CN107074240B - 用于借助于电机对动力传动系进行振动衰减的方法 - Google Patents

用于借助于电机对动力传动系进行振动衰减的方法 Download PDF

Info

Publication number
CN107074240B
CN107074240B CN201580060652.7A CN201580060652A CN107074240B CN 107074240 B CN107074240 B CN 107074240B CN 201580060652 A CN201580060652 A CN 201580060652A CN 107074240 B CN107074240 B CN 107074240B
Authority
CN
China
Prior art keywords
torque
rotation
observer
transmission device
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580060652.7A
Other languages
English (en)
Other versions
CN107074240A (zh
Inventor
西蒙·施文克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Technologies AG and Co KG
Original Assignee
Schaeffler Technologies AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG and Co KG filed Critical Schaeffler Technologies AG and Co KG
Publication of CN107074240A publication Critical patent/CN107074240A/zh
Application granted granted Critical
Publication of CN107074240B publication Critical patent/CN107074240B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • B60W2030/206Reducing vibrations in the driveline related or induced by the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • B60W2050/0037Mathematical models of vehicle sub-units
    • B60W2050/0041Mathematical models of vehicle sub-units of the drive line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0685Engine crank angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/088Inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1015Input shaft speed, e.g. turbine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明涉及一种用于对动力传动系(2)进行振动衰减的方法,所述动力传动系具有:内燃机,所述内燃机具有施加在曲轴上的发动机力矩(Mvm);电机(6);变速器,所述变速器具有变速器输入轴;和设置在曲轴和变速器输入轴之间的转矩传递装置(4),所述转矩传递装置具有至少一个能振动的飞轮质量体(3,5,9)以及状态调节器(12),所述飞轮质量体具有惯性力矩(J1,J2,J3),所述状态调节器用于借助于补偿在变速器输入轴处的扭振的补偿力矩(Mregler)调节电机(6)。为了实现高质量的振动衰减,借助于至少一个观测器(13,14,14a,15)从动力传动系(2)的所检测的转速或转动角中确定状态调节器(12)的输入变量,即至少一个飞轮质量体(3,5,9)的被重构的转动特征值,其中根据施加在转矩传递装置(4)的输出端(11)上的负载力矩(Mlast)和经由转矩传递装置(4)传递的、由内燃机的发动机力矩所引发的力矩(Mind)形式的干扰变量确定被重构的转动特征值。

Description

用于借助于电机对动力传动系进行振动衰减的方法
技术领域
本发明涉及一种用于对动力传动系进行振动衰减的方法,所述动力传动系具有:内燃机,所述内燃机具有施加在曲轴上的发动机力矩;电机;变速器,所述变速器具有变速器输入轴;和设置在曲轴和变速器输入轴之间的转矩传递装置,所述转矩传递装置具有至少一个能振动的飞轮质量体(Schwungmasse)以及状态调节器,所述飞轮质量体具有惯性力矩,所述状态调节器用于借助于补偿在变速器输入轴处的扭振的补偿力矩来调节电机。
背景技术
具有内燃机和电机的动力传动系作为混合式动力传动系为人知,其中内燃机和/或电机贡献力矩以驱动车辆。在这种动力传动系中,经由机械接口将内燃机和电机彼此耦联,并且分别经由变速器输入轴将所施加的发动机力矩(内燃机)和运行力矩(电机)传递到变速器上,并且从那里传递到驱动轮上。此外,在变速器输入轴和内燃机的曲轴之间设有转矩传递装置,所述转矩传递装置例如作为扭振减振器来衰减扭振,作为摩擦式离合器能够将曲轴与变速器输入轴分离和联接,和/或以其他方式将发动机力矩传递到变速器输入轴上。此外,转矩传递装置能够在输入侧或在输出侧与电机的转子以转动配合的方式耦联。
内燃机由于其作用原理而存在扭振,内燃机对动力传动系和车辆车身的振动激发引起车辆中的舒适度受损,并且以已知方式借助于振动衰减装置,例如扭振减振器、离心摆等减轻所述舒适度受损。此外,电机或内燃机的力矩中的快速变化、例如突变在动力传动系中激发任意的共振频率。
此外,例如从DE 10 2011 084 548 A1中已知用于混合动力车辆的主动的减振调节,其中以简化的动力传动系模型作为基础。
发明内容
本发明的目的是,有利地改进动力传动系的振动衰减的方法。
所述目的通过本发明提出的技术方案来实现。
所提出的方法用于对动力传动系进行振动衰减,所述动力传动系具有:内燃机,所述内燃机具有施加在曲轴上的发动机力矩。发动机力矩由于内燃机例如作为柴油机或奥拓发动机的工作原理而存在扭振。动力传动系作为混合式动力传动系配设电机,所述电机允许单独地驱动具有内燃机或电机的车辆、混合地驱动、通过电机启动内燃机、将机械能再生为电能和将其存储等。此外,设有变速器,所述变速器具有多个自动切换的或可手动挂入的挡位、自动操纵的换挡级或可无级设定的传动比,其具有变速器输入轴。例如,设有具有两个子变速器的双离合器变速器,所述子变速器具有两个变速器输入轴。在曲轴和一个或多个变速器输入轴之间设有转矩传递装置,所述转矩传递装置例如能够由扭振减振器,例如双质量飞轮、多质量飞轮、单质量飞轮与连接在下游的扭振减振器,如离合器盘中的扭转振动减振器、扭振缓冲器,例如离心摆一方和/或切换和/或启动离合器、分配离合器等形成。在此,转矩传递装置具有至少一个能振动的,即可由发动机力矩激励而振动的和/或振动衰减的飞轮质量体,所述飞轮质量体具有惯性力矩。
电机能够直接地或借助于离合器可分离地与内燃机的变速器侧或皮带轮平面处的曲轴连接,或者设置在转矩传递装置的输出侧上,并进而直接地或可分离地与变速器输入轴连接,或者例如相对于曲轴和/或相对于变速器输入轴借助于相应的离合器以可分离的方式设置在转矩传递装置的飞轮质量体上。电机为了提供驱动、启动、再生功能等由设置在上级的控制装置控制以提供运行力矩。为了借助于电机对动力传动系进行振动衰减,设有状态调节器。所述状态调节器在电机处调节电机的补偿力矩,所述补偿力矩补偿转矩传递装置的从动装置、例如变速器输入轴处的扭振,或者换言之,借助于振动特征值的移动来改变动力传动系的总系统的频率或减振。
在此,借助于至少一个观测器确定动力传动系的不可检测的转动特征值作为状态调节器的反馈的状态变量,所述观测器从动力传动系的所检测的转速或转动角中确定至少一个飞轮质量体的重构的转动特征值。在此,根据干扰变量来确定重构的转动特征值,所述干扰变量呈施加在转矩传递装置的输出端上的负载力矩和经由转矩传递装置在输出端处引发的力矩形式。从借助于至少一个观测器重构的转动特征值中,借助于状态调节器确定补偿力矩,并且借助于所述补偿力矩调节电机。至少一个观测器例如能够是根据隆伯格(Luenberger)的观测器等。
证实为特别有利的是:通过确定补偿力矩并不干预用于驱动车辆或再生的电机的运行力矩的控制。因此,以与确定运行力矩分开的方式确定补偿力矩。随后,将所述补偿力矩调制、例如相加到电机的用于混合运行动力传动系的运行力矩上。
所设置的、馈入至少一个观测器中的转动特征值能够是一个飞轮质量体的转动角和转动速度、两个飞轮质量体、例如转矩传递装置的主飞轮质量体和副飞轮质量体之间的角度差和/或角速度差,所述转矩传递装置构成为双质量飞轮。例如,转动特征值能够直接地借助于与飞轮质量体相关联的传感器、例如设置在曲轴上的、设置在变速器输入轴上的增量式角度传感器、分解器等来检测。替选地或附加地,能够间接地例如借助于在其他位置处的、与飞轮质量体运动连接的传感器,例如驱动轮的经由变速器的变速传动比与变速器输入轴运动连接的轮转速传感器等来检测转动特征值。在此,从角度、角度差、角速度差等形式的转动特征值中能够借助于估算确定所缺少的,即通过检测不能获得的转动特征值。
例如借助于弹簧装置彼此耦联的飞轮质量体的特性可以是非线性的,所述飞轮质量体例如呈扭振减振器,如双质量飞轮的形式。
线性设计的观测器能够通过如下方式用于这种非线性作用的转矩传递装置:即根据在从动侧有效的干扰变量确定转动特征值,所述干扰变量呈施加在变速器输入轴上的负载力矩和经由转矩传递装置引发的力矩形式。对此,可以设计:明确地估算干扰变量,对于所述干扰变量在外部例如借助于神经网络模糊系统进行估算,使得其能够作为已知的输入被观测器使用。此外,干扰变量能够经由例如未知输入观测器与其余的系统解耦,或者例如借助于PI观测器作为状态估算。
根据方法的一个有利的实施方式,借助于神经网络模糊系统能够执行力矩的估算,所述力矩经由转矩传递装置传递。在此,能够将转矩传递装置的转动特征值,例如双质量飞轮的飞轮质量体的角速度,用作为输入变量,例如主侧和副侧的转速。替选地,在假设周期重复出现非线性的情况下,能够设有谐波激活的神经元网络(HANN)。应用HANN的优点是:仅需要二次转速。替选地,借助于具有未知的输入,例如驱动变量的轮转速等的观测器(Unknown Input Observer未知输入观测器)执行与干扰变量的解耦。替选地,借助于比例积分观测器能够执行干扰变量的考虑。在应用神经元网络的情况下,转矩传递装置的,即例如双质量飞轮的特定的干扰力矩作为输入提供给常规的、线性的观测器,所述常规的线性的观测器能够将负载力矩作为状态进行估算,或者能够适当地解耦。随后,该观测器确定缺少的转动特征值。用于线性化转矩传递装置的不基于神经元网络的方法已经能够集成到确定转动特征值的观测器中。
换言之,状态调节器用于动力传动系的振动隔离,所述状态调节器根据动力传动系的各个惯性力矩的转动角和转动角速度调节对主动的振动衰减所需的补偿力矩,所述振动衰减例如是扭振的,例如内燃机的高次谐波的由力矩突变引起的振动等的振动衰减。除了动力传动系的观测器之外,其例如用于重构到转矩传递装置的输出端的,即例如双质量飞轮的或变速器的输入端的,即例如变速器输入轴上,设置用于内燃机、尤其用于其发动机力矩的观测器,并且用于调节状态调节器。发动机力矩的观测也能够集成到动力传动系的观测器中。
在此,借助于这两个观测器观测所谓的X质量振动器(X-Massenschwinger),所述X质量振动器具有数量为x的可激励振动的、围绕旋转轴系转动的飞轮质量体,所述飞轮质量体具有相应的惯性力矩。这种X质量振动器例如本身已经包括衰减扭振的扭振减振器、双质量飞轮,必要时与一个或多个离心摆和其他转矩传递装置,例如单质量飞轮的组合,所述单质量飞轮具有设置在曲轴和变速器输入轴之间的扭振减振器,即例如集成到摩擦式离合器中的扭转振动减振器。
在非排他性的列举中,对此能够使用如下观测器:
·神经网络模糊系统,其基于两个转速、优选双质量飞轮的一次转速和二次转速,
·具有未知输入的观测器(未知输入观测器),其基于两个转速、例如在从动侧、如副侧,和轮转速,
·比例积分观测器(PI观测器),其基于两个转速,例如在从动侧、如副侧和轮转速,
·谐波激活的神经元网络(HANN),其具有仅一个转速,例如副侧,
·扩展卡曼滤波器,
·颗粒滤波器,
·用于周期信号的状态观测器
在用于重构内燃机的观测器中,除了转动特征值之外,能够处理其他的特定于发动机的输入变量,例如上止点(OT)、点火角等。
动力传动系的观测器也能够设计用于非线性系统,如X质量振动器。
与非有利的转速调节装置不同,借助于期望力矩调节装置以改进的程度借助于状态调节器衰减机械振动,所述机械振动由动力传动系的旋转系统中的惯性力矩的耦合形成。由此,能够通过确定和反馈转动特征值、如角速度和转动角以有利的方式经由调节器提高动力传动系的,尤其转矩传递装置,如双质量飞轮的减振和刚性。通过调节到期望力矩,优选电机的补偿力矩上,能够有利地提出主动的减振,所述主动的减振实现简单地集成振动衰减例如作为下级的调节器,而不需要结合到整车调节装置中。
此外,应用状态调节装置具有其他优点:
·闭合的调节器设计,其中使用观测器,
·能任意地移动系统的特征值,并且也在适当简化的观察的情况下在物理上直接地进行说明,
·提供相对于常规的调节装置的动态性优点,
·在状态空间描述中原则上可以扩展到多变量调节器,
·通过在控制突变(Führungssprüngen)的情况下降低最大的轴力矩和气隙力矩能够实现提高动力传动系的由于振动而降低的使用寿命。
此外,状态调节器能够实现有针对性地设定系统,如转矩传递装置的减振和刚性,并进而降低动力传动系的共振点中的幅度。在此,所基于的X质量振动器的惯性力矩的角度和角速度以及负载力矩经由观测器来估算。借助于所提出的在混合动力车辆中的主动减振的方法能够借助于这两个观测器识别和衰减由内燃机引起的振动激励还有电动马达的跳跃。在此,特别有利的是,借助于电机尤其通过将状态调节器与观测器连接来进行主动减振,所述观测器尤其是根据隆伯格的观测器、用于确定曲轴力矩的卡曼滤波器或根据类似方法的观测器。
基于内燃机的曲轴的所估算的转速能够估算瞬时的、高分辨率的发动机力矩。在此,将观测器扩展到经由转矩传递装置作为非线性的构件进行估算会是有利的。
替选地或附加地,能够从内燃机的至少一个与扭振相关的变量中,例如负载杆的位置、上止点(OT)等确定发动机力矩,例如其频率特性,并且作为用于预调发动机力矩的输入变量,例如所述发动机力矩的相对于平均力矩偏差的频率特性应用在至少一个观测器中。例如,能够将预调装置与X质量振动器的观测器组合,所述观测器扣除转矩传递装置,如双质量飞轮的影响。由此,必要时能够不考虑转矩传递装置的非线性。替选地或附加地,能够通过如下方式克服转矩传递装置的在此仅静态检测的状态:即转矩传递装置的非线性例如以表格形式被保存在X质量振动器的状态调节器中,以便提高调节的品质。例如,能够将与负载杆相关的内燃机的一次谐波保存在具有关于上止点(OT)、其频率和幅度的参考点的表格中,并且对应于所确定的、如所测量的OT移动一次谐波。在此,在呈双质量飞轮形式的转矩传递装置中,能保存在这两个飞轮质量体之间作用的摩擦力矩和在两个飞轮质量体之间作用的弹簧装置的弹簧常量。为了简化和改进状态调节器,能够分别仅考虑角速度中的最强地影响内燃机的振动特性的差,用以形成补偿力矩。这简化调节器设计,然而原则上全部状态都能够用于调节。
附图说明
根据图1至图3中示出的实施例详细阐述本发明。在此示出:
图1示出在不同的实施方式中的具有主动的振动衰减的动力传动系的框图,
图2示出用于说明被重构的发动机力矩的框图,所述发动机力矩经由转矩传递装置来传递,和
图3示出用于说明主动的振动衰减的调节器和观测器系统的框图。
具体实施方式
图1示出具有示意示出的动力传动系2的框图1。在此,飞轮质量体3、5、9形成具有三个质量体的X质量振动器,其中具有惯性力矩J1的飞轮质量体3与内燃机的曲轴连接。具有惯性力矩J2的飞轮质量体5借助于弹簧装置7和摩擦装置8与飞轮质量体3弹性转动耦联,并且形成双质量飞轮形式的转矩传递装置4。转矩传递装置4借助于输出端11例如与变速器的变速器输入轴等转动配合地耦联,并且将输出力矩Mab传输到变速器输入轴上。经由驱动轮,经由耦联装置10在驱动轮和变速器输入轴之间存在到具有惯性力矩J3的飞轮质量体9的转动耦联。在所示出的实施例中,飞轮质量体5与电机6的转子转动耦联或者由其形成。电机6与内燃机形成车辆的混合驱动装置,必要时启动内燃机,并且在车辆的制动过程期间将机械能再生为电能。对此,电机6借助于运行力矩Mboost由车辆的总控制装置控制。此外,由总控制装置控制内燃机,并且根据其控制将存在扭振的发动机力矩Mvm传递到飞轮质量体3上。经由具有相应的系统状态和转矩传递装置4的可能非线性的特性的机械的调节对象,将发动机力矩Mvm和电机6的电机力矩Mem(图3)构成的组合作为输出力矩Mab传递到变速器上并且随后传递到车辆的驱动轮上。
为了对动力传动系2进行主动的振动衰减,状态调节器12确定补偿力矩Mregler,所述补偿力矩调制到运行力矩Mboost上,例如施加到所述运行力矩上并且在最简单的情况下相加。就此而言,独立于车辆的总控制装置通过电机6进行主动的振动衰减,并且因此能够作为附加模块基本上提供给所有混合动力传动系,必要时也进行加装。
状态调节器2以反馈的状态变量、如动力传动系2的可检测的或重构的转动特征值、例如飞轮质量体3、5、9的转动角
Figure GDA0002344916660000071
转动角速度ω1、ω2、ω3等运行,其中从所述转动特征值中以所设的时钟速率形成相应的角度差和角速度差并且进行评估。所述转动特征值借助于观测器13、14、15获取,其中示出呈多个实施方式形式的观测器13、14、15的组装、布置和联接。在第一实施例中,至少观测器13用于重构内燃机或内燃机的被重构的发动机力矩Mvm,r或其转动特征值。在此,根据飞轮质量体3的、即曲轴的转动角速度ω1和飞轮质量体5的,即转矩传递装置4的副侧的转动特征值,如转动角速度ω2和所属的转动角
Figure GDA0002344916660000072
进行重构。借助于被重构的发动机力矩Mvm,r,在观测器14中,例如根据动力传动系的特性、如动力等和施加在输出端上的负载力矩Mlast识别动力传动系2的X质量振动器并且重构飞轮质量体3、5的转动特征值。在观测器15中,借助于所设的电流变量I、转动角
Figure GDA0002344916660000082
等识别电机6,并且确定被重构的电机力矩Mvm,r。在此,在观测器14中描绘转矩传递装置4的可能存在的非线性。替选地,被重构的发动机力矩Mvm,r能够借助于例如经由CAN总线提供的平均的发动机力矩Mvm,m通过估算、神经网络模糊系统、卡曼滤波器等来确定。
在第二实施方式中,代替被重构的发动机力矩Mvm,r,根据相同的输入变量估算在飞轮质量体5上引发的力矩Mind,所述引发的力矩用作为观测器14的输入变量。在第三实施方式中,所引发的力矩Mind经由预调装置或类似的装置从载荷杆位置WL、上止点OT中确定,并且输送给观测器14。
在第四实施方式中,取消观测器13,并且借助于与惯性力矩J3相关联的转动特征值来识别和解耦或者估算作为干扰变量在观测器14中解耦的或考虑的力矩,该力矩呈引发的力矩Mind和负载力矩Mlast的形式,所述转动特征值例如呈转动角
Figure GDA0002344916660000083
和/或转动角速度ω3的形式。对此,观测器14例如能够构成为未知输入观测器(Pbserver)或PI观测器。
图2参考图1的框图示出框图16,所述框图示意性地示出构成为双质量飞轮的转矩传递装置4的识别和在输出端11上引发的力矩Mind的重构。观测器的参考模型17使用飞轮质量体3、5之间的角度差
Figure GDA0002344916660000084
和角速度差Δω12。通过在参考模型17中使用对应于公式
Figure GDA0002344916660000081
的表征转矩传递装置4的系统特性的局部线性的模型18、19、……、20的组的方式,实现线性化,其中c、d为参数化系数。
在此,根据加权函数Φ1、Φ2、……、ΦM借助于两个飞轮质量体3、5的角度差
Figure GDA0002344916660000085
和飞轮质量体5的转速ω2的输入变量进行各个模型18、……、20的加权。
替选地,例如能够将转矩传递装置的下述传递函数作为模型来作为基础:
Figure GDA0002344916660000091
其中u1、u2是输入值,例如角度差
Figure GDA0002344916660000092
和角速度差Δω12(图2)和wi,1、wi,2、……wi,5是参数化系数。
图3示出框图21,其中观测器14a在不同的实施可能性中构成为线性观测器,所述观测器14a用于识别可能由于转矩传递装置4a非线性表现的动力传动系和对其被重构的特征值进行重构。观测器14a的输入是在块23中由运行力矩Mboost和补偿力矩Mregler形成的电机力矩Mem。在第一实施方式中,神经网络模糊系统22承担非线性的估算,所述神经网络模糊系统处理转矩传递装置的飞轮质量体的,即双质量飞轮的主侧和副侧的转动角速度ω1、ω2作为输入变量。状态调节器12a从观测器14a的转动特征值中根据图1的观测器14和状态调节器12产生补偿力矩Mregler。在此,经由转矩传递装置4a传递的发动机力矩Mvkm被识别为干扰输入,并且作为输入变量输送给观测器14a。在此,状态观测器12a的相应的参数化实现自由地输入系统特性,例如转矩传递装置的频率、振动衰减因数等。
在另一实施方式中,利用线性观测器14a在取消神经网络模糊系统22的情况下假设以预设转动角周期出现非线性,训练谐波激活的神经元网络。在此,优选离线地,即例如在使用主动的振动衰减之前针对每个运行状态确定转矩传递装置的转动特征值的变化,并且例如作为表格存储,使得每个运行状态在运行中可以被实时地调用并且可以用于调节补偿力矩。在此,副侧的转动特征值,例如双质量飞轮的副侧的转速足以作为用于HANN的输入变量。
在另一实施方式中,在弃用神经网络模糊系统22的情况下,能够设有具有未知输入,例如负载力矩MLast和所引发的发动机力矩Mind的观测器14(未知输入观测器),在此,所述输入作为未知的干扰变量借助于调节方法来考虑。将两个在从动侧的转动特征值,例如副侧的转速和驱动轮的轮转速作为未知输入观测器中的未知的输入变量,用于将干扰变量解耦。在此,例如能够利用驱动轮的经由CAN总线传输的且存在死时间的轮转速信号。
此外,能够将线性的观测器14a作为PI观测器对应于未知输入观测器设计。与所述线性观测器不同,在PI观测器中代替将干扰变量解耦将干扰变量作为状态进行估算。
附图标记列表
1 框图
2 动力传动系
3 飞轮质量体
4 转矩传递装置
4a 转矩传递装置
5 飞轮质量体
6 电机
7 弹簧装置
8 摩擦装置
9 飞轮质量体
10 耦联装置
11 输出端
12 状态调节器
12a 状态调节器
13 观测器
14 观测器
14a 观测器
15 观测器
16 方框布线图
17 参考模块
18 模块
19 模块
20 模块
21 框图
22 神经网络模糊系统
23 块
24 块
25 块
I 电流变量
J1 惯性力矩
J2 惯性力矩
J3 惯性力矩
Mab 引发的发动机力矩
Mboost 运行力矩
Mind 引发的力矩
Mem 电机力矩
Mem,r 构建的电机力矩
Mlast 负载力矩
Mregler 补偿力矩
Mvm 发动机力矩
Mvm,r 重构的发动机力矩
Mvm,m 重构的发动机力矩
OT 上止点
wL 负载杆位置
Figure GDA0002344916660000121
角度差
Δω12 角速度差
Φ1 加权函数
Φ2 加权函数
ΦM 加权函数
Figure GDA0002344916660000122
转动角
Figure GDA0002344916660000123
转动角
Figure GDA0002344916660000124
转动角
ω1 转动角速度
ω2 转动角速度
ω3 转动角速度

Claims (11)

1.一种用于对动力传动系(2)进行振动衰减的方法,所述动力传动系具有:内燃机,所述内燃机具有施加在曲轴上的发动机力矩(Mvm);电机(6);变速器,所述变速器具有变速器输入轴;和设置在曲轴和变速器输入轴之间的转矩传递装置(4,4a),所述转矩传递装置具有至少一个能振动的飞轮质量体(3,5,9)以及状态调节器(12,12a),所述飞轮质量体具有预设的惯性力矩(J1,J2,J3),所述状态调节器用于借助于补偿扭振的补偿力矩(Mregler)来调节所述电机(6),其特征在于,借助于至少一个观测器(13,14,14a,15)从所述动力传动系(2)的所检测的转速或转动角中确定所述状态调节器(12,12a)的输入变量,所述输入变量是至少一个所述飞轮质量体(3,5,9)的被重构的转动特征值,其中根据干扰变量确定所述被重构的转动特征值,所述干扰变量呈施加在所述转矩传递装置(4,4a)的输出端(11)上的负载力矩(Mlast)和所引发的力矩(Mind)形式,所引发的力矩(Mind)经由所述转矩传递装置(4,4a)传递并根据所述内燃机的发动机力矩(Mvm)确定。
2.根据权利要求1所述的方法,其特征在于,将所述补偿力矩(Mregler)调制到所述电机(6)的运行力矩(Mboost)上。
3.根据权利要求1所述的方法,其特征在于,将转动角
Figure FDA0002344916650000011
Figure FDA0002344916650000012
两个飞轮质量体之间的角度差
Figure FDA0002344916650000013
和/或角速度(ω1,ω2,ω3)或者两个飞轮质量体(3,5)之间的角速度差(Δω12)处理为转动特征值。
4.根据权利要求3所述的方法,其特征在于,借助于估算从各个转动特征值中确定全部所需的转动特征值。
5.根据权利要求1至4中任一项所述的方法,其特征在于,至少一个所述观测器(14,14a)构成为是线性的,并且借助于非线性的估算重构所述转矩传递装置(4,4a)的非线性特性,或者借助于将所述干扰变量解耦或确定所述干扰变量来补偿该非线性。
6.根据权利要求5所述的方法,其特征在于,借助于神经网络模糊系统(22)借助于所述转矩传递装置(4,4a)的两个飞轮质量体的转动特征值执行对所述转矩传递装置的非线性的转动特征值的估算。
7.根据权利要求5所述的方法,其特征在于,基于所述转矩传递装置(4,4a)在输出端(11)或所述电机(6)的转子的输出端(11)处的转动特征值借助于谐波激活的神经元网络执行估算。
8.根据权利要求5所述的方法,其特征在于,借助于如下观测器执行与所述干扰变量的解耦,所述观测器具有两个在从动侧的转动特征值的未知的输入机构。
9.根据权利要求5所述的方法,其特征在于,借助于两个在从动侧的转动特征值的比例积分观测器机构执行所述干扰变量的估算。
10.根据权利要求1至4、6至9中任一项所述的方法,其特征在于,从所述内燃机的至少一个与扭振相关的变量中确定所引发的力矩(Mind),并且作为输入变量用于在至少一个所述观测器(14)中预调所引发的力矩(Mind)。
11.根据权利要求5所述的方法,其特征在于,从所述内燃机的至少一个与扭振相关的变量中确定所引发的力矩(Mind),并且作为输入变量用于在至少一个所述观测器(14)中预调所引发的力矩(Mind)。
CN201580060652.7A 2014-11-07 2015-10-08 用于借助于电机对动力传动系进行振动衰减的方法 Active CN107074240B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102014222779.8A DE102014222779A1 (de) 2014-11-07 2014-11-07 Verfahren zur Schwingungsdämpfung eines Antriebsstrangs mittels einer Elektromaschine
DE102014222779.8 2014-11-07
PCT/DE2015/200473 WO2016070876A1 (de) 2014-11-07 2015-10-08 Verfahren zur schwingungsdämpfung eines antriebsstrangs mittels einer elektromaschine

Publications (2)

Publication Number Publication Date
CN107074240A CN107074240A (zh) 2017-08-18
CN107074240B true CN107074240B (zh) 2020-06-30

Family

ID=54539785

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580060652.7A Active CN107074240B (zh) 2014-11-07 2015-10-08 用于借助于电机对动力传动系进行振动衰减的方法

Country Status (5)

Country Link
US (1) US10300920B2 (zh)
JP (1) JP2017537830A (zh)
CN (1) CN107074240B (zh)
DE (2) DE102014222779A1 (zh)
WO (1) WO2016070876A1 (zh)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10024289B2 (en) * 2016-08-03 2018-07-17 Georgia Tech Research Corporation Two-scale command shaping for reducing vehicle vibration during engine start or restart
US10040446B2 (en) 2016-10-24 2018-08-07 International Business Machines Corporation Reducing noise generated by a motorized device
DE102017205490A1 (de) * 2017-03-31 2018-10-04 Robert Bosch Gmbh Verfahren und Vorrichtung zur Schwingungskompensation eines an einer Welle wirkenden Drehmomentes
DE102017205489A1 (de) * 2017-03-31 2018-10-04 Robert Bosch Gmbh Verfahren und Vorrichtung zur Schwingungskompensation eines an einer Welle wirkenden Drehmomentes
US11624326B2 (en) 2017-05-21 2023-04-11 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
FR3069829B1 (fr) * 2017-08-04 2020-11-20 Valeo Equip Electr Moteur Procede et systeme de compensation des acyclismes d'un moteur thermique par une machine electrique tournante
FR3072145B1 (fr) * 2017-10-10 2020-12-18 Valeo Equip Electr Moteur Procede de compensation des acyclismes d'un moteur thermique au moyen d'une machine electrique tournante
DE102017218686A1 (de) * 2017-10-19 2019-04-25 Zf Friedrichshafen Ag Dämpfungsanordnung zum Dämpfen von Drehungleichförmigkeiten in einem Antriebsstrang eines Kraftfahrzeugs
CN108008745B (zh) * 2017-10-19 2019-06-04 南京航空航天大学 基于相位滞后补偿的磁悬浮飞轮同频振动力抑制方法及控制系统
CN107901787A (zh) * 2017-10-26 2018-04-13 纳恩博(北京)科技有限公司 一种车辆的振动方法及车辆
DE102018203454A1 (de) * 2018-03-07 2019-09-12 Audi Ag Hybridantriebsstrang für ein hybridgetriebenes Fahrzeug
WO2020079265A1 (en) * 2018-10-18 2020-04-23 Borgwarner Sweden Ab A hybrid drive module, and a method for improving performance of such hybrid drive module
DE102019201163A1 (de) * 2019-01-30 2020-07-30 Robert Bosch Gmbh Verfahren zum Betreiben eines Antriebssystems für ein Kraftfahrzeug
DE102019205326A1 (de) * 2019-04-12 2020-10-15 Robert Bosch Gmbh Verfahren zum Synchronisieren von Signalen
CN109910863B (zh) * 2019-04-17 2020-07-31 苏州赫行新能源汽车科技有限公司 一种基于插电式混合动力轿车专用变速器的控制方法
US11560845B2 (en) 2019-05-15 2023-01-24 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US11015594B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Systems and method for use of single mass flywheel alongside torsional vibration damper assembly for single acting reciprocating pump
US11015536B2 (en) 2019-09-13 2021-05-25 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
CA3092868A1 (en) 2019-09-13 2021-03-13 Bj Energy Solutions, Llc Turbine engine exhaust duct system and methods for noise dampening and attenuation
CA3197583A1 (en) 2019-09-13 2021-03-13 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US11002189B2 (en) 2019-09-13 2021-05-11 Bj Energy Solutions, Llc Mobile gas turbine inlet air conditioning system and associated methods
US10815764B1 (en) 2019-09-13 2020-10-27 Bj Energy Solutions, Llc Methods and systems for operating a fleet of pumps
US11604113B2 (en) 2019-09-13 2023-03-14 Bj Energy Solutions, Llc Fuel, communications, and power connection systems and related methods
US10895202B1 (en) 2019-09-13 2021-01-19 Bj Energy Solutions, Llc Direct drive unit removal system and associated methods
CA3092865C (en) 2019-09-13 2023-07-04 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
CA3092829C (en) 2019-09-13 2023-08-15 Bj Energy Solutions, Llc Methods and systems for supplying fuel to gas turbine engines
US10989180B2 (en) 2019-09-13 2021-04-27 Bj Energy Solutions, Llc Power sources and transmission networks for auxiliary equipment onboard hydraulic fracturing units and associated methods
US12065968B2 (en) 2019-09-13 2024-08-20 BJ Energy Solutions, Inc. Systems and methods for hydraulic fracturing
DE102020106004A1 (de) * 2020-03-05 2021-09-09 Schaeffler Technologies AG & Co. KG Verfahren zum Starten eines Verbrennungsmotors
DE102020202868A1 (de) 2020-03-06 2021-09-09 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Drehschwingungsdämpfungssystems
US11708829B2 (en) 2020-05-12 2023-07-25 Bj Energy Solutions, Llc Cover for fluid systems and related methods
US10968837B1 (en) 2020-05-14 2021-04-06 Bj Energy Solutions, Llc Systems and methods utilizing turbine compressor discharge for hydrostatic manifold purge
US11428165B2 (en) 2020-05-15 2022-08-30 Bj Energy Solutions, Llc Onboard heater of auxiliary systems using exhaust gases and associated methods
US11208880B2 (en) 2020-05-28 2021-12-28 Bj Energy Solutions, Llc Bi-fuel reciprocating engine to power direct drive turbine fracturing pumps onboard auxiliary systems and related methods
US10961908B1 (en) 2020-06-05 2021-03-30 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11109508B1 (en) 2020-06-05 2021-08-31 Bj Energy Solutions, Llc Enclosure assembly for enhanced cooling of direct drive unit and related methods
US11208953B1 (en) 2020-06-05 2021-12-28 Bj Energy Solutions, Llc Systems and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit
US11111768B1 (en) 2020-06-09 2021-09-07 Bj Energy Solutions, Llc Drive equipment and methods for mobile fracturing transportation platforms
US10954770B1 (en) 2020-06-09 2021-03-23 Bj Energy Solutions, Llc Systems and methods for exchanging fracturing components of a hydraulic fracturing unit
US11066915B1 (en) 2020-06-09 2021-07-20 Bj Energy Solutions, Llc Methods for detection and mitigation of well screen out
US11022526B1 (en) 2020-06-09 2021-06-01 Bj Energy Solutions, Llc Systems and methods for monitoring a condition of a fracturing component section of a hydraulic fracturing unit
US11933153B2 (en) 2020-06-22 2024-03-19 Bj Energy Solutions, Llc Systems and methods to operate hydraulic fracturing units using automatic flow rate and/or pressure control
US11028677B1 (en) 2020-06-22 2021-06-08 Bj Energy Solutions, Llc Stage profiles for operations of hydraulic systems and associated methods
US11939853B2 (en) 2020-06-22 2024-03-26 Bj Energy Solutions, Llc Systems and methods providing a configurable staged rate increase function to operate hydraulic fracturing units
US11125066B1 (en) 2020-06-22 2021-09-21 Bj Energy Solutions, Llc Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing
US11466680B2 (en) 2020-06-23 2022-10-11 Bj Energy Solutions, Llc Systems and methods of utilization of a hydraulic fracturing unit profile to operate hydraulic fracturing units
US11473413B2 (en) 2020-06-23 2022-10-18 Bj Energy Solutions, Llc Systems and methods to autonomously operate hydraulic fracturing units
US11149533B1 (en) 2020-06-24 2021-10-19 Bj Energy Solutions, Llc Systems to monitor, detect, and/or intervene relative to cavitation and pulsation events during a hydraulic fracturing operation
US11220895B1 (en) 2020-06-24 2022-01-11 Bj Energy Solutions, Llc Automated diagnostics of electronic instrumentation in a system for fracturing a well and associated methods
US11193360B1 (en) 2020-07-17 2021-12-07 Bj Energy Solutions, Llc Methods, systems, and devices to enhance fracturing fluid delivery to subsurface formations during high-pressure fracturing operations
DE102020119553B4 (de) * 2020-07-24 2024-06-13 Audi Aktiengesellschaft Verfahren zum Betrieb eines Kraftfahrzeugs, Regelungseinrichtung und Kraftfahrzeug
US11639654B2 (en) 2021-05-24 2023-05-02 Bj Energy Solutions, Llc Hydraulic fracturing pumps to enhance flow of fracturing fluid into wellheads and related methods
CN113428157B (zh) * 2021-06-29 2022-08-09 重庆长安汽车股份有限公司 一种混动汽车传动系扭振自适应前馈主动控制方法及系统
CN113483056B (zh) * 2021-06-30 2022-11-04 重庆长安汽车股份有限公司 一种利用单质量飞轮抑制车辆扭振的控制系统和方法
CN113415282B (zh) * 2021-07-27 2023-03-14 重庆长安汽车股份有限公司 一种混合动力汽车扭振主动控制系统及设计方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19942144A1 (de) * 1999-09-03 2001-06-07 Schroeder Dierk Verfahren zur adaptiven Schwingungsdämpfung mittels neuronaler Netze
US6336070B1 (en) * 2000-03-01 2002-01-01 Ford Global Technologies, Inc. Apparatus and method for engine crankshaft torque ripple control in a hybrid electric vehicle
DE102004039756A1 (de) * 2004-08-17 2006-02-23 Robert Bosch Gmbh Verfahren zum Betreiben eines Antriebssystems, sowie Computerprogramm, elektrisches Speichermedium, Steuer- und Regeleinrichtung und Brennkraftmaschine
CN101042185A (zh) * 2006-03-22 2007-09-26 通用汽车环球科技运作公司 参数状态估计
CN101522500A (zh) * 2006-09-28 2009-09-02 卢克摩擦片和离合器两合公司 动力总成系统
CN103025593A (zh) * 2010-07-21 2013-04-03 日产自动车株式会社 混合动力车辆的控制设备和方法
CN103180190A (zh) * 2010-12-08 2013-06-26 爱信Ai株式会社 车辆的动力传递控制装置
CN103596828A (zh) * 2011-06-28 2014-02-19 舍弗勒技术股份两合公司 具有主动的扭转振动减振的混合式驱动系和用于实施主动的扭转振动减振的方法
CN103863326A (zh) * 2012-12-07 2014-06-18 现代自动车株式会社 用于控制混合动力车的反跳的方法和系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3825138A1 (de) 1987-09-23 1989-04-06 Bosch Gmbh Robert Verfahren und vorrichtung zur adaptiven stellregelung bei der elektro-magnetischen verstellung eines mengenbestimmenden gliedes
JP2792633B2 (ja) * 1990-02-09 1998-09-03 株式会社日立製作所 制御装置
GB9222515D0 (en) * 1992-10-27 1992-12-09 Lucas Ind Plc Apparatus for damping shunt
JP3750626B2 (ja) * 2002-04-09 2006-03-01 トヨタ自動車株式会社 ハイブリッド車両の制御装置
US6842673B2 (en) 2002-06-05 2005-01-11 Visteon Global Technologies, Inc. Engine engagement control for a hybrid electric vehicle
US7110867B2 (en) * 2002-08-26 2006-09-19 Nissan Motor Co., Ltd. Vibration suppression apparatus and method for hybrid vehicle
WO2008080378A1 (de) * 2007-01-05 2008-07-10 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Antriebsstrang
US8185281B2 (en) * 2009-06-26 2012-05-22 Bayerische Motoren Werke Aktiengesellschaft Method and controller for controlling a power train of a vehicle
DE102010039701A1 (de) 2010-08-24 2012-03-01 Robert Bosch Gmbh Verfahren und System zur Steuerung einer elektrischen Maschine in einem Antriebsstrang eines Kraftfahrzeuges
DE102011003581A1 (de) * 2011-02-03 2012-08-09 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung der bestimmungsgemäßen Funktion mindestens einer ersten und einer zweiten Komponente eines Fahrzeugantriebsstrangs
DE102011084548A1 (de) 2011-10-14 2013-04-18 Robert Bosch Gmbh Aktive Dämpfungsregelung für ein Elektro- oder Hybridfahrzeug
GB201308270D0 (en) * 2013-05-08 2013-06-12 Magnomatics Ltd Methods and apparatus for rotor position estimation
AT515103B1 (de) 2014-05-23 2015-06-15 Avl List Gmbh Verfahren zum starten einer brennkraftmaschine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19942144A1 (de) * 1999-09-03 2001-06-07 Schroeder Dierk Verfahren zur adaptiven Schwingungsdämpfung mittels neuronaler Netze
US6336070B1 (en) * 2000-03-01 2002-01-01 Ford Global Technologies, Inc. Apparatus and method for engine crankshaft torque ripple control in a hybrid electric vehicle
DE102004039756A1 (de) * 2004-08-17 2006-02-23 Robert Bosch Gmbh Verfahren zum Betreiben eines Antriebssystems, sowie Computerprogramm, elektrisches Speichermedium, Steuer- und Regeleinrichtung und Brennkraftmaschine
CN101042185A (zh) * 2006-03-22 2007-09-26 通用汽车环球科技运作公司 参数状态估计
CN101522500A (zh) * 2006-09-28 2009-09-02 卢克摩擦片和离合器两合公司 动力总成系统
CN103025593A (zh) * 2010-07-21 2013-04-03 日产自动车株式会社 混合动力车辆的控制设备和方法
CN103180190A (zh) * 2010-12-08 2013-06-26 爱信Ai株式会社 车辆的动力传递控制装置
CN103596828A (zh) * 2011-06-28 2014-02-19 舍弗勒技术股份两合公司 具有主动的扭转振动减振的混合式驱动系和用于实施主动的扭转振动减振的方法
CN103863326A (zh) * 2012-12-07 2014-06-18 现代自动车株式会社 用于控制混合动力车的反跳的方法和系统

Also Published As

Publication number Publication date
US10300920B2 (en) 2019-05-28
DE102014222779A1 (de) 2016-05-12
CN107074240A (zh) 2017-08-18
JP2017537830A (ja) 2017-12-21
US20170334448A1 (en) 2017-11-23
WO2016070876A1 (de) 2016-05-12
DE112015007008A5 (de) 2018-07-26

Similar Documents

Publication Publication Date Title
CN107074240B (zh) 用于借助于电机对动力传动系进行振动衰减的方法
CN107110289B (zh) 用于施加转矩到轴、尤其是往复式发动机的曲轴上的促动器系统和相应的方法
CN106103226B (zh) 混合动力模块以及具有混合动力模块的动力传动系统
EP2726353B1 (de) Hybridischer antriebsstrang mit aktiver drehschwingungsdämpfung und verfahren zur durchführung der aktiven drehschwingungsdämpfung
JP3337423B2 (ja) 動力車のためのハイブリッド走行駆動装置
JP6545560B2 (ja) ハイブリッド車両の能動型振動低減制御装置及びその方法
CN104340205B (zh) 用于混合动力车辆的发动机速度控制设备及方法
JP2009067216A5 (zh)
US20150060230A1 (en) Method for reducing chatter vibrations in a drivetrain
US8352106B2 (en) Method for operating a hybrid vehicle
KR102529590B1 (ko) 하이브리드 자동차의 구동토크 지령 생성 장치 및 방법
DE112011102267T5 (de) Steuerungsvorrichtung
Templin et al. An LQR torque compensator for driveline oscillation damping
CN105073544A (zh) 使用于机动车辆传动系统的驾驶性能修正功能停止的停止方法
JP5516995B2 (ja) 制御装置
Pfabe et al. Reducing torsional vibrations by means of a kinematically driven flywheel—Theory and experiment
US10663030B2 (en) Hybrid vehicle
JP5705982B2 (ja) デュアルピニオン駆動システム
JP4894832B2 (ja) エンジントルク変動検出システム
JP2023104806A (ja) 発電システムの制御方法、及び、発電システムの制御装置
JP2019018603A (ja) ハイブリッド車両の制御方法
Vadamalu Estimation and control methods for active reduction of engine-induced torsional vibration in hybrid powertrains
WO2023188438A1 (ja) 発電システムの始動制御方法、及び、発電システムの始動制御装置
CN110271536A (zh) 用于控制车辆的混合动力驱动系的方法
CN117246346A (zh) 用于车辆传动系统的阻尼控制方法、机构和车辆动力总成

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant