems characterised by the shape or form of the carrier
    • G11B7/003Recording, reproducing or erasing systems characterised by the shape or form of the carrier with webs, filaments or wires, e.g. belts, spooled tapes or films of quasi-infinite extent

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Wood Science & Technology (AREA)

Abstract

提供了用于对光带表面(12)进行成像的沟槽监测系统(30)。光带表面(12)包括压印在其上的多个沟槽图案(18)。沟槽监测系统包括光学传感器(32)、以第一入射角度将第一光束引导到光带表面(12)上以使得第一光束从光带表面(12)被直接反射并被光学传感器(32)成像的第一光源(38)。沟槽监测系统(30)还包括以第二入射角度将第二光束引导到光带表面(12)上以使得第二光束从光带表面(12)被衍射并被光学传感器(32)成像为衍射光图像的第二光源(40)。沟槽监测系统(30)能够同时对沟槽图案和光带(10)的边缘(20、22)生成电子图像,以便确保带边缘(20、22)和沟槽图案满足平行性要求。

Description

对光带上的沟槽结构的衍射成像
技术领域
在至少一个实施例中,本发明涉及诸如光存储带的光存储介质。
背景技术
光记录介质是一种数字存储介质,图案被标记到该数字存储介质上并被通常来自激光器的光读取。光数据记录介质需要刻有沟槽的结构,在该刻有沟槽的结构上放置所记录的标记。沟槽或者在光记录中被称为的“轨道”,通常具有亚微米尺度,因而几乎不可能用标准光学显微镜观察到。例如,带有约320纳米轨道间距的沟槽呈现了必要的表面特征给跟踪伺服系统,以便在读数据和写数据时让跟踪伺服系统的激光点锁定在该必要的表面特征上。沟槽结构必须有稳定的高质量来让记录系统可靠。光带中的沟槽的重要参数之一是沟槽保持和光带边缘的高度平行。如果在带纵切过程中存在问题,则可能发生对平行性的偏离。现在,还没有已知的仪器能同时对沟槽图案和光带的边缘二者生成电子图像。
图1和图2示出典型的光记录介质的一部分。图1是光存储带的俯视图,而图2是光存储带的侧视图。光数据存储带10包括压印(embossed)在光存储带的表面12上的纳米结构表面浮凸图案。纳米结构包括带14,带14中的每一个包括多个轨道,这些轨道具有在预格式化工艺中在与光数据存储介质的面平行的方向上压印到该带上的平地16和沟槽18。光带14插入在带边缘20和22之间。
光带从未被成功商业化,因此不存在已知的仪器来测量沟槽图案的质量。尽管确实存在用于光盘工业的某些基于衍射的传感器,但是这种技术从没延伸到光带。
相应地,需要用于访问光存储带中的平行性的系统和方法。
发明内容
本发明通过在至少一个实施例中提供沟槽监测系统来解决现有技术的一个或者多个问题,该沟槽监测系统用于对其上压印有多个沟槽图案的光带表面进行成像。沟槽监测系统包括光学传感器和第一光源,第一光源以第一入射角度将第一光束引导到光带表面上,使得第一光束从光带表面被直接反射且被光学传感器成像。该沟槽监测系统还包括第二光源,该第二光源将第二光束以第二入射角度引导到光带表面上,使得第二光束从光带表面被衍射且被光学传感器成像为衍射光图像。本发明在光记录带上生成沟槽图案区域的图像,而不需要诸如原子力或者扫描电子显微镜等超高放大率的仪器。本发明通过使用被沟槽衍射到诸如CCD或者CMOS成像设备的高分辨率传感器上的光来生成刻有沟槽的区域的图像。本发明使在光带上对沟槽图案进行控制和质量鉴定成为可能。为了帮助生产光带,本发明可以用于闭环带纵切控制系统来保证带边缘和沟槽图案满足平行性要求。此外,本发明通过识别可能存在空白(空缺)、碎片、缺陷的区域来使得监测沟槽图案的一致性成为可能。这能由带驱动制造商在带制造过程和随后的质量控制测试中实现。
在另外一个实施例中,提供了用于对包括多个沟槽图案的光带表面进行成像的沟槽监测系统。沟槽监测系统包括线性光学传感器阵列和提供第一光束的第一发光二极管,第一光束被以第一入射角度引导到光带表面上,使得第一光束从光带表面被直接反射且被线性光学传感器阵列成像为直接反射图像。沟槽监测系统还包括第二发光二极管,第二发光二极管将第二光束以第二入射角度引导到光带表面上,使得第二光束从光带表面被衍射且被线性光学传感器阵列成像为衍射光图像。带引导件保持光带接近第一光源和第二光源,使得第一光源和第二光源将光引导到带表面上。沟槽监测系统还包括用于将光带移动到第一光源和第二光源前面的带驱动子系统。从特征上讲,带驱动子系统移动光带经过带引导件。
在另外一个实施例中,提供了用于对包括多个沟槽图案的光带表面进行成像的方法。该方法包括以下步骤:将第一光束以第一入射角度引导到光带表面上,以产生从光带表面直接反射的光。第二光束被以第二入射角度引导到光带表面上,以产生从光带表面衍射的光。有利地,直接反射的光被成像为直接反射图像,衍射的光被成像为衍射光图像。
附图说明
图1提供了光存储带的俯视图。
图2是光存储带的侧视图。
图3提供了由具有极端沟槽图案漂移(wander)的带的沟槽监测系统拍摄的二维位图图像。
图4是用于访问光存储带中的沟槽平行性的沟槽监测系统的透视图。
图5是用于访问光存储带中的沟槽平行性的沟槽监测系统的示意性侧视图。
图6是用于访问光存储带中的沟槽平行性的沟槽监测系统的示意性俯视图。
图7是收集光带表面的直接反射图像的沟槽监测系统的示意性侧视图。
图8提供了从带边沿直接反射的光的图像。
图9是收集光带表面的衍射图像的沟槽监测系统的示意性侧视图。
图10是根据公式I的衍射角度相对入射角度的绘图。
图11提供了从光带沟槽图案衍射的光的图像。
图12提供了从带边沿直接反射的光和从光带沟槽图案衍射的光的同步图像。
图13提供了闭环带纵切控制系统的图解。
具体实施方式
现在将详细参照本发明目前优选的构成、实施例和方法,就发明人目前所知,这些优选的构成、实施例和方法组成了实践本发明的最佳方式。附图不一定是按比例的。然而,要理解的是,所公开的实施例仅仅是可以体现在各种各样的和替代的形式中的本发明的示例。因此,本文公开的具体细节不应被解释为进行限定,而仅仅是作为本发明的任何方面的代表性基础,或者作为用于教导本领域技术人员以多种方式使用本发明的代表性基础。
除了在例子中之外,或者在其他明确指出的情况下,本描述中指示材料的量或反应的条件和/或用途的所有数值量在描述本发明的最宽范围时都应被理解为以“大约”一词加以修饰。通常优选在所指出的数值范围内的实践。此外,除非明确作出相反指示:对与本发明相关联的给定目的合适或者优选的一组或一类材料的描述暗示该组或类的任何两个或更多个成员的混合同样适合或优选;首字母缩写或其它缩写的首次定义适用于该相同缩写在本文中的所有后续使用,并且同样适用于最初定义的缩写的正常语法变型;而且,除非明确作出相反指示,否则一个性质的测量是由对同一性质在之前或之后引用的相同技术来确定的。
还应当理解,本发明也并不局限于下面所描述的具体的实施例和方法,因为具体的组件和/或条件必然会变化。此外,此处使用的术语仅用于描述本发明的特定实施例,并且不打算以任何方式进行限定。
还必须注意到,正如在本说明书中和随附的权利要求中使用的一样,单数形式的“一”、“一个”和“该”包括复数指代,除非上下文清楚地指示其他情况。例如,对单数的组件的引用也意在包括多个组件。
在本申请中,在出版物被引用的地方,这些出版物通过引用整体并入本申请,以更全面地描述本发明所属的现有技术。
在实施例中,提供了一种用于对光带进行成像的沟槽监测系统,该光带包括多个沟槽。沟槽监视系统包括机械外壳、发光二极管(LED)、透镜和线性光学传感器阵列。这些组件以独特的几何形状被布置,使得由LED发射的半单色光从沟槽结构被衍射,被透镜收集,并被成像到光学传感器上,以产生沟槽图案的电子图像。另外,第二LED用于从带边缘反射光,以将带边缘包括在结果产生的合成图像中。本发明还使用倾斜平面光学成像方法,在该方法中,物体平面(光存储带)和图像平面(光学传感器阵列)二者都相对相机的光轴倾斜。这是为了在相机的光轴相对于带表面有一定角度的同时在相机的视野范围内保持良好的聚焦。图3提供了二维位图图像,该图像由具有极端沟槽图案漂移的带的沟槽监测系统所拍摄。图像由4000个连续的行扫描组成。在这个例子中,带速度是每秒2米,扫描速率是每秒125行。
参考图4、5和6,示意性示出了用于对包括多个沟槽的光带进行成像的沟槽监测系统。图4是沟槽监视系统的透视图。图5是沟槽监视系统的示意性侧视图。沟槽监测系统30包括光学传感器32,该光学传感器32与诸如透镜管34的透镜系统相连。透镜管34收集从带10的表面反射和/或衍射的光。带10具有图1和2中阐述的一般设计,其中包括具有平地16和沟槽18的轨道的带。光源38和40是从带10的表面反射和/或衍射的光的来源。在一种改进中,光源38和40提供具有从300纳米到700纳米的平均波长的光。在另一种改进中,光是单色的或几乎是单色的。在这种情况下,几乎单色意味着波长的分布有从300纳米到700纳米的平均波长和从大约50纳米到100纳米的标准偏差。在一种改进中,光源38和40是分别独立的发光二极管。安装在光源底座/反射镜板42上的光源38和40照亮带10的表面,并且独立地具有安装在光源控制系统44中的它们自己的强度和开关控制件。在一种改进中,光源从相机的USB线缆获取其能量。带引导件46将带10保持在接近光源的位置,使得发光二极管38和40将光引导到带表面上。在一种改进中,带引导件46是一套双撞击(bump)稳定器,该双撞击稳定器有利地防止带边缘的卷曲。所反射和/或衍射的光被光学传感器32采集。系统30通过在底座50被安装在表面48上带路径的前面。机架和齿轮台52允许调整光学组件——光学传感器32、透镜管34、光源38和光源40的位置,以实现最好的聚焦。
仍然参照图4、5和6、沟槽监测系统30还包括带驱动子系统54,用于将带10移动到光源和图像获取组件(例如光学传感器32)的前面。带驱动子系统54包括馈送线轴56,该馈送线轴56在光带沿着方向d1移动并经过带引导件46的同时向电机驱动的拾取线轴58提供带。虽然带驱动子系统54可以以几乎任何速度移动带,但0.5米/秒到20米/秒的带速度是典型的。
参考图7,光源38用第一光束60以第一入射角度θ1in照亮光带10,以通过直接反射生成带表面的图像。如图7所示,光源38从下方照亮带10。由于该带是通过直接反射来可视化的,所以θ1in等于反射光束62的反射角度θ1out。从光源38发射的光反射离开反射镜64到带表面上。反射镜64被安装在光源底座/反射镜板42上,该光源底座/反射镜板42连接到透镜管34。这种成像模式的主要目的是为了“看到”带的边缘,这样横向的带运动就可以从沟槽图案漂移的测量中被描绘出来。在一种改进中,非反射掩膜66(例如黑色的掩膜)被放置在反射镜上,以遮挡从反射镜64反射离开的光的一部分,使得只有带边缘出现在结果产生的直接反射图像中。遮挡反射镜52的一部分增强光学传感器32对沟槽的成像。图8提供了在光源38打开且光源40关闭的情况下从带边缘直接反射的光的图像。
参考图9,光源40以第二入射角度θ2in照亮光带10的表面。图7描绘了光源40从上方照亮带,以通过衍射生成沟槽图案的图像。公式I提供了从光栅衍射的公知公式:
sin(θ2in)+sin(θ2out)=nλ/Λ I
其中θ2in是第一入射角度,θ2out是衍射(输出)角度,λ是第二光源的平均波长,Λ是光栅周期(轨道节距)并且n是衍射级次(=l)。如图9所示,θ2in是入射到带表面上的光线和垂直于带表面的线之间的夹角,θ2out是带表面的垂直线和从光入射到带表面的位置到光传感器的线之间的夹角。理想的是,光强度在θ2out处具有最大值。图10提供了当λ=470nm并且Λ=320nm时输出角度相对于输入角度的绘图。例如,输出角度可以是37°,所以发光二极管48的入射角度可以大约是60°。由于LED辐射图案相当宽广,所以为了获得良好的衍射图像,入射角度不需要精确。当系统被恰当地排列并且只有光源40处于活动状态时,可以得到类似于图11的图像。最后,图12提供了从带边缘直接反射的光以及从光学带沟槽图案衍射的光的同步图像。
如上所述,沟槽监测系统30包括光学传感器32。在一种改进中,光学传感器32是线性光学传感器阵列。特别有用的光学传感器的一个例子是在从Mightex系统中可以商业获得的行扫描相机。从特征上讲,这款相机利用1x 3600像素图像传感器以高达每秒125行的扫描速度捕捉图像。此外,与行扫描相机一起封装的软件在类似于示波器显示器的计算机监视器上提供行扫描的实时查看、连续成像或外部触发单行扫描、大范围曝光控制、用于在PC上存储单行扫描或合成位图(二维)灰度图像以用于后期评估的抓帧能力。
参照图13,提供了闭环带纵切控制系统的示意图。带纵切系统70中包括如以上阐述的沟槽监测系统30。光学大型带72从光带大型辊76被提供给带纵切机构74。带纵切机构74包括把光带切割成多股78的多个带切割刀片。光学大型带72沿着方向80移动通过带纵切机构76到单股带辊82。沟槽监测系统30监测光学大型带72的刻有沟槽的区域,以通过反馈环84来评估在切割过程中沟槽轨道的平行程度。反馈环84包括沟槽监测系统30、控制电子器件88、线性致动器90和带纵切机构76。在从沟槽监测系统30接收到关于沟槽轨道位置的信息时,控制器经由线性致动器90移动带纵切机构72,使得光带72以轨道平行于光带的股的边缘的方式被切割。线性致动器90沿着方向94移动光带72,这一运动由线性滑轨96引导。通常,这一运动的距离小于3毫米。
虽然在上面描述了示例性的实施例,但并不是说这些实施例描述了本发明所有可能的形式。相反,在本说明书中使用的词是描述而不是限定的词,而且可以理解到,在不背离本发明的精神和范围的情况下,可以做出各种各样的变化。此外,各种实施例的特征可以结合起来形成本发明的进一步实施例。

Claims (20)

1.一种用于对光带表面进行成像的沟槽监测系统,所述光带表面包括多个沟槽图案,所述沟槽监测系统包括:
光学传感器,
第一光源,第一光源提供第一光束,第一光束被以第一入射角度引导到所述光带表面上,使得第一光束从所述光带表面被直接反射并被所述光学传感器成像为直接反射图像;以及
第二光源,第二光源将第二光束以第二入射角度引导到所述光带表面上,使得第二光束从所述光带表面被衍射并被所述光学传感器成像为衍射光图像。
2.根据权利要求1所述的沟槽监测系统,还包括收集从所述光带表面被反射和/或衍射的光的透镜系统。
3.根据权利要求1所述的沟槽监测系统,其中第一光源和第二光源分别是独立的发光二极管。
4.根据权利要求1所述的沟槽监测系统,其中第一光源和第二光源分别独立地提供具有从300纳米到700纳米的平均波长的光。
5.根据权利要求1所述的沟槽监测系统,其中第一光源和第二光源分别独立地提供单色光或半单色光。
6.根据权利要求1所述的沟槽监测系统,其中第一光源和第二光源分别独立地提供具有从300纳米到700纳米的平均波长和从大约50纳米到100纳米的标准偏差的光。
7.根据权利要求1所述的沟槽监测系统,还包括带引导件,所述带引导件保持所述光带接近第一光源和第二光源,使得第一光源和第二光源将光引导到所述带表面上。
8.根据权利要求7所述的沟槽监测系统,还包括带驱动子系统,所述带驱动子系统用于将所述光带移动到第一光源和第二光源的前面,所述带驱动子系统在所述带引导件上移动所述光带。
9.根据权利要求1所述的沟槽监测系统,还包括反射镜,所述反射镜以第一入射角度将来自第一光源的光反射到所述光带表面上。
10.根据权利要求9所述的沟槽监测系统,还包括放在所述反射镜上的非反射掩模,所述非反射掩膜用于遮挡所述反射镜的一部分,使得只有带的边缘出现在所述直接反射图像中。
11.根据权利要求1所述的沟槽监测系统,其中所述光学传感器是线性光学传感器阵列。
12.根据权利要求1所述的沟槽监测系统,其中第二入射角度由公式I确定:
sin(θ2in)+sin(θ2out)=nλ/Λ (I)
其中θ2in是第二入射角度,θ2out是衍射角度,λ是第二光源的平均波长,Λ是轨道节距并且n是衍射级次。
13.一种用于对包括多个沟槽图案的光带表面进行成像的沟槽监测系统,所述沟槽监测系统包括:
线性光学传感器阵列;
第一发光二极管,所述第一发光二极管提供第一光束,所述第一光束被以第一入射角度引导到所述光带表面上,使得第一光束从所述光带表面被直接反射并被所述线性光学传感器阵列成像为直接反射图像;以及
第二发光二极管,所述第二发光二极管以第二入射角度将第二光束引导到所述光带表面上,使得第二光束从所述光带表面被衍射并被所述线性光学传感器阵列成像为衍射光图像;
带引导件,所述带引导件保持所述光带接近第一光源和第二光源,使得第一光源和第二光源将光引导到所述带表面上;以及
带驱动子系统,所述带驱动子系统用于将所述光带移动到第一光源和第二光源的前面,所述带驱动子系统移动所述光带经过所述带引导件。
14.根据权利要求13所述的沟槽监测系统,还包括收集从所述光带表面被反射和/或衍射的光的透镜系统。
15.根据权利要求13所述的沟槽监测系统,其中第一光源和第二光源分别独立地提供具有从300纳米到700纳米的平均波长的光。
16.根据权利要求13所述的沟槽监测系统,其中第一光源和第二光源分别独立地提供单色光。
17.根据权利要求13所述的沟槽监测系统,其中第一光源和第二光源分别独立地提供具有从300纳米到700纳米的平均波长和从大约50纳米到100纳米的标准偏差的光。
18.一种用于对包括多个沟槽图案的光带表面进行成像的方法,所述方法包括:
将第一光束以第一入射角度引导到所述光带表面上,以产生从所述光带表面直接反射的光;
将第二光束以第二入射角度引导到所述光带表面上,以产生从所述光带表面衍射的光;
将所述直接反射的光成像为直接反射图像;
将所述衍射的光成像为衍射光图像。
19.根据权利要求18所述的方法,其中第一光束和第二光束分别独立地具有从300纳米到700纳米的平均波长和从大约50纳米到100纳米的标准偏差。
20.根据权利要求19所述的方法,其中所述直接反射的光和所述衍射的光分别是用线性光学传感器阵列进行成像的。
CN201580070224.2A 2014-12-29 2015-11-11 对光带上的沟槽结构的衍射成像 Active CN107110779B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/584,609 2014-12-29
US14/584,609 US9310313B1 (en) 2014-12-29 2014-12-29 Diffractive imaging of groove structures on optical tape
PCT/US2015/060122 WO2016109026A1 (en) 2014-12-29 2015-11-11 Diffractive imaging of groove structures on optical tape

Publications (2)

Publication Number Publication Date
CN107110779A true CN107110779A (zh) 2017-08-29
CN107110779B CN107110779B (zh) 2019-11-12

Family

ID=54704103

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580070224.2A Active CN107110779B (zh) 2014-12-29 2015-11-11 对光带上的沟槽结构的衍射成像

Country Status (5)

Country Link
US (1) US9310313B1 (zh)
EP (1) EP3241016B1 (zh)
JP (1) JP6513807B2 (zh)
CN (1) CN107110779B (zh)
WO (1) WO2016109026A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110631503A (zh) * 2018-06-25 2019-12-31 卡尔蔡司Smt有限责任公司 检测光刻掩模的结构的方法和实行该方法的装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1423800A (zh) * 2000-01-21 2003-06-11 福来克斯产品公司 利用光学干涉图样的自动检验系统和方法
CN101063912A (zh) * 2006-04-26 2007-10-31 罗技欧洲公司 在各种表面上的光学位移检测
US20080055609A1 (en) * 1999-07-09 2008-03-06 Nova Measuring Instruments Ltd. Of Weizmann Scientific Park Method and system for measuring patterned structures
WO2010106584A1 (ja) * 2009-03-19 2010-09-23 株式会社ヒューテック 光学検査装置
US20110149275A1 (en) * 2008-05-16 2011-06-23 Hiroyuki Nakano Defect inspection device and defect inspection method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143945A (ja) * 1987-11-30 1989-06-06 Fuji Photo Film Co Ltd テープ欠陥検出方法
US5383776A (en) * 1992-12-31 1995-01-24 Hoechst Celanese Corporation Apparatus for analyzing polymer defects
US5357335A (en) * 1993-03-31 1994-10-18 Minnesota Mining And Manufacturing Company Optical detection device for screening magnetic tape
JPH07253401A (ja) * 1994-03-16 1995-10-03 Dainippon Ink & Chem Inc 表面検査方法及び検査装置
US6160625A (en) * 1998-11-25 2000-12-12 Eastman Kodak Company Laser scanner projection system for viewing features on substrates and on coated substrates
JP2001221617A (ja) * 1999-11-30 2001-08-17 Nikon Corp 段差測定方法、スタンパ製造方法、スタンパ、光ディスク製造方法、光ディスク、半導体デバイス製造方法、半導体デバイス、および段差測定装置
JP2004125661A (ja) * 2002-10-03 2004-04-22 Fuji Photo Film Co Ltd 磁気テープの表面歪み検査装置
JP4307343B2 (ja) * 2004-07-08 2009-08-05 パナソニック株式会社 光ディスク検査方法および装置
JP2007240290A (ja) * 2006-03-08 2007-09-20 Sony Corp 帯状体の表面欠陥検査装置
JP5279992B2 (ja) * 2006-07-13 2013-09-04 株式会社日立ハイテクノロジーズ 表面検査方法及び装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080055609A1 (en) * 1999-07-09 2008-03-06 Nova Measuring Instruments Ltd. Of Weizmann Scientific Park Method and system for measuring patterned structures
CN1423800A (zh) * 2000-01-21 2003-06-11 福来克斯产品公司 利用光学干涉图样的自动检验系统和方法
CN101063912A (zh) * 2006-04-26 2007-10-31 罗技欧洲公司 在各种表面上的光学位移检测
US20110149275A1 (en) * 2008-05-16 2011-06-23 Hiroyuki Nakano Defect inspection device and defect inspection method
WO2010106584A1 (ja) * 2009-03-19 2010-09-23 株式会社ヒューテック 光学検査装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110631503A (zh) * 2018-06-25 2019-12-31 卡尔蔡司Smt有限责任公司 检测光刻掩模的结构的方法和实行该方法的装置
US11079338B2 (en) 2018-06-25 2021-08-03 Carl Zeiss Smt Gmbh Method for detecting a structure of a lithography mask and device for carrying out the method

Also Published As

Publication number Publication date
JP2018508092A (ja) 2018-03-22
US9310313B1 (en) 2016-04-12
CN107110779B (zh) 2019-11-12
EP3241016B1 (en) 2019-08-14
WO2016109026A1 (en) 2016-07-07
JP6513807B2 (ja) 2019-05-15
EP3241016A1 (en) 2017-11-08

Similar Documents

Publication Publication Date Title
CN101868320B (zh) 激光束加工
CN101477313B (zh) 用于微构造存储介质的设备和方法以及包括微构造区域的存储介质
JP5394317B2 (ja) 回転対称非球面形状測定装置
US9213001B2 (en) Focal position adjustment method and inspection method
DE112009001652T5 (de) Mehrkanal-Erfassung
JP6480680B2 (ja) 照度割合変更方法及び露光方法
US20040136040A1 (en) Lithography system with beam guidance and method for producing digital holograms in a storage medium
US7413830B2 (en) Lithograph with one-dimensional trigger mask and method of producing digital holograms in a storage medium
JP2007003829A (ja) 画像露光装置
US8625184B2 (en) Optical exposure apparatus and systems
CN101866660A (zh) 全息图再现和成像设备以及全息图再现和成像方法
US20100264294A1 (en) Multi-focal spot generator and multi-focal multi-spot scanning microscope
CN107110779B (zh) 对光带上的沟槽结构的衍射成像
EP2693167A2 (en) Optical device and method for measuring microscopic structures
JP2005294373A (ja) マルチビーム露光装置
JP6232784B2 (ja) パターン照明装置及び測距装置
JP2019139142A (ja) 露光装置及び露光方法
TWI597582B (zh) 檢查方法及檢查裝置
JP2007253380A (ja) 描画装置及び描画方法
CN104205006A (zh) 测量方法及执行该测量方法的装置
US20050248821A1 (en) Method and device for producing individualized holograms
RU181750U1 (ru) Цифровое голографическое устройство
JP6554411B2 (ja) ホログラム記録装置および方法
CN115165915A (zh) 一种光栅缺陷检测装置及检测方法
JP4932436B2 (ja) 質感情報取得装置及び質感情報取得方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant