CN107102047A - 一种检测鼠伤寒沙门氏菌的生物传感器 - Google Patents

一种检测鼠伤寒沙门氏菌的生物传感器 Download PDF

Info

Publication number
CN107102047A
CN107102047A CN201710252820.3A CN201710252820A CN107102047A CN 107102047 A CN107102047 A CN 107102047A CN 201710252820 A CN201710252820 A CN 201710252820A CN 107102047 A CN107102047 A CN 107102047A
Authority
CN
China
Prior art keywords
electrode
incubated
idna
helper
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710252820.3A
Other languages
English (en)
Other versions
CN107102047B (zh
Inventor
刘素
裴倩倩
黄加栋
王玉
王虹智
郭玉娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201710252820.3A priority Critical patent/CN107102047B/zh
Publication of CN107102047A publication Critical patent/CN107102047A/zh
Application granted granted Critical
Publication of CN107102047B publication Critical patent/CN107102047B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明提供了一种检测鼠伤寒沙门氏菌的生物传感器,其制备为在电极上依次修饰有iDNA层、Helper层和均相反应混合液。本发明利用了核酸适配体的特异性识别,利用鼠伤寒沙门氏菌的aptamer作为识别物质实现了对目标物鼠伤寒沙门氏菌的高特异性检测;利用核酸工具酶,实现了目标物的循环利用,起到了信号放大的作用。

Description

一种检测鼠伤寒沙门氏菌的生物传感器
技术领域
本发明涉及生物传感器技术领域,特别涉及一种检测鼠伤寒沙门氏菌的电化学生物传感器。
背景技术
沙门氏菌为两端钝圆的革兰氏阴性菌,无芽孢,一般无荚膜,除鸡白痢沙门氏菌和鸡伤寒沙门氏菌外,其他都有周身鞭毛。沙门氏菌是一种常见的人畜共患病原体,不仅能够引起胃肠炎,还会引起败血症、伤寒及肠外灶性感染等多种症候群。尤其以鼠伤寒沙门氏菌为代表的病原菌在食品安全、环境监测、疾病预防等方面造成了巨大的威胁,对人体健康造成了很大危害,因而受到人们的强烈关注。近年来,鼠伤寒沙门氏菌检测技术有了很大的进展,由十分困难的传统分离培养法到免疫学检测方法发展成为今天的分子生物学检测技术。毫无疑问,检测方法的进展在便利鼠伤寒沙门氏菌检测的同时,也将更好地为了解鼠伤寒沙门氏菌奠定了基础。但是也存在着仪器操作复杂,检测耗时长,灵敏度不高的技术问题。
发明内容
本发明针对现有检测方法中仪器操作复杂、耗时长和需要专业操作人员的缺点,提供了一种特异性强、灵敏度高、成本低和检测速度快的基于核酸外切酶Ⅲ辅助的层叠信号放大的电化学生物传感器用于鼠伤寒沙门氏菌的检测。
本发明还提供了检测鼠伤寒沙门氏菌的电化学生物传感器的制备方法。
本发明是通过以下步骤得到的:
本发明中一共用到了6条DNA链,其序列分别是:
Aptamer:5′- AGT AAT GCC CGGTAGTTATT CAAAGATGAGTAG GA AAAGA -3’(SEQ IDNO.1);
Probe3(P3): 5’- CTACTCATCTTTG TTTT-3’(SEQ ID NO.2);
Probe1(P1):5’-CACTGTCCACGGCCCTGC TTTT-3’(SEQ ID NO.3);
Probe2(P2):5’- CTACTCATCTTT GTTTT GCAGGGCCGTGGACAGTG AAAGATGAGTAG -3’(SEQID NO.4);
Immobilized MB DNA(iDNA): 5’-MB-GCAG TTCAATT ACGGCC CTGC T–SH-3’ (SEQ IDNO.5);
Helper: 5’- GCAGGGCCGTGGACAGTG -3’(SEQ ID NO.6)。
其中P1的下划线部分是P2下划线部分的互补序列,P3的斜体标注是P2斜体标注的互补序列。iDNA的3’端修饰-SH,通过Au-S共价键将iDNA固定在金电极表面,5’端修饰电活性物(MB),可以在一定的电位下发生氧化还原反应。通过测量MB信号的变化来定量检测鼠伤寒沙门氏菌。
本发明中只用到了一种酶:Exonuclease Ⅲ。Exonuclease Ⅲ能够水解双链DNA的3’端,对双链DNA突出的3’端和单链没有水解作用,因此,Exonuclease Ⅲ对放大检测DNA提供了更加通用的平台。
本发明中鼠伤寒沙门氏菌的检测是在均相溶液中实现的,通过三步循环的方式来实现信号的放大,从而实现鼠伤寒沙门氏菌的高灵敏检测,并获得较低的检测下限。
均相中发生的反应主要有:首先,P1与发夹P2部分互补配对(P1-P2),将P2打开。当有鼠伤寒沙门氏菌存在时,由于aptamer与目标物之间的特异性识别与结合,释放出P3。随后均相中的P3的部分序列可以通过碱基互补配对与P1-P2的3’端单链序列杂交成一定的双链。在Exonuclease Ⅲ的作用下,开始从P2的3’端水解,直至双链水解完,释放出P1、P3和二级目标物。然后P3与其他的P1-P2再次进行互补配对,然后重复上述过程。引发第一步循环放大(目标物诱导的循环放大)。
在第一步循环放大过程中释放的二级目标物也可以与P1-P2进行碱基互补配对,然后在Exonuclease Ⅲ的作用下,水解杂交双链,释放出P1和二级目标物。二级目标物可与其他P1-P2再次进行杂交,然后重复上述过程,并引发第二步循环放大(二级目标物诱导的循环放大)。
第三步的循环放大是在电极表面发生的,上述循环放大的结果是产生大量的P1。首先在金电极表面修饰一层iDNA与Helper的杂交双链。然后将均相反应后的产物滴加到修饰好的金电极表面。P1与Helper杂交双链的熔链温度高于iDNA,所以P1能把电极表面的Helper链置换下来,形成稳定的杂交双链。在Exonuclease Ⅲ的作用下,可以将杂交双链中的Helper链水解,重新暴露出游离的单链P1,可用来置换其余的Helper链。在没有Helper存在时,固定在电极表面的iDNA可自身折叠形成发夹构型,使修饰在5’端的电活性物质靠近电极表面,产生很强的电化学信号。此为第三步循环放大(电极表面的循环放大)。
在均相反应中,反应条件为37 ℃,反应时间是2 h。
所述的生物传感器的制备方法,包括以下步骤:
(1)对电极进行预处理;
(2)将iDNA与Helper的混合液修饰到电极表面;
(3)将均相反应产物修饰到电极表面。
所述的制备方法,优选将iDNA与Helper的混合液修饰到电极表面的操作步骤如下:将10μL的iDNA(10 μM)与Helper(10 μM)的混合液滴加到经过预处理的电极表面,在37℃下孵育2h。
所述的制备方法,优选将均相反应产物修饰到电极表面的操作步骤如下:
(1)将14μL灭菌水、2μL 10×的NEBuffer缓冲液(10 mM Bis Tris Propane-HCl,10 mMMgCl2,1 mM DTT,pH 7.0)、2μL P1(10 μM)和2μL P2(10 μM)加入离心管中,震荡30 s,放入90 ℃的恒温箱中退火10 min,自然冷却至室温;
(2)将12μL灭菌水、2μL 10×的NEBuffer缓冲液(10 mM Bis Tris Propane-HCl,10 mMMgCl2,1 mM DTT,pH 7.0)、2μL aptamer(10 nM)、2μL P3(10 nM)和2μL待测目标物加入离心管中,震荡30 s,放入37 ℃的恒温箱中孵育2 h;
(3)将混合溶液(1)加入混合溶液(2)中,然后再加入2μL Exonuclease Ⅲ(20 U/μL),震荡30 s,放入37 ℃的恒温箱中孵育2 h;
(4)将(3)中的混合溶液与2μL Exonuclease Ⅲ(20 U/μL)一同滴加到修饰好iDNA(10μM)与Helper(10 μM)的混合液的电极上,将电极继续放在37℃的恒温箱中孵育2h,清洗。
所述的制备方法,优选对电极进行预处理操作为,电极在0.3和0.05 µm的氧化铝浆中进行抛光处理,直到呈镜面,用PBS和二次水冲洗。
所述的制备方法,优选所述电极为金电极。
该发明的检测方式是电化学检测,利用传统的三电极体系。Ag/AgCl为参比电极,铂丝为对电极,修饰的金电极为工作电极。在检测之前,先通过Au-S键将iDNA与Helper的混合液固定在电极表面。然后将反应后的均相溶液与Exonuclease Ⅲ一起修饰到电极表面,然后在37 ℃孵育2 h完成电极表面的循环放大过程。最后使电极上的iDNA折叠成发夹构象,电活性物质(MB)靠近电极表面。然后用三电极工作体系检测MB的氧化还原峰。以Ag/AgCl为参比电极,以Pt电极为对电极,电位设置为0到-0.5 V,脉冲宽度0.05 V,扫描速率为0.06 S,采用差分脉冲伏安技术读取MB电信号的变化,检测待测目标物。
本发明基于核酸适配体与目标物的特异性识别,外切功能的Exonuclease Ⅲ辅助层叠信号放大以及亚甲基蓝的氧化还原特性构建了适体生物传感器。该传感器具有检测速度快,检测限低,特异性高等优点,可以弥补沙门氏菌现有检测方法的缺陷与不足,实现对其快速,准确的定量检测。
本发明的有益效果:
1、利用了核酸适配体的特异型识别,利用鼠伤寒沙门氏菌的aptamer作为识别物质实现了对目标物鼠伤寒沙门氏菌的高特异性检测;
2、利用Exonuclease Ⅲ对双链DNA 3¢端的水解作用,释放出P3与二次目标物循环利用,实现了第一、二步循环放大,提高了检测的灵敏度;
3、利用外切酶的切割作用,实现了电极表面P1的循环利用,实现了第三步的循环放大;
4、该传感器的反应条件温和,反应速度快;
5、由于使用金电极,其电极简便、小型化、易携带、可多次使用;
6、检测原理的主要过程均是在均相中实现的,提高了反应速度,降低了操作的复杂程度,实现了目标物的快速,简单,灵敏的检测;
7、制备方法简单,性能稳定,电极的重复性好,适用于食品安全中鼠伤寒沙门氏菌的检测和生物传感器产业化的实际应用;
8、制作电极的工艺成本低,适用于产业化中价廉的要求。
附图说明
图1为该实验的原理图;
图2为实施例1 P1-P2浓度优化检测结果图;
图3为实施例2 P3浓度优化检测结果图;
图4为实施例3 Exonuclease Ⅲ浓度优化检测结果图;
图5为实施例4 iDNA浓度优化检测结果图。
具体实施方式
下面结合具体实施例对本发明进行进一步说明。
所述的生物传感器的制备方法,包括以下步骤:
(1)对电极进行预处理;
(2)将iDNA与Helper的混合液修饰到电极表面;
(3)将均相反应产物修饰到电极表面。
所述的制备方法,优选将iDNA与Helper的混合液修饰到电极表面的操作步骤如下:将10 μL的iDNA与Helper的混合液滴加到经过预处理的电极表面,在37 ℃下孵育2 h。
所述的制备方法,优选将均相反应产物修饰到电极表面的操作步骤如下:
(1)14μL将灭菌水、2μL 10×的buffer缓冲液、2μL 10 μM P1和2μL 10 μM P2加入离心管中,震荡30 s,放入90 ℃的恒温箱中退火10 min,自然冷却至室温;
(2)将12μL灭菌水、2μL 10×的NE Buffer缓冲液、2μL 10 nM aptamer、2μL 10 nM P3和2μL待测目标物加入离心管中,震荡30 s,放入37 ℃的恒温箱中孵育2 h;
(3)将步骤(1)溶液加入步骤(2)溶液中,然后再加入2μL 20 U/μL Exonuclease Ⅲ,震荡30 s,放入37 ℃的恒温箱中孵育2 h;
(4)将(3)中的混合溶液与Exonuclease Ⅲ一同滴加到修饰好iDNA与Helper的混合液的电极上,将电极继续放在37 ℃的恒温箱中孵育2 h,清洗。
所述的制备方法,优选对电极进行预处理操作为,电极在0.3和0.05 µm的氧化铝浆中进行抛光处理,直到呈镜面,用PBS和二次水冲洗。
所述的制备方法,优选所述电极为金电极。
该发明的检测方式是电化学检测,利用传统的三电极体系。Ag/AgCl为参比电极,铂丝为对电极,修饰的金电极为工作电极。在检测之前,先通过Au-S键将iDNA与Helper的混合液固定在电极表面。然后将反应后的均相溶液与Exonuclease Ⅲ一起修饰到电极表面,然后在37 ℃孵育2 h完成电极表面的循环放大过程。最后使电极上的iDNA折叠成发夹构象,电活性物质(MB)靠近电极表面。然后用三电极工作体系检测MB的氧化还原峰。以Ag/AgCl为参比电极,以Pt电极为对电极,电位设置为0到-0.5 V,脉冲宽度0.05 V,扫描速率为0.06 S,采用差分脉冲伏安技术读取MB电信号的变化,检测待测目标物。原理图如图1所示。
实施例1
电极修饰过程的主要步骤如下:
a、金电极首先在0.3和0.05 µm的氧化铝浆中进行抛光处理,直到呈镜面,用PBS和二次水反复冲洗;
b、将10 μL的iDNA与Helper的混合液(10 μM)滴加到电极表面,在37 ℃孵育2 h。通过Au-S键将巯基链固定到电极表面;
至此电极的修饰过程先告一段落,下面介绍一下均相溶液中发生的反应,均相反应中的主要步骤:
a、将灭菌水、10×的buffer缓冲液、P1和P2(2 μM,4 μM,6 μM,8 μM,10 μM,12 μM,14mM)加入离心管中,震荡30 s,放入90 ℃的恒温箱中退火10 min,自然冷却至室温;
b、将灭菌水、10×的buffer缓冲液、aptamer、P3和待测目标物加入离心管中,震荡30s,放入37 ℃的恒温箱中孵育2 h;
c、将混合溶液(a)加入混合溶液(b)中,然后再加入Exonuclease Ⅲ,震荡30 s,放入37℃的恒温箱中孵育2 h;
d、将(c)中的混合溶液与Exonuclease Ⅲ一同滴加到修饰好iDNA与Helper的混合液的电极上,将电极继续放在37 ℃的恒温箱中孵育2 h,清洗。
e、用磁力搅拌器在PBS溶液中清洗电极,每次10 min,共清洗3次。
以Ag/AgCl为参比电极,以Pt电极为对电极,电位设置为0到-0.5 V,脉冲宽度0.05V,扫描速率0.06 s,采用差分脉冲伏安技术读取MB电信号的变化,检测目标物。
上述过程中用到的溶液的制备方法:
PBS缓冲液是由方法配制:Na2HPO4 (10 mM)、NaH2PO4 (10 mM)、 NaCl (140 mM)、 KCl(1 mM)、MgCl2 (1 mM)、CaCl2 (1 mM),最终溶液的pH值为7.4。
10X的缓冲液(buffer)是随外切酶一起买来的,可直接使用。
配置的PBS缓冲液与超纯水均需进行高温灭菌处理。具体方法是,将PBS和超纯水分别放置在不同的锥形瓶中,然后用锡箔纸和报纸进行封口。在高压灭菌锅中在120 ℃的温度下灭菌20 min。
结果见图2,从图中可以看出,检测到的电流信号随着P1-P2的浓度在0-10 μM区间内增大而增大,当浓度超过10 μM后,电流趋于稳定。所以P1-P2的最佳浓度为10 μM。
实施例2
电极修饰过程的主要步骤如下:
a、金电极首先在0.3和0.05 µm的氧化铝浆中进行抛光处理,直到呈镜面,用PBS和二次水反复冲洗;
b、将10 μL的iDNA与Helper的混合液(10 μM)滴加到电极表面,在37 ℃孵育2 h。通过Au-S键将巯基链固定到电极表面;
至此电极的修饰过程先告一段落,下面介绍一下均相溶液中发生的反应,均相反应中的主要步骤:
a、将灭菌水、10×的buffer缓冲液、P1和P2加入离心管中,震荡30 s,放入90 ℃的恒温箱中退火10 min,自然冷却至室温;
b、将灭菌水、10×的buffer缓冲液、aptamer、P3(2 nM,4 nM,6 nM,8 nM,10 nM,12 nM,14 nM)和待测目标物加入离心管中,震荡30 s,放入37 ℃的恒温箱中孵育2 h;
c、将混合溶液(a)加入混合溶液(b)中,然后再加入Exonuclease Ⅲ,震荡30 s,放入37℃的恒温箱中孵育2 h;
d、将(c)中的混合溶液与Exonuclease Ⅲ一同滴加到修饰好iDNA与Helper的混合液的电极上,将电极继续放在37 ℃的恒温箱中孵育2 h,清洗。
e、用磁力搅拌器在PBS溶液中清洗电极,每次10 min,共清洗3次。
以Ag/AgCl为参比电极,以Pt电极为对电极,电位设置为0到-0.5 V,脉冲宽度0.05V,扫描速率0.06 s,采用差分脉冲伏安技术读取MB电信号的变化,检测目标物。
结果见图3,从图中可以看出,检测到的电流信号随着P3的浓度在0-10 nM区间内增大而增大,当浓度超过10 nM后,电流趋于稳定。所以P3的最佳浓度为10 nM。
实施例3
电极修饰过程的主要步骤如下:
a、金电极首先在0.3和0.05 µm的氧化铝浆中进行抛光处理,直到呈镜面,用PBS和二次水反复冲洗;
b、将10 μL的iDNA与Helper的混合液(10 μM)滴加到电极表面,在37 ℃孵育2 h。通过Au-S键将巯基链固定到电极表面;
至此电极的修饰过程先告一段落,下面介绍一下均相溶液中发生的反应,均相反应中的主要步骤:
a、将灭菌水、10×的buffer缓冲液、P1和P2加入离心管中,震荡30 s,放入90 ℃的恒温箱中退火10 min,自然冷却至室温;
b、将灭菌水、10×的buffer缓冲液、aptamer、P3和待测目标物加入离心管中,震荡30s,放入37 ℃的恒温箱中孵育2 h;
c、将混合溶液(a)加入混合溶液(b)中,然后再加入Exonuclease Ⅲ(5 U,10 U,15 U,20 U,25 U,30 U),震荡30 s,放入37 ℃的恒温箱中孵育2 h;
d、将(c)中的混合溶液与Exonuclease Ⅲ一同滴加到修饰好iDNA与Helper的混合液的电极上,将电极继续放在37 ℃的恒温箱中孵育2 h,清洗。
e、用磁力搅拌器在PBS溶液中清洗电极,每次10 min,共清洗3次。
以Ag/AgCl为参比电极,以Pt电极为对电极,电位设置为0到-0.5 V,脉冲宽度0.05V,扫描速率0.06 s,采用差分脉冲伏安技术读取MB电信号的变化,检测目标物。
结果见图4,从图中可以看出,检测到的电流信号随着Exonuclease Ⅲ的浓度在0-20 U区间内增大而增大,当浓度超过20 U后,电流趋于稳定。所以Exonuclease Ⅲ的最佳浓度为20 U。
实施例4
电极修饰过程的主要步骤如下:
a、金电极首先在0.3和0.05 µm的氧化铝浆中进行抛光处理,直到呈镜面,用PBS和二次水反复冲洗;
b、将10 μL的iDNA与Helper的混合液(2 μM,4 μM,6 μM,8 μM,10 μM,12 μM,14 mM)滴加到电极表面,在37 ℃孵育2 h。通过Au-S键将巯基链固定到电极表面;
至此电极的修饰过程先告一段落,下面介绍一下均相溶液中发生的反应,均相反应中的主要步骤:
a、将灭菌水、10×的buffer缓冲液、P1和P2加入离心管中,震荡30 s,放入90 ℃的恒温箱中退火10 min,自然冷却至室温;
b、将灭菌水、10×的buffer缓冲液、aptamer、P3和待测目标物加入离心管中,震荡30s,放入37 ℃的恒温箱中孵育2 h;
c、将混合溶液(a)加入混合溶液(b)中,然后再加入Exonuclease Ⅲ,震荡30 s,放入37℃的恒温箱中孵育2 h;
d、将(c)中的混合溶液与Exonuclease Ⅲ一同滴加到修饰好iDNA与Helper的混合液的电极上,将电极继续放在37 ℃的恒温箱中孵育2 h,清洗。
e、用磁力搅拌器在PBS溶液中清洗电极,每次10 min,共清洗3次。
以Ag/AgCl为参比电极,以Pt电极为对电极,电位设置为0到-0.5 V,脉冲宽度0.05V,扫描速率0.06 s,采用差分脉冲伏安技术读取MB电信号的变化,检测目标物。
结果见图5,从图中可以看出,检测到的电流信号随着iDNA的浓度在0-10 μM区间内增大而增大,当浓度超过10 μM后,电流趋于稳定。所以iDNA的最佳浓度为10 μM。
实施例5
电极修饰过程的主要步骤如下:
a、金电极首先在0.3和0.05 µm的氧化铝浆中进行抛光处理,直到呈镜面,用PBS和二次水反复冲洗;
b、将10 μL的iDNA与Helper的混合液(10 μM)滴加到电极表面,在37 ℃孵育2 h。通过Au-S键将巯基链固定到电极表面;
至此电极的修饰过程先告一段落,下面介绍一下均相溶液中发生的反应,均相反应中的主要步骤:
a、将14μL灭菌水、2μL 10×的NE Buffer缓冲液、2μL 10 μM P1和2μL 10 μM P2加入离心管中,震荡30 s,放入90 ℃的恒温箱中退火10 min,自然冷却至室温;
b、将12μL灭菌水、2μL 10×的NE Buffer缓冲液、2μL 10 nM aptamer、2μL 10 nM P3和2μL待测目标物(9.8,9.8×10,9.8×102,9.8×103,9.8×104,9.8×105,9.8×106 cfu mL-1)加入离心管中,震荡30 s,放入37 ℃的恒温箱中孵育2 h;
c、将混合溶液(a)加入混合溶液(b)中,然后再加入Exonuclease Ⅲ,震荡30 s,放入37℃的恒温箱中孵育2 h;
d、将(c)中的混合溶液与Exonuclease Ⅲ一同滴加到修饰好iDNA与Helper的混合液的电极上,将电极继续放在37 ℃的恒温箱中孵育2 h,清洗。
e、用磁力搅拌器在PBS溶液中清洗电极,每次10 min,共清洗3次。
以Ag/AgCl为参比电极,以Pt电极为对电极,电位设置为0到-0.5 V,脉冲宽度0.05V,扫描速率0.06 s,采用差分脉冲伏安技术读取MB电信号的变化,检测目标物。
检测结果如下表所示:
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受实施例的限制,其它任何未背离本发明的精神实质与原理下所做的改变、修饰、组合、替代、简化均应为等效替换方式,都包含在本发明的保护范围之内。
<110>济南大学
<120>一种检测鼠伤寒沙门氏菌的生物传感器
<160>2
<210>1
<211>40
<212>DNA
<213>人工序列
<220>
<221>misc_feature
<222>(1)..(40)
<223>引物
<400>1
AGT AAT GCC CGG TAG TTA TTC AAA GAT GAG 30
TAG GAA AAG A 40
<210>2
<211>17
<212>DNA
<213>人工序列
<220>
<221>misc_feature
<222>(1)..(17)
<223>引物
<400>2
CTA CTC ATC TTT GTT TT 17
<210> 3
<211> 22
<212> DNA
<213> 人工序列
<220>
<221>misc_feature
<222>(1)..(22)
<223>引物
<400> 3
CAC TGT CCA CGG CCC TGC TTT T 22
<210> 4
<211> 47
<212> DNA
<213> 人工序列
<220>
<221>misc_feature
<222>(1)..(47)
<223>引物
<400> 4
CTA CTC ATC TTT GTT TTG CAG GGC CGT GGA 30
CAG TGA AAG ATG AGT AG 47
<210> 5
<211> 22
<212> DNA
<213> 人工序列
<220>
<221>misc_feature
<222>(1)..(22)
<223>引物
<400> 5
GCA GTT CAA TTA CGG CCC TGC T 22
210> 6
<211> 18
<212> DNA
<213> 人工序列
<220>
<221>misc_feature
<222>(1)..(18)
<223>引物
<400> 6
GCA GGG CCG TGG ACA GTG 18

Claims (5)

1.一种检测鼠伤寒沙门氏菌的生物传感器,其特征在于,其采用如下制备方法制备而成:
(1)对电极进行预处理;
(2)将iDNA与Helper的混合液修饰到电极表面;
(3)将均相反应产物修饰到电极表面。
2.根据权利要求1所述的生物传感器,其特征在于,步骤(2)的操作步骤如下:将10μL的10 μM 的iDNA与10 μM Helper的混合液滴加到经过预处理的电极表面,在37℃下孵育2h;
所述iDNA的核苷酸序列如SEQ ID NO.5所示;
所述Helper的核苷酸序列如SEQ ID NO.6所示。
3.根据权利要求1所述的生物传感器,其特征在于,步骤(3)将均相反应产物修饰到电极表面的操作步骤如下:
(1)将14μL灭菌水、2μL 10×的NE Buffer缓冲液、2μL 10 μM P1和2μL 10 μM P2加入离心管中,震荡30 s,放入90 ℃的恒温箱中退火10 min,自然冷却至室温;
(2)将12μL灭菌水、2μL 10×的NE Buffer缓冲液、2μL 10 nM aptamer、2μL 10 nM P3和2μL待测目标物加入离心管中,震荡30 s,放入37 ℃的恒温箱中孵育2 h;
(3)将步骤(1)溶液加入步骤(2)溶液中,然后再加入2μL 20 U/μL Exonuclease Ⅲ,震荡30 s,放入37 ℃的恒温箱中孵育2 h;
(4)将(3)中溶液滴加到修饰好电极上,将电极继续放在37℃的恒温箱中孵育2h,清洗;
所述aptamer的核苷酸序列如SEQ ID NO.1所示;
所述P1的核苷酸序列如SEQ ID NO.3所示;
所述P2的核苷酸序列如SEQ ID NO.4所示;
所述P3的核苷酸序列如SEQ ID NO.2所示。
4. 根据权利要求1所述的生物传感器,其特征在于,步骤(1)电极进行预处理操作为:电极在0.3µm和0.05 µm的氧化铝浆中进行抛光处理,直到呈镜面,用PBS和二次水冲洗。
5.根据权利要求1所述的生物传感器,其特征在于,所述电极为金电极。
CN201710252820.3A 2017-04-18 2017-04-18 一种检测鼠伤寒沙门氏菌的生物传感器 Active CN107102047B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710252820.3A CN107102047B (zh) 2017-04-18 2017-04-18 一种检测鼠伤寒沙门氏菌的生物传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710252820.3A CN107102047B (zh) 2017-04-18 2017-04-18 一种检测鼠伤寒沙门氏菌的生物传感器

Publications (2)

Publication Number Publication Date
CN107102047A true CN107102047A (zh) 2017-08-29
CN107102047B CN107102047B (zh) 2019-03-26

Family

ID=59657507

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710252820.3A Active CN107102047B (zh) 2017-04-18 2017-04-18 一种检测鼠伤寒沙门氏菌的生物传感器

Country Status (1)

Country Link
CN (1) CN107102047B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107037103A (zh) * 2017-05-15 2017-08-11 济南大学 一种检测鼠伤寒沙门氏菌的电化学生物传感器及其制备方法
CN108169311A (zh) * 2017-12-13 2018-06-15 济南大学 一种检测miRNA-122的电化学生物传感器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105238852A (zh) * 2015-08-10 2016-01-13 济南大学 基于核酸适配体检测鼠伤寒沙门氏菌的生物传感器及其制备方法
CN105368980A (zh) * 2015-12-25 2016-03-02 济南大学 基于滚环复制放大法检测鼠伤寒沙门氏菌的方法
CN105755124A (zh) * 2016-03-22 2016-07-13 济南大学 一种酶修复等温循环放大荧光法检测沙门氏菌的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105238852A (zh) * 2015-08-10 2016-01-13 济南大学 基于核酸适配体检测鼠伤寒沙门氏菌的生物传感器及其制备方法
CN105368980A (zh) * 2015-12-25 2016-03-02 济南大学 基于滚环复制放大法检测鼠伤寒沙门氏菌的方法
CN105755124A (zh) * 2016-03-22 2016-07-13 济南大学 一种酶修复等温循环放大荧光法检测沙门氏菌的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
REBECA MIRANDA-CASTRO 等: "Homogeneous electrochemical monitoring of exonuclease III activity and its application to nucleic acid testing by target recycling", 《CHEM. COMMUN.》 *
金娜 等: "基于核酸适体微球的沙门氏菌检测方法研究", 《食品工业科技》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107037103A (zh) * 2017-05-15 2017-08-11 济南大学 一种检测鼠伤寒沙门氏菌的电化学生物传感器及其制备方法
CN108169311A (zh) * 2017-12-13 2018-06-15 济南大学 一种检测miRNA-122的电化学生物传感器
CN108169311B (zh) * 2017-12-13 2019-11-08 济南大学 一种检测miRNA-122的电化学生物传感器

Also Published As

Publication number Publication date
CN107102047B (zh) 2019-03-26

Similar Documents

Publication Publication Date Title
Luo et al. A sensitive electrochemical DNA biosensor for specific detection of Enterobacteriaceae bacteria by Exonuclease III-assisted signal amplification
Bu et al. Ultrasensitive detection of pathogenic bacteria by CRISPR/Cas12a coupling with a primer exchange reaction
CN105821132B (zh) 一种基于核酸外切酶和核酸探针的电化学检测特定单链dna浓度的方法
Li et al. Development of a magnetic nanoparticles microarray for simultaneous and simple detection of foodborne pathogens
CN105158320B (zh) 基于核酸适配体检测卡那霉素的电化学传感器及其制备方法
CN107037103B (zh) 一种检测鼠伤寒沙门氏菌的电化学生物传感器及其制备方法
CN105238852B (zh) 基于核酸适配体检测鼠伤寒沙门氏菌的生物传感器及其制备方法
Huang et al. An electrochemical biosensor for the highly sensitive detection of Staphylococcus aureus based on SRCA-CRISPR/Cas12a
CN109060917B (zh) 一种检测肠致病性大肠杆菌的核酸适配体电化学传感器及其制备方法和应用
CN106906277A (zh) 一种检测卡那霉素的生物传感器及其制备方法
CN110423798A (zh) 一种检测金黄色葡萄球菌的电化学方法
CN107543852A (zh) 一种基于功能化金属有机框架材料的电致化学发光传感器
CN106018508A (zh) 基于适体修饰多孔氧化铝膜的李斯特菌高灵敏检测新方法
CN113866408A (zh) 基于核酸适配体、纳米粒子和量子点标记检测食源性肠道致病菌o157:h7的方法
CN105385753B (zh) 基于核酸适配体检测水胺硫磷的电化学传感器及其制备方法
CN104152449B (zh) miRNA捕获探针及其修饰电极与捕获探针互补链及其修饰碳纳米管‑金磁纳米粒复合物
Zheng et al. An ultrasensitive and specific ratiometric electrochemical biosensor based on SRCA-CRISPR/Cas12a system for detection of Salmonella in food
CN110186975A (zh) 用于食源性微生物检测的微液滴电化学传感器及制备方法
CN110106232A (zh) 基于靶标催化的无酶无标记双尾杂交生物传感器及制备方法
CN109596685A (zh) 一种检测atp的电化学传感器及其制备方法
CN107102047A (zh) 一种检测鼠伤寒沙门氏菌的生物传感器
CN102220417B (zh) 基于磁原位扩增的电化学发光基因传感器检测食品致病菌的方法
CN109507254B (zh) 一种检测卡那霉素的电化学生物传感器及其应用
Liu et al. A novel method for sensitive detection of Escherichia coli O157: H7 based on an aptamer and hybridization chain reaction
CN105400781A (zh) 一种双嵌段分子探针及其快速检测核酸方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant