CN107068987B - 一种锂离子电池负极片的制作方法及锂离子电池 - Google Patents

一种锂离子电池负极片的制作方法及锂离子电池 Download PDF

Info

Publication number
CN107068987B
CN107068987B CN201611167522.6A CN201611167522A CN107068987B CN 107068987 B CN107068987 B CN 107068987B CN 201611167522 A CN201611167522 A CN 201611167522A CN 107068987 B CN107068987 B CN 107068987B
Authority
CN
China
Prior art keywords
added
ion battery
production method
ionic cell
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201611167522.6A
Other languages
English (en)
Other versions
CN107068987A (zh
Inventor
杨国龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen OptimumNano Energy Co Ltd
Original Assignee
Shenzhen OptimumNano Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen OptimumNano Energy Co Ltd filed Critical Shenzhen OptimumNano Energy Co Ltd
Priority to CN201611167522.6A priority Critical patent/CN107068987B/zh
Publication of CN107068987A publication Critical patent/CN107068987A/zh
Priority to EP17207374.4A priority patent/EP3336936A1/en
Priority to US15/842,905 priority patent/US20180175374A1/en
Application granted granted Critical
Publication of CN107068987B publication Critical patent/CN107068987B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明提供一种锂离子电池负极片的制作方法,本发明提供的锂离子电池负极片的制作方法所制作的负极片比表面积大、体积变化可控且化学稳定性高。本发明还提供一种锂离子电池,包括正极片、隔膜、电解液、外壳及本发明提供的锂离子电池负极片的制作方法所制作的负极片;所述正极片、负极片及隔膜卷绕后装入所述外壳,经注电解液、封口后组成所述锂离子电池。本发明提供的锂离子电池,包括碳气凝胶包覆的硅碳复合材料的负极,锂离子电池的内阻小、倍率性能好、循环寿命长且能量密度高。

Description

一种锂离子电池负极片的制作方法及锂离子电池
【技术领域】
本发明涉及锂离子电池技术领域,尤其涉及一种锂离子电池负极片的制作方法及锂离子电池。
【背景技术】
负极是锂离子电池的重要组成部分,由于碳基材料比表面积大、导电性好、成本低、空隙率大、电极制备简单等优点,成为了应用最广泛的电极材料。目前,锂离子电池主要应用的负极材料为石墨,石墨材料的理论容量372mAh/g,实际应用已达到370mAh/g,因此,石墨电极本身较低的理论储锂容量使其很难再取得突破性进展,严重制约了高能量密度动力电池的发展。
硅具有较高的理论容量(4200mAh/g)和较低的脱锂电位(<0.5V),成为最有潜力取代石墨的锂离子电池负极材料,然而,由硅作为活性材料制得的负极在充放电后硅晶格体积膨胀达到了360%,导致了硅颗粒粉化、负极活性物质与导电剂接触差、固体电解质膜重复生长而消耗电解液及锂源及循环性能差的问题。
鉴于此,实有必要提供一种新型的锂离子电池负极片的制作方法及锂离子电池以克服以上缺陷。
【发明内容】
本发明的目的是提供一种能够限制硅晶格体积膨胀的锂离子电池负极片的制作方法,并且提供一种锂离子电池,包括本发明的锂离子电池负极片的制作方法所制得的负极片,本发明提供的锂离子电池具有内阻小、倍率性能好、循环寿命长和能量密度高的特点。
为了实现上述目的,本发明提供一种锂离子电池负极片的制作方法,包括如下步骤:
步骤一:按摩尔比为1:0.5称取2,4-二羟基苯甲酸和K2CO3,同时加入一定量的去离子水并搅拌,直至2,4-二羟基苯甲酸与K2CO3完全反应,得到澄清溶液;
步骤二:在步骤一所得的澄清溶液中加入一定量的甲醛和K2CO3,将反应仪器密封,在室温下反应5-7h,得到淡黄色溶液;所述步骤二中的甲醛与2,4-二羟基苯甲酸的摩尔比为2:1;所述步骤二中的K2CO3与2,4-二羟基苯甲酸的摩尔比为0.01:1;
步骤三:在步骤二所得的淡黄色溶液中加入一定量的表面活化剂溶液及去离子水,同时加入一定量的纳米硅粉,在室温下,以300-500rpm的转速搅拌,进行溶胶-凝胶反应,反应时间为3d,制得反应产物;所述步骤三中加入的去离子水与表面活化剂溶液的体积比为1:(3-4);所述步骤三中加入的纳米硅粉与2,4-二羟基苯甲酸的摩尔比为(0.5-1):1;
步骤四:将步骤三所得的反应产物取出,离心分离,用丙酮溶液洗涤除去残留的表面活化剂,再用丙酮萃取1d;
步骤五:将步骤四萃取得到的产物放入密封系统中,加入适量的石油醚作为超临界干燥的置换介质,在惰性气体保护下以5-10℃/min升温至250℃,保持温度在250℃、系统压力7MPa以上干燥90min;
步骤六:将步骤五干燥后的产物送入卧式电炉中,在惰性气体保护下以3-5℃/min升温至900-1200℃进行炭化,得到碳气凝胶包覆纳米硅粉的硅碳复合材料;
步骤七:将步骤六所得到的硅碳复合材料与导电剂、粘结剂、溶剂混合成浆涂于铜箔上得到锂离子电池负极片。
本发明提供的锂离子电池负极片的制作方法所制作的负极片比表面积大、体积变化可控且化学稳定性高。
本发明还提供一种锂离子电池,包括正极片、隔膜、电解液、外壳及本发明提供的锂离子电池负极片的制作方法所制作的负极片;所述正极片、负极片及隔膜卷绕后装入所述外壳,经注电解液、封口后组成所述锂离子电池。
本发明提供的锂离子电池,包括碳气凝胶包覆的硅碳复合材料的负极,锂离子电池的内阻小、倍率性能好、循环寿命长且能量密度高。
【附图说明】
图1为本发明实施例1所制备的碳气凝胶的SEM图;
图2为本发明提供的碳气凝胶的成型机理图;
图3为本发明实施例1、实施例2及实施例3所制备的锂离子电池的3C循环图。
【具体实施方式】
为了使本发明的目的、技术方案和有益技术效果更加清晰明白,以下结合附图和具体实施方式,对本发明进行进一步详细说明。应当理解的是,本说明书中描述的具体实施方式仅仅是为了解释本发明,并不是为了限定本发明。
本发明提供一种锂离子电池负极片的制作方法,包括如下步骤:
步骤一:按摩尔比为1:0.5称取2,4-二羟基苯甲酸和K2CO3,同时加入一定量的去离子水并搅拌,直至2,4-二羟基苯甲酸与K2CO3完全反应,得到澄清溶液;
步骤二:在步骤一所得的澄清溶液中加入一定量的甲醛和K2CO3,将反应仪器密封,在室温下反应5-7h(小时),得到淡黄色溶液;
步骤三:在步骤二所得的淡黄色溶液中加入一定量的表面活化剂溶液及去离子水,同时加入一定量的纳米硅粉,在室温下,以300-500rpm(转/分)的转速搅拌,进行溶胶-凝胶反应,反应时间为3d(天),制得反应产物;
步骤四:将步骤三所得的反应产物取出,离心分离,用丙酮溶液洗涤除去残留的表面活化剂,再用丙酮萃取1d;
步骤五:将步骤四萃取得到的产物放入密封系统中,加入适量的石油醚作为超临界干燥的置换介质,在惰性气体保护下以5-10℃/min升温至250℃,保持温度在250℃、系统压力7MPa以上干燥90min;
步骤六:将步骤五干燥后的产物送入卧式电炉中,在惰性气体保护下以3-5℃/min升温至900-1200℃进行炭化,得到碳气凝胶包覆纳米硅粉的硅碳复合材料;
步骤七:将步骤六所得到的硅碳复合材料与导电剂、粘结剂、溶剂混合成浆涂于铜箔上得到锂离子电池负极片。
具体的,所述步骤一中加入去离子水后,2,4-二羟基苯甲酸的摩尔浓度为0.8-1.2mol/L。
具体的,所述步骤二中的甲醛与2,4-二羟基苯甲酸的摩尔比为2:1。
具体的,所述步骤二中的K2CO3与2,4-二羟基苯甲酸的摩尔比为0.01:1。
具体的,所述步骤三中的表面活化剂溶液为SPAN80(司盘80,化学成分是失水山梨糖醇脂肪酸酯)和环己烷按照1:50的体积比配制形成。
具体的,所述步骤三中加入的去离子水与表面活化剂溶液的体积比为1:(3-4)。
具体的,所述步骤三中加入的纳米硅粉与2,4-二羟基苯甲酸的摩尔比为(0.5-1):1。
具体的,所述步骤六中惰性气体的流量为200-500mL/min。
本发明提供的锂离子电池负极片的制作方法,以2,4-二羟基苯甲酸和甲醛为有机溶胶-凝胶的前驱体,以纳米硅粉为核、SPAN80和环己烷为表面活化剂制备了包覆纳米硅粉的有机溶胶-凝胶,使用超临界干燥法对有机溶胶-凝胶产物进行干燥,保持了原有的多孔网络结构,从而得到高空隙率、超低密度的有机溶胶-凝胶,再经高温炭化的到最终产物:碳气凝胶包覆纳米硅粉的硅碳复合材料。
如图1及图2所示,碳气凝胶作为一种纳米网络多孔材料,其网络之间相互交联,纳米硅粉很好的锁合在网络结构之中,在充放电过程中,锂离子由纳米孔道嵌入,与纳米硅粉进行结合,提高了硅碳复合材料的比容量;同时,由于纳米硅粉颗粒被碳气凝胶网络锁合住,在充放电过程中,碳骨架对纳米粉有一个缓冲作用,抑制住了硅由于体积效应而发生粉化。
本发明提供的锂离子电池负极片的制作方法所制作的负极片比表面积大、体积变化可控且化学稳定性高。
本发明还提供一种锂离子电池,包括正极片、隔膜、电解液、外壳及由上述的锂离子电池负极片的制作方法所制作的负极片;所述正极片、负极片及隔膜卷绕后装入所述外壳,经注电解液、封口后组成所述锂离子电池。
具体的,所述正极片为正极活性物质与粘结剂、导电剂、溶剂混合成浆涂于铝箔上得到,所述正极活性物质为LiCoO2、LiMn2O4、LiFePO4、LiCo1-x-yNixMnyO2中的一种或几种,其中,x、y、x+y均小于1。
本发明提供的锂离子电池,包括碳气凝胶包覆纳米硅粉的硅碳复合材料的负极,锂离子电池的内阻小、倍率性能好、循环寿命长且能量密度高。
实施例1:
1、称取1mol 2,4-二羟基苯甲酸和0.5mol K2CO3,同时加入1L的去离子水,搅拌,使2,4-二羟基苯甲酸与K2CO3发生中和反应,直至溶液变澄清,完全反应变成盐;
2、在澄清溶液中加入2mol甲醛和0.01mol K2CO3,将反应仪器密封,在室温下反应7h,溶液由无色变成淡黄色;
3、在淡黄色溶液中加入3L的由SPAN80和环己烷(按照1:50的体积比配制)表面活化剂溶液,同时加入0.6mol的纳米硅粉,在室温下,以400rpm的转速搅拌反应,进行溶胶-凝胶反应3d;
4、将反应产物取出,离心分离,用丙酮溶液洗涤除去残留的表面活化剂,再用丙酮萃取1d;
5、将萃取得到的产物放入密封系统中,加入适量的石油醚作为超临界干燥的置换介质,在惰性气体保护下以5℃/min升温至250℃,保持温度在250℃,系统压力7MPa以上干燥90min;
6、将干燥后的产物送入卧式电炉中在惰性气体保护下(流量为300mL/min)以5℃/min升温至1000℃进行炭化,得到碳气凝胶包覆纳米硅粉的硅碳复合材料;
7、以所制得的硅碳复合材料为负极活性物质与导电剂、粘结剂、溶剂混合成浆涂于铜箔上得到负极片;以LiFePO4为正极活性物质与粘结剂、导电剂、溶剂混合成浆涂于铝箔上得到正极片;正、负极片与隔膜、电解液、外壳组成锂离子电池。
实施例2:
1、称取0.5mol 2,4-二羟基苯甲酸和0.25mol K2CO3,同时加入0.5L的去离子水,搅拌,使2,4-二羟基苯甲酸与K2CO3发生中和反应,直至溶液变澄清,完全反应变成盐;
2、在澄清溶液中加入1mol甲醛和0.005mol K2CO3,将反应仪器密封,在室温下反应5h,溶液由无色变成淡黄色;
3、在淡黄色溶液中加入1.5L的由SPAN80和环己烷(按照1:50的体积比配制)表面活化剂溶液,同时加入0.4mol的纳米硅粉,在室温下,以500rpm的转速搅拌反应,进行溶胶-凝胶反应3d;
4、将反应产物取出,离心分离,用丙酮溶液洗涤除去残留的表面活化剂,再用丙酮萃取1d;
5、将萃取得到的产物放入密封系统中,加入适量的石油醚作为超临界干燥的置换介质,在惰性气体保护下以10℃/min升温至250℃,保持温度在250℃,系统压力7MPa以上干燥90min;
6、将干燥后的产物送入卧式电炉中在惰性气体保护下(流量为400mL/min)以3℃/min升温至1000℃进行炭化,得到碳气凝胶包覆纳米硅粉的硅碳复合材料;
7、以所制得的硅碳复合材料为负极活性物质与导电剂、粘结剂、溶剂混合成浆涂于铜箔上得到负极片;以LiFePO4为正极活性物质与粘结剂、导电剂、溶剂混合成浆涂于铝箔上得到正极片;正、负极片与隔膜、电解液、外壳组成锂离子电池。
实施例3:
1、称取0.8mol 2,4-二羟基苯甲酸和0.4mol K2CO3,同时加入1L的去离子水,搅拌,使2,4-二羟基苯甲酸与K2CO3发生中和反应,直至溶液变澄清,完全反应变成盐;
2、在澄清溶液中加入1.6mol甲醛和0.008mol K2CO3,将反应仪器密封,在室温下反应6h,溶液由无色变成淡黄色;
3、在淡黄色溶液中加入3L的由SPAN80和环己烷(按照1:50的体积比配制)表面活化剂溶液,同时加入0.8mol的纳米硅粉,在室温下,以300rpm的转速搅拌反应,进行溶胶-凝胶反应3d;
4、将反应产物取出,离心分离,用丙酮溶液洗涤除去残留的表面活化剂,再用丙酮萃取1d;
5、将萃取得到的产物放入密封系统中,加入适量的石油醚作为超临界干燥的置换介质,在惰性气体保护下以5℃/min升温至250℃,保持温度在250℃,系统压力7MPa以上干燥90min;
6、将干燥后的产物送入卧式电炉中在惰性气体保护下(流量为350mL/min)以4℃/min升温至1000℃进行炭化,得到碳气凝胶包覆纳米硅粉的硅碳复合材料;
7、以所制得的硅碳复合材料为负极活性物质与导电剂、粘结剂、溶剂混合成浆涂于铜箔上得到负极片;以LiFePO4为正极活性物质与粘结剂、导电剂、溶剂混合成浆涂于铝箔上得到正极片;正、负极片与隔膜、电解液、外壳组成锂离子电池。
本发明各实施例所制备的负极片在不同的循环次数后厚度膨胀率如下表1所示。
表1:不同循环次数后负极片厚度膨胀率
由表1可以看出,本发明实施例所制备的负极片,在循环20次时,膨胀率仍低于130%,与现有的硅碳材料的体积膨胀率360%相比,大大降低了硅晶格的体积膨胀率,作为负极材料的性能良好。
图3为本发明实施例1、实施例2及实施例3所制备的锂离子电池的3C循环图。由图3可以看出,本发明提供的锂离子电池的循环性能良好,在3C条件下,200次循环的容量保持率在90%以上。
本发明并不仅仅限于说明书和实施方式中所描述,因此对于熟悉领域的人员而言可容易地实现另外的优点和修改,故在不背离权利要求及等同范围所限定的一般概念的精神和范围的情况下,本发明并不限于特定的细节、代表性的设备和这里示出与描述的图示示例。

Claims (6)

1.一种锂离子电池负极片的制作方法,其特征在于:包括如下步骤:
步骤一:按摩尔比为1:0.5称取2,4-二羟基苯甲酸和K2CO3,同时加入一定量的去离子水并搅拌,直至2,4-二羟基苯甲酸与K2CO3完全反应,得到澄清溶液;
步骤二:在步骤一所得的澄清溶液中加入一定量的甲醛和K2CO3,将反应仪器密封,在室温下反应5-7h,得到淡黄色溶液;所述步骤二中的甲醛与2,4-二羟基苯甲酸的摩尔比为2:1;所述步骤二中的K2CO3与2,4-二羟基苯甲酸的摩尔比为0.01:1。
步骤三:在步骤二所得的淡黄色溶液中加入一定量的表面活化剂溶液及去离子水,同时加入一定量的纳米硅粉,在室温下,以300-500rpm的转速搅拌,进行溶胶-凝胶反应,反应时间为3d,制得反应产物;所述步骤三中加入的去离子水与表面活化剂溶液的体积比为1:(3-4);所述步骤三中加入的纳米硅粉与2,4-二羟基苯甲酸的摩尔比为(0.5-1):1;
步骤四:将步骤三所得的反应产物取出,离心分离,用丙酮溶液洗涤除去残留的表面活化剂,再用丙酮萃取1d;
步骤五:将步骤四萃取得到的产物放入密封系统中,加入适量的石油醚作为超临界干燥的置换介质,在惰性气体保护下以5-10℃/min升温至250℃,保持温度在250℃、系统压力7MPa以上干燥90min;
步骤六:将步骤五干燥后的产物送入卧式电炉中,在惰性气体保护下以3-5℃/min升温至900-1200℃进行炭化,得到碳气凝胶包覆纳米硅粉的硅碳复合材料;
步骤七:将步骤六所得到的硅碳复合材料与导电剂、粘结剂、溶剂混合成浆涂于铜箔上得到锂离子电池负极片。
2.如权利要求1所述的锂离子电池负极片的制作方法,其特征在于:所述步骤一中加入去离子水后,2,4-二羟基苯甲酸的摩尔浓度为0.8-1.2mol/L。
3.如权利要求2所述的锂离子电池负极片的制作方法,其特征在于:所述步骤三中的表面活化剂溶液为SPAN80和环己烷按照1:50的体积比配制形成。
4.如权利要求3所述的锂离子电池负极片的制作方法,其特征在于:所述步骤六中惰性气体的流量为200-500mL/min。
5.一种锂离子电池,其特征在于:包括正极片、隔膜、电解液、外壳及如权利要求1至4任意一项所述的锂离子电池负极片的制作方法所制作的负极片;所述正极片、负极片及隔膜卷绕后装入所述外壳,经注电解液、封口后组成所述锂离子电池。
6.如权利要求5所述的锂离子电池,其特征在于:所述正极片为正极活性物质与粘结剂、导电剂、溶剂混合成浆涂于铝箔上得到,所述正极活性物质为LiCoO2、LiMn2O4、LiFePO4、LiCo1-x-yNixMnyO2中的一种或几种,其中,x、y、x+y均小于1。
CN201611167522.6A 2016-12-16 2016-12-16 一种锂离子电池负极片的制作方法及锂离子电池 Expired - Fee Related CN107068987B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201611167522.6A CN107068987B (zh) 2016-12-16 2016-12-16 一种锂离子电池负极片的制作方法及锂离子电池
EP17207374.4A EP3336936A1 (en) 2016-12-16 2017-12-14 Method for preparing negative electrode of lithium ion battery and lithium ion battery
US15/842,905 US20180175374A1 (en) 2016-12-16 2017-12-15 Method for preparing negative electrode of lithium ion battery and lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611167522.6A CN107068987B (zh) 2016-12-16 2016-12-16 一种锂离子电池负极片的制作方法及锂离子电池

Publications (2)

Publication Number Publication Date
CN107068987A CN107068987A (zh) 2017-08-18
CN107068987B true CN107068987B (zh) 2018-07-24

Family

ID=59619113

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611167522.6A Expired - Fee Related CN107068987B (zh) 2016-12-16 2016-12-16 一种锂离子电池负极片的制作方法及锂离子电池

Country Status (3)

Country Link
US (1) US20180175374A1 (zh)
EP (1) EP3336936A1 (zh)
CN (1) CN107068987B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109119617B (zh) * 2018-08-30 2021-08-27 华为技术有限公司 一种硅基复合负极材料及其制备方法和储能器件
KR20210100526A (ko) * 2018-12-18 2021-08-17 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질, 이를 포함하는 양극 및 이를 포함하는 리튬 이차 전지
CN111725501B (zh) * 2020-06-30 2021-07-30 山东大学 硫钼锌/碳纳米片结构复合材料及其制备方法与作为负极材料的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103035917A (zh) * 2013-01-09 2013-04-10 北京科技大学 一种锂离子电池二氧化硅/碳复合负极材料的制备方法
CN103515582A (zh) * 2013-10-10 2014-01-15 中国海洋石油总公司 一种锂离子电池硅碳复合负极材料的制法
CN103730645A (zh) * 2014-01-17 2014-04-16 江苏华盛精化工股份有限公司 一种硅包覆碳纤维纳米复合材料及其制备方法和应用
CN105742600A (zh) * 2016-03-24 2016-07-06 湘潭大学 锂离子电池二氧化硅/碳纳米复合气凝胶负极材料的制备
CN106129367A (zh) * 2016-08-22 2016-11-16 浙江理工大学 一种硅/碳纳米复合纤维及其应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103151496B (zh) * 2013-04-08 2015-04-29 张继业 一种用于手持电子游戏机的锂电池的负极的制备方法
CN103346302A (zh) * 2013-07-01 2013-10-09 华南师范大学 一种锂电池硅碳纳米管复合负极材料及其制备方法与应用
CN105489855B (zh) * 2015-11-25 2017-11-14 天津师范大学 高容量型锂离子电池用核壳硅碳复合负极材料及其制备方法
CN105489891A (zh) * 2015-12-21 2016-04-13 宁波高新区锦众信息科技有限公司 一种锂离子电池用高容量硅基负极材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103035917A (zh) * 2013-01-09 2013-04-10 北京科技大学 一种锂离子电池二氧化硅/碳复合负极材料的制备方法
CN103515582A (zh) * 2013-10-10 2014-01-15 中国海洋石油总公司 一种锂离子电池硅碳复合负极材料的制法
CN103730645A (zh) * 2014-01-17 2014-04-16 江苏华盛精化工股份有限公司 一种硅包覆碳纤维纳米复合材料及其制备方法和应用
CN105742600A (zh) * 2016-03-24 2016-07-06 湘潭大学 锂离子电池二氧化硅/碳纳米复合气凝胶负极材料的制备
CN106129367A (zh) * 2016-08-22 2016-11-16 浙江理工大学 一种硅/碳纳米复合纤维及其应用

Also Published As

Publication number Publication date
US20180175374A1 (en) 2018-06-21
CN107068987A (zh) 2017-08-18
EP3336936A1 (en) 2018-06-20

Similar Documents

Publication Publication Date Title
CN105470515B (zh) 一种安全型锂离子动力电池正极及含有该正极的锂离子电池
CN105621355B (zh) 一种空心石墨烯球负载纳米二硫化锡复合材料及其制备方法
CN106299314B (zh) 一种锂离子电池负极材料及其制备方法、锂离子电池
CN104241621B (zh) 一种锂离子电池用硅基复合负极材料
CN104124431B (zh) 一种锂离子电池用石墨负极材料及其制备方法
CN106887569A (zh) 一种新型结构石墨烯包覆硅纳米颗粒及其制备方法
CN104134818B (zh) 一种高比能量锂离子电池及其制备方法
WO2020103914A1 (zh) 一种硅氧复合负极材料及其制作方法
CN104934579B (zh) 一种多孔石墨掺杂与碳包覆石墨负极材料的制备方法
CN105470481A (zh) 一维多孔核壳结构氮掺杂碳包覆一氧化锰复合材料及制备方法
CN103682327B (zh) 基于氮掺杂碳层包裹的空心多孔氧化镍复合材料的锂离子电池及其制备方法
CN104934603A (zh) 一种石墨烯掺杂与碳包覆改性石墨负极材料的制备方法
CN103280601B (zh) 一种锂硫电池的制造方法
CN106558729B (zh) 一种石墨烯作为正极浆料导电剂的锂离子电池
CN109037552B (zh) 一种用于钠硫电池的隔膜材料的制备方法
CN108183213B (zh) 一种三氧化二铁/碳/碳纳米管锂离子电池负极材料的制备方法
CN102683649A (zh) 一种锂离子电池碳硅负极材料的制备方法
CN108199014A (zh) 一种多孔氮掺杂碳/Fe2O3/石墨烯泡沫柔性复合材料、制备方法及其应用
CN107068987B (zh) 一种锂离子电池负极片的制作方法及锂离子电池
CN104916823A (zh) 一种用于锂电池的硅/氧化石墨烯负极材料及其制备方法
CN107681147A (zh) 一种固态电解质包覆改性锂离子电池正极材料的制备方法与应用
CN107863508A (zh) 一种聚吡咯包覆的多孔硒复合正极材料及其制备方法
CN105932329B (zh) 一种凝胶聚合物电解质隔膜及其制备方法和应用
CN104716311A (zh) 一种二硫化锡纳米片复合材料及其制备方法和应用
CN109920984A (zh) 一种快速充放电的锂离子电池及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PP01 Preservation of patent right
PP01 Preservation of patent right

Effective date of registration: 20180920

Granted publication date: 20180724

PD01 Discharge of preservation of patent
PD01 Discharge of preservation of patent

Date of cancellation: 20200320

Granted publication date: 20180724

PP01 Preservation of patent right
PP01 Preservation of patent right

Effective date of registration: 20200429

Granted publication date: 20180724

PD01 Discharge of preservation of patent
PD01 Discharge of preservation of patent

Date of cancellation: 20230331

Granted publication date: 20180724

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180724