CN107104171B - 一种微纳米结构铁酸铋光伏器件的制备方法 - Google Patents

一种微纳米结构铁酸铋光伏器件的制备方法 Download PDF

Info

Publication number
CN107104171B
CN107104171B CN201710345661.1A CN201710345661A CN107104171B CN 107104171 B CN107104171 B CN 107104171B CN 201710345661 A CN201710345661 A CN 201710345661A CN 107104171 B CN107104171 B CN 107104171B
Authority
CN
China
Prior art keywords
bifeo
film
nano structure
preparation
micro nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710345661.1A
Other languages
English (en)
Other versions
CN107104171A (zh
Inventor
邱建华
陈召
丁建宁
袁宁一
陈智慧
王秀琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201710345661.1A priority Critical patent/CN107104171B/zh
Publication of CN107104171A publication Critical patent/CN107104171A/zh
Application granted granted Critical
Publication of CN107104171B publication Critical patent/CN107104171B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1872Recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明属于半导体材料技术领域,具体涉及一种微纳米结构铁酸铋光伏器件的制备方法。该方法利用飞秒激光表面织构技术在衬底表面制备微纳米结构,通过磁控溅射方法制备BiFeO3薄膜和电极,利用飞秒激光在衬底摆动状态下对薄膜实现激光晶化。本发明通过衬底表面微纳米结构的制备以及调控BiFeO3薄膜的晶粒尺寸,提高了BiFeO3薄膜光伏器件的光电转换效率。

Description

一种微纳米结构铁酸铋光伏器件的制备方法
技术领域
本发明属于半导体材料技术领域,具体涉及一种微纳米结构铁酸铋光伏器件的制备方法。
背景技术
铁电材料由于在居里温度以下会产生自发极化,因而体内会形成内电场,这使得铁电材料内部产生的光生电子-空穴对能够被有效分离,从而产生铁电光伏效应。而且,利用铁电光伏效应制备的光伏器件具有许多传统硅基太阳能电池所不具备的优异特点,例如,器件结构设计简单;开路电压远高于半导体材料光学带隙等。因此,基于铁电光伏效应的光伏器件显示出极大的应用前景,而目前所涉及到的铁电材料BiFeO3薄膜仍然是基于传统的平面结构。
发明内容
本发明提供了一种微纳米结构铁酸铋光伏器件的制备方法,包括如下步骤:
(1)衬底清洗
衬底可选择抛光过的不锈钢箔片或高纯镍片,依次用丙酮、无水乙醇和去离子水超声清洗;
(2)在步骤(1)中处理后的衬底表面制备微纳米结构,
具体为,利用飞秒激光表面织构技术在衬底材料表面制备微纳米结构,
工艺条件为:大气气氛或真空条件下,激光功率为200~600mW,中心波长为800nm,重复频率为1KHz,激光偏振方向为0°(水平)~90°(垂直),扫描速度为0.5~2mm/s,扫描行间距为30~100μm,光斑大小为100~300μm,得到表面微纳米结构的宽度为10μm,深度为10~50μm,间距为5~50μm;
(3)在步骤(2)得到的微纳米结构表面制备BiFeO3薄膜
采用磁控溅射方法制备BiFeO3薄膜:靶材选择Bi1.1FeO3陶瓷靶;溅射功率为70~90W,沉积温度为650~750℃,Ar:O2的体积流量比为1:15~11:1,腔体压力为0.01~1.0Pa,
制备的BiFeO3薄膜的厚度为50~400nm,
由于步骤(2)中将衬底做成粗化面后,该粗糙度较大,在微米级以上,而上面制备的BiFeO3薄膜厚度是纳米级,因此磁控溅射上去的BiFeO3层依然能够依附在衬底表面的凹凸走势上,不足以形成平面表面,从而也实现了凹凸化,而后续制备的上电极层也同样如此;
(4)对步骤(3)制备的BiFeO3薄膜进行激光晶化
利用飞秒激光对BiFeO3薄膜进行激光晶化:将步骤(3)所得的沉积有BiFeO3薄膜的衬底固定平放于一个可摆动的操作平台上,并在摆动情况下对BiFeO3薄膜进行激光照射晶化,
作为优选:操作平台的台面为圆形,激光照射晶化时,操作平台以圆形台面的垂直中心线为轴均匀地全方位摆动,
操作平台摆动的振幅为0.5~3.0mm,摆动频率为600~900次/分钟,
激光照射时,激光光束从上往下对平台上的BiFeO3薄膜进行照射晶化(光束照射方向垂直于摆动前静止状态下的操作平台台面),
激光光源距BiFeO3薄膜为0.5m,激光能量密度为20~400mJ/cm2,中心波长266nm,重复频率为20~1000Hz,
经本步骤的激光晶化后,BiFeO3薄膜的晶粒尺寸分布均匀,尺寸可具体控制在10~30nm,
目前的晶化处理主要是针对平面薄膜而言的,而凹凸状薄膜由于其自身的结构特点,在晶化过程中很容易受到能量的冲击而出现裂纹甚至断开;并且由于薄膜表面具有凸起和凹槽,且各自距离晶化光源的距离不一致,导致了很难实现薄膜各处受晶化程度均匀,而采用本工艺的晶化措施,不仅可以实现对薄膜充分、均匀地晶化改性,而且作用时间很短而不会造成薄膜的损伤、破坏,对此申请人认为,可能是由于操作平台的全方位摆动导致了激光入射角度在一定范围内不断变化,使激光能量在BiFeO3薄膜表面的凹凸结构之间产生不断的相互反射,从而分散且均匀地被薄膜所吸收,使晶化后的晶粒尺寸分布均匀;
(5)在经过步骤(4)处理的BiFeO3薄膜表面制备上电极
选择ITO作为上电极材料,采用磁控溅射方法制备,控制上电极厚度为40~300nm。
本发明的有益效果在于:利用飞秒激光表面织构技术制备具有表面微纳米结构的衬底材料,提高了BiFeO3薄膜的光学吸收效率;利用改进的飞秒激光技术对BiFeO3薄膜进行激光晶化,调控BiFeO3薄膜的晶粒尺寸,提高载流子传输性质,从而提高BiFeO3薄膜光伏器件的光电转换效率。
附图说明
图1为实施例1所制备的光伏器件的结构示意图。
具体实施方式
实施例1
(1)衬底清洗
衬底选择抛光过的规整圆形不锈钢箔片,依次用丙酮、无水乙醇和去离子水各超声清洗10分钟,最后用高纯氮气将衬底吹干;
(2)在步骤(1)中处理后的衬底表面制备微纳米结构,
利用飞秒激光表面织构技术在衬底材料表面制备微纳米结构,工艺条件为:大气气氛下,激光功率为300mW,中心波长为800nm,重复频率为1KHz,激光偏振方向为水平,扫描速度为0.5mm/s,扫描行间距为50μm,光斑大小为150μm,得到表面微纳米结构的宽度为10μm,深度为10μm,间距为5μm;
(3)在步骤(2)得到的微纳米结构表面制备BiFeO3薄膜
采用磁控溅射方法制备BiFeO3薄膜:靶材选择Bi1.1FeO3陶瓷靶;溅射功率为90W,沉积时衬底温度为650℃,Ar:O2的体积流量比为1:15,腔体压力为0.01Pa,
制备的BiFeO3薄膜的厚度为200nm;
(4)对步骤(3)制备的BiFeO3薄膜进行激光晶化
利用飞秒激光对BiFeO3薄膜进行激光晶化:将步骤(3)所得的沉积有BiFeO3薄膜的衬底固定平放于一个可摆动的操作平台上,操作平台的台面为与衬底同样大小的圆形,并以该圆形台面的垂直中心线为轴均匀地全方位摆动,摆动的振幅为1.5mm,摆动频率为750次/分钟,在此状态下对BiFeO3薄膜进行激光照射晶化,
激光照射时,激光光束从上往下对平台上的BiFeO3薄膜进行照射晶化(光束照射方向垂直于摆动前静止状态下的操作平台台面),激光光源距BiFeO3薄膜中心为0.5m,激光能量密度为320mJ/cm2,中心波长266nm,重复频率为400Hz,
本步骤激光晶化至BiFeO3薄膜的晶粒平均尺寸为25nm,且晶粒尺寸分布均匀,晶化后薄膜表面也未出现任何裂纹;
(5)在经过步骤(4)处理的BiFeO3薄膜表面制备上电极
采用ITO靶,利用磁控溅射方法制备厚度为200nm的ITO上电极,溅射工艺参数为:溅射气氛为纯Ar、气压为8Pa,基底温度为650℃,溅射功率为30W。
在-2V到2V的测试电压范围下,对本实施例所制得的光伏器件进行性能测试:在AM1.5、100mW/cm2标准光强的照射下,短路电流密度为15mA/cm2,开路电压为1.2V,效率为1.5%。
实施例2
将步骤(2)中的激光功率依次替换为“400mW”、“500mW”、“600mW”,则得到的衬底表面微纳米结构分别为深度15μm和间距8μm、深度20μm和间距10μm、深度25μm和间距12μm,其他步骤及参数与实施例1相同。
所得BiFeO3薄膜的光学带隙为2.4eV;在AM1.5、100mW/cm2标准光强的照射下,本实施例所制得的光伏器件短路电流密度为15~20mA/cm2,开路电压为1.2~1.5V,效率为1.2~1.8%(检测方法同实施例1)。
实施例3
将步骤(2)中的激光偏振方向依次改为30°、60°,则得到的衬底表面微纳米结构的间距分别为3μm和2μm,其他步骤及参数与实施例1相同。
所得BiFeO3薄膜的光学带隙为2.5eV;在AM1.5、100mW/cm2标准光强的照射下,短路电流密度为8~12mA/cm2,开路电压为0.9~1.2V,效率为0.8~1.0%(检测方法同实施例1)。
实施例4
将步骤(2)中的激光扫描速度依次改为1mm/s、1.5mm/s,则得到的衬底表面微纳米结构的深度分别为8μm和6μm,其他步骤及参数与实施例1相同。
所得BiFeO3薄膜的光学带隙为2.6eV;在AM1.5、100mW/cm2标准光强的照射下,本实施例所制得的光伏器件短路电流密度为10~12mA/cm2,开路电压为1.0~1.2V,效率为0.8~1.2%(检测方法同实施例1)。
实施例5
将步骤(2)中的激光扫描的行间距依次改为70μm、100μm,则得到的衬底表面微纳米结构的间距分别为12μm和15μm,其他步骤及参数与实施例1相同。
所得BiFeO3薄膜的光学带隙为2.5eV;在AM1.5、100mW/cm2标准光强的照射下,本实施例所制得的光伏器件短路电流密度为8~12mA/cm2,开路电压为0.8~1.2V,效率为0.8~1.2%(检测方法同实施例1)。
实施例6
将步骤(4)中的激光能量密度依次替换为200mJ/cm2、300mJ/cm2、350mJ/cm2,则得到的BiFeO3薄膜的晶粒平均尺寸分别为32nm、27nm、27nm,且晶粒尺寸分布均匀,其他步骤及参数与实施例1相同。
所得BiFeO3薄膜的光学带隙为2.4eV;在AM1.5、100mW/cm2标准光强的照射下,本实施例所制得的光伏器件短路电流密度为10~20mA/cm2,开路电压为1~1.5V,效率为1.0~1.5%(检测方法同实施例1)。
对比实施例1
步骤(4)中对BiFeO3薄膜进行激光晶化时,操作平台全程静止未有任何摆动,则得到的BiFeO3薄膜的晶粒尺寸最高达到70nm以上,且晶粒尺寸分布很不均匀,其他步骤及参数与实施例1相同,
在AM1.5、100mW/cm2标准光强的照射下,本对比实施例所制得的光伏器件的效率仅为0.2%(检测方法同实施例1);
而在对比实施例1的基础上延长激光晶化时间,BiFeO3薄膜上很快就出现了裂纹并随即出现破裂。

Claims (8)

1.一种微纳米结构铁酸铋光伏器件的制备方法,其特征在于:所述制备方法的步骤包括,
(1)衬底清洗;
(2)在步骤(1)中处理后的衬底表面制备微纳米结构;
(3)在步骤(2)得到的微纳米结构表面制备BiFeO3薄膜;
(4)对步骤(3)制备的BiFeO3薄膜进行激光晶化,
将步骤(3)所得的BiFeO3薄膜固定平放于一个可摆动的操作平台上,并在摆动情况下对BiFeO3薄膜进行激光照射晶化;
(5)在经过步骤(4)处理的BiFeO3薄膜表面制备上电极;
所述BiFeO3薄膜厚度为50~400nm且其表面呈凹凸状;
步骤(2) 中,利用飞秒激光表面织构技术在所述衬底表面制备微纳米结构;
所述的飞秒激光处理手段中,操作平台的台面为圆形,激光照射晶化时,操作平台以圆形台面的垂直 中心线为轴均匀地进行全方位摆动,操作平台摆动的振幅为0.5~3.0mm,摆动频率为600~ 900次/分钟。
2.如权利要求1所述的微纳米结构铁酸铋光伏器件的制备方法,其特征在于:步骤(1)中所述衬底为不锈钢箔片或高纯镍片。
3.如权利要求1所述的微纳米结构铁酸铋光伏器件的制备方法,其特征在于:步骤(1)中,依次用丙酮、无水乙醇和去离子水对所述衬底超声清洗。
4.如权利要求1所述的微纳米结构铁酸铋光伏器件的制备方法,其特征在于:所述飞秒激光表面织构技术的工艺条件为,大气气氛或真空条件下,激光功率为200~600mW,中心波长为800nm,重复频率为1KHz,激光偏振方向为0°~90°,扫描速度为0.5~2mm/s,扫描行间距为30~100μm,光斑大小为100~300μm,得到的微纳米结构的宽度为10μm,深度为10~50μm,间距为5~50μm。
5.如权利要求1所述的微纳米结构铁酸铋光伏器件的制备方法,其特征在于:步骤(3)中,采用磁控溅射方法制备BiFeO3薄膜。
6.如权利要求5所述的微纳米结构铁酸铋光伏器件的制备方法,其特征在于:所述的磁控溅射方法中,靶材选择Bi 1.1FeO3陶瓷靶;溅射功率为70~90W,沉积温度为650~750℃,Ar:O2的体积流量比为1:15~11:1,腔体压力为0.01~1.0Pa。
7.如权利要求1所述的微纳米结构铁酸铋光伏器件的制备方法,其特征在于:步骤(4)中,利用飞秒激光处理手段对所述BiFeO3薄膜进行激光晶化,激光光源距BiFeO3薄膜为0.5m,激光能量密度为20~400mJ/cm 2,中心波长266nm,重复频率为20~1000Hz。
8.如权利要求1所述的微纳米结构铁酸铋光伏器件的制备方法,其特征在于:步骤(5)中,选择ITO作为上电极材料,采用磁控溅射方法制备,控制上电极厚度为40~300nm。
CN201710345661.1A 2017-05-17 2017-05-17 一种微纳米结构铁酸铋光伏器件的制备方法 Active CN107104171B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710345661.1A CN107104171B (zh) 2017-05-17 2017-05-17 一种微纳米结构铁酸铋光伏器件的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710345661.1A CN107104171B (zh) 2017-05-17 2017-05-17 一种微纳米结构铁酸铋光伏器件的制备方法

Publications (2)

Publication Number Publication Date
CN107104171A CN107104171A (zh) 2017-08-29
CN107104171B true CN107104171B (zh) 2019-06-04

Family

ID=59670213

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710345661.1A Active CN107104171B (zh) 2017-05-17 2017-05-17 一种微纳米结构铁酸铋光伏器件的制备方法

Country Status (1)

Country Link
CN (1) CN107104171B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107658348A (zh) * 2017-09-20 2018-02-02 贵州大学 硅基微纳光伏结构及其光子制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1174415A (zh) * 1996-02-27 1998-02-25 佳能株式会社 具有一个有特定不规则表面结构的不透明衬底的光电器件
CN103000709A (zh) * 2012-11-26 2013-03-27 北京大学深圳研究生院 背电极、背电极吸收层复合结构及太阳能电池
CN103247719A (zh) * 2013-04-22 2013-08-14 常州大学 不锈钢衬底上柱状结构硅太阳能电池的制备方法
CN103540931A (zh) * 2013-11-01 2014-01-29 铜陵学院 一种机械振动辅助感应加热激光表面合金化复合加工方法及装置
CN105321868A (zh) * 2014-06-03 2016-02-10 Ap系统股份有限公司 衬底支撑平台、衬底处理设备和衬底处理方法
TW201618323A (zh) * 2014-11-07 2016-05-16 Nat Inst Chung Shan Science & Technology 鐵酸鉍薄膜太陽能電池及其製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296509A (ja) * 1986-06-17 1987-12-23 Fujitsu Ltd 半導体装置の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1174415A (zh) * 1996-02-27 1998-02-25 佳能株式会社 具有一个有特定不规则表面结构的不透明衬底的光电器件
CN103000709A (zh) * 2012-11-26 2013-03-27 北京大学深圳研究生院 背电极、背电极吸收层复合结构及太阳能电池
CN103247719A (zh) * 2013-04-22 2013-08-14 常州大学 不锈钢衬底上柱状结构硅太阳能电池的制备方法
CN103540931A (zh) * 2013-11-01 2014-01-29 铜陵学院 一种机械振动辅助感应加热激光表面合金化复合加工方法及装置
CN105321868A (zh) * 2014-06-03 2016-02-10 Ap系统股份有限公司 衬底支撑平台、衬底处理设备和衬底处理方法
TW201618323A (zh) * 2014-11-07 2016-05-16 Nat Inst Chung Shan Science & Technology 鐵酸鉍薄膜太陽能電池及其製造方法

Also Published As

Publication number Publication date
CN107104171A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
CN106935704A (zh) 一种利用紫外激光处理钙钛矿太阳能电池中电子传输层的方法
CN109205551A (zh) 一种锥形阵列柔性电极及其制备方法
CN107104171B (zh) 一种微纳米结构铁酸铋光伏器件的制备方法
CN104178742B (zh) 一种嵌入型金属/透明导电薄膜的制备方法
CN107039257A (zh) 一种激光诱导石墨烯图形化制备方法及掩模化制品
CN109234673A (zh) 一种制备含钝化层的高损伤阈值减反膜方法
CN203715715U (zh) 一种激光沉积与原位退火系统
CN105236410B (zh) 发光非晶碳化硅纳米颗粒的制备方法
CN111001939A (zh) 一种可实现多种飞秒激光纳米加工图案的方法
WO2019119464A1 (zh) 一种cigs薄膜预处理的系统及方法
CN110527127A (zh) 一种通过激光移动调控光响应膜基体系皱纹形貌的方法
CN105855710B (zh) 一种基于Au诱导的ITO薄膜上制备周期结构的方法
CN103014616B (zh) 一种提高减反射膜激光损伤阈值的制备方法
CN206758405U (zh) 一种用于激光诱导石墨烯图形化的掩模化制品
TWI433948B (zh) A radio frequency plasma assisted pulsed laser deposition system and a method for preparing a thin film from its system
CN101497988A (zh) TiNi合金表面镀钽的方法
CN203694435U (zh) 一种介入治疗用超声发射装置
CN111705299B (zh) 一种纳米机器人的制备方法及纳米机器人
CN108183168B (zh) 一种三维柔性透明电极和改性反型太阳能电池的制备方法
CN104402244B (zh) 一种真空镀银膜玻璃及其制备工艺
CN110304623A (zh) 一种大面积转移石墨烯的方法
CN105181756A (zh) 一种对乙醇具有高响应灵敏度的介晶氧化铜气敏材料
Kovivchak et al. Wavy microstructures formed at the SiO 2/Si interface under the action of high-power ion-beam pulses
CN109837516A (zh) 一种磁控溅射制备ZnFe2O4/Fe2O3三维异质结纳米材料的方法
CN110112422A (zh) 微孔金属箔及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant