CN107057694A - 一种不饱和金属掺杂的碳量子点及其制备方法 - Google Patents

一种不饱和金属掺杂的碳量子点及其制备方法 Download PDF

Info

Publication number
CN107057694A
CN107057694A CN201710442609.8A CN201710442609A CN107057694A CN 107057694 A CN107057694 A CN 107057694A CN 201710442609 A CN201710442609 A CN 201710442609A CN 107057694 A CN107057694 A CN 107057694A
Authority
CN
China
Prior art keywords
quantum dot
carbon quantum
metal doping
preparation
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710442609.8A
Other languages
English (en)
Inventor
吴文婷
徐文明
张庆刚
吴明铂
李忠涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN201710442609.8A priority Critical patent/CN107057694A/zh
Publication of CN107057694A publication Critical patent/CN107057694A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/133Preparation by dehydrogenation of hydrogenated pyridine compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种不饱和金属掺杂的碳量子点及其制备方法。利用具有饱和西弗碱结构的EDTA铁盐和EDTA铜盐为原料,将两种金属的配合物按照一定比例混合均匀,采用一步热聚法制备不饱和金属掺杂的碳量子点,提高此类光敏剂的电子转移能力,同时根据热解温度的不同,得到具有不同石墨化程度的碳量子点,而较高的石墨化程度,有利于提高光敏剂的电子转移能力。本发明中所制备的不饱和金属掺杂的碳量子点具有优良的水溶性、电子接受能力、电子给出能力和导电性,可见光响应范围广,是一种优异的光敏剂。将此类光敏剂应用于1,4‑二氢吡啶的光氧化反应中,能够高效光催化氧化此类反应,且无副产物生成。

Description

一种不饱和金属掺杂的碳量子点及其制备方法
技术领域
本发明涉及一种不饱和金属掺杂的碳量子点及其制备方法,属于量子点技术领域。
背景技术
碳量子点是21世纪以来才被发现的一种新型荧光碳材料,粒子的尺寸小于10nm,是一种水溶性好,毒性低,生物相容性好,且具有可见光响应范围广等特点,其类石墨烯结构,有利于电子转移传输。单一金属铁或铜与碳量子点结合可以增强可见光响应的能力和电子的传输效率。将铁铜双金属同时与碳量子点结合,通过不饱和金属变价、双金属的协同作用,与单一金属铁或铜掺杂的碳量子点相比,可以更加显著的增强光响应能力和电子传输效率,同时具有高度石墨化的碳量子点,也有利于增强光响应能力和电子传输效率,进而扩展其在光催化氧化反应中的应用。
已报导的碳量子点复合材料,通常为先分别制备金属纳米颗粒和碳量子点,然后将二者复合。此方法制备出的复合材料二者分布不均匀,相互作用力较弱,存在一定缺陷。本专利优化设计碳源结构,利用一步法直接生成基于不饱和金属掺杂的碳量子点,节省工序,提高产品稳定性。
发明内容
1.本发明是设计一种不饱和金属掺杂的纳米碳量子点,以乙二胺四乙酸铁钠盐和乙二胺四乙酸铜钠盐为前驱体,经过热聚反应、溶解、超声震荡、离心分离、浓缩透析和蒸干制得,其特征在于原料的选取和制备工艺:
(1).称取一定比例的EDTA铁钠盐和EDTA铜钠盐,用研钵充分研磨,使混合均匀,然后平铺在石英舟的底部放到管式加热炉中。
(2).N2置换30min,驱除管中的氧气。30min后,启动加热装置,以1-20℃/min的加热速率进行升温加热。升温至200℃-500℃后,维持恒温2h,然后自然降温,降至室温后取出。
(3).反应后的样品溶解到150mL去离子水中,在40kHz的超声震荡仪中进行20min的超声震荡作用,等到易溶于水的部分完全溶解后,得到部分溶解的液体。
(4).将部分溶解的液体进一步用0.22μm的滤膜进行过滤处理,过滤大于0.22μm的物质。
(5).将上一步得到的液体浓缩后,在3500D的透析袋中进行透析处理。通过透析除去碳量子点溶液中含有的部分盐类和小分子杂质。
(6).透析后的溶液在60℃烘干,得到固态碳量子点,以便储存。
基于不饱和金属掺杂的碳量子点在光催化1,4-二氢吡啶中实验中有着良好的催化效果,原料中EDTA铁钠盐与EDTA铜钠盐质量比为1:2在350℃的热聚条件下得到的不饱和金属掺杂的碳量子点能将94.42%的1,4-二氢吡啶转化为吡啶类衍生物,并且实现了在水溶液中进行反应,副产物就是水和氧气,达到了绿色光化学的要求。
附图说明
图1:不饱和金属掺杂碳量子点的透射电镜(TEM)图(a)和粒径分布图(b);
图2:热聚温度为350℃,原料中EDTA铁钠盐和EDTA铜钠盐按照质量比1:2得到的不饱和金属掺杂碳量子点在不同激发波长下的荧光发射光谱;
图3:几种不同碳量子点的紫外-可见吸收光谱;
图4:不同温度不饱和金属掺杂碳量子点的X射线衍射图谱(XRD),可以看出高温制备的碳量子点具有较高的石墨化程度;
图5:不同温度的不饱和金属掺杂碳量子点的傅里叶变换红外光谱(FT-IR),可以看出制得的不饱和金属掺杂的碳量子点表面具有丰富的官能团;
图6:加入1,4-二氢吡啶后不饱和金属掺杂碳量子点350-1-2-CDs中Cu2+的电子顺磁共振波谱图(ESR)图(a)和Fe3+的电子顺磁共振波谱图(ESR)图(b),以及X射线光电子能谱(XPS)分别为图(c)Fe 2p和图(d)Cu 2p,说明制得的铁铜双金属掺杂的碳量子点含有不饱和的价态Cu+和Fe2+
图7:几种不同碳量子点光催化氧化1,4-二氢吡啶的转化率随时间变化曲线,可以看出350℃热聚,原料中EDTA铁钠盐和EDTA铜钠盐按照质量比为1:2的碳量子点的100min的转化率最高,达到94.42%。
具体实施方式
下面将结合具体实施例来详叙本发明的技术特点。
实施例1
EDTA铁钠盐和EDTA铜钠盐按照质量比1:2称取共3g的量,用研钵充分研磨,使混合均匀。然后均匀的平铺到石英舟中,并将石英舟放到管式加热炉中。N2置换30min,驱除管中的氧气。30min后,启动加热装置,以5℃/min的加热速率进行升温加热。升温至350℃后,维持恒温2h,然后自然降温,降至室温后取出。反应后的样品溶解到150mL水中,在40kHz的超声震荡仪中进行20min的超声震荡作用,等到易溶于水的部分完全溶解后,得到部分溶解的液体。将部分溶解的液体进一步用0.22μm的滤膜进行过滤处理,取出大于0.22μm的物质。将上一步得到的液体浓缩后,在3500D的透析袋中进行透析处理。通过透析除去碳量子点溶液中含有的部分盐类和小分子杂质。透析后的溶液在60℃烘干,得到固态碳量子点350-1-2-CDs。经过测试可知,不饱和金属掺杂的碳量子点中铁含量为0.44%,铜含量为2.29%。光催化1,4-二氢吡啶实验中取3mg的固体样品溶于20mL水和乙醇体积比为1:1的混合溶液中,经过100min的光照,有94.42%的底物被催化氧化。
实施例2
按照实施例1中的主要流程方法,将原料中EDTA铁钠盐和EDTA铜钠盐按照质量比为1:1,得到不饱和金属掺杂的碳量子点350-1-1-CDs,此碳量子点的铁含量为1.29%,铜含量为0.76%。用来光催化1,4-二氢吡啶,经过100min的光照,催化效率为76.92%。
实施例3
按照实施例1中的主要流程方法,将原料中EDTA铁钠盐和EDTA铜钠盐按照质量比为2:1,得到不饱和金属掺杂的碳量子点350-2-1-CDs,此碳量子点的铁含量为1.96%,铜含量为2.25%。用来光催化1,4-二氢吡啶,经过100min的光照,催化效率为89.00%。
实施例4
按照实施例1中的主要流程方法,将热聚温度升高到250℃,得到不饱和金属掺杂的碳量子点250-1-2-CDs,此碳量子点的铁含量为2.87%,铜含量为3.01%。用来光催化1,4-二氢吡啶,经过100min的光照,催化效率为43.66%。
实施例5
按照实施例1中的主要流程方法,将原料中EDTA铁钠盐和EDTA铜钠盐按照质量比为1:1,热聚温度升高到250℃,得到不饱和金属掺杂的碳量子点250-1-1-CDs,此碳量子点的铁含量为2.89%,铜含量为4.25%。用来光催化1,4-二氢吡啶,经过100min的光照,催化效率为28.86%。
实施例6
按照实施例1中的主要流程方法,将原料中EDTA铁钠盐和EDTA铜钠盐按照质量比为2:1,热聚温度升高到250℃,得到不饱和金属掺杂的碳量子点250-2-1-CDs,此碳量子点的铁含量为1.82%,铜含量为0.56%。用来光催化1,4-二氢吡啶,经过100min的光照,催化效率为43.66%。
对比例1
按照实施例1中的主要流程方法,使用EDTA钠盐,制备碳量子点350-Na-CDs。用来光催化1,4-二氢吡啶,经过100min光照,催化效率为33.11%。
对比例2
按照实施例1中的主要流程方法,使用EDTA铁钠盐,制备碳量子点350-Fe-CDs。用来光催化1,4-二氢吡啶,经过100min光照,催化效率为76.86%。
对比例3
按照实施例1中的主要流程方法,使用EDTA铜钠盐,制备碳量子点350-Cu-CDs。用来光催化1,4-二氢吡啶,经过100min光照,催化效率为56.38%。
发明效果
1.热聚温度在不同温度或原料比例不同时,获得的碳量子点的铁铜掺杂量相对较大。250℃热聚温度时,原料质量比为1:2时得到的碳量子点铜含量为3.01%,是原料质量比为2:1时碳点的铜含量的5倍还要多。原料质量比为1:2时,250℃热聚温度时碳点的铁含量2.87%,是热聚温度为350℃碳点的铁含量的6.5倍还要多。
2.从催化1,4-二氢吡啶的效果来看,不同热聚温度和原料比例下样品对反应的催化效果存在较大的差异。通过实验得出的结论是由于不饱和的金属起了重要作用,350℃热聚温度EDTA铁钠盐与EDTA铜钠盐比例(1:2)时,催化效果最好。并且混合金属掺杂的碳量子点的催化效果比单一金属碳量子点的催化效果好。
3.不饱和金属掺杂碳量子点在光催化1,4-二氢吡啶实验中有着良好的催化效果,能将94.42%的1,4-二氢吡啶转化为吡啶类衍生物,并且实现了在水溶液中进行反应,副产物仅为水和氧气,达到了绿色光化学的要求。

Claims (4)

1.一种不饱和金属掺杂的碳量子点及其制备方法,以乙二胺四乙酸铁钠盐和乙二胺四乙酸铜钠盐为前驱体,经过热聚反应、溶解、超声震荡、离心分离、浓缩透析和烘干制得,其特征在于原料的选取和制备工艺:
(1).称取一定比例的EDTA铁钠盐和EDTA铜钠盐共3g,用研钵充分研磨,使混合均匀,然后平铺在石英舟的底部放到管式加热炉中。
(2).N2置换30min,驱除管中的氧气。30min后,启动加热装置,以1-20℃/min的加热速率进行升温加热。升温至200℃-400℃后,维持恒温2h,然后自然降温,降至室温后取出。
(3).反应后的样品溶解到150mL水中,在40kHz的超声震荡仪中进行20min的超声震荡作用,等到易溶于水的部分完全溶解后,得到部分溶解的液体。
(4).将部分溶解的液体进一步用0.22μm的滤膜进行过滤处理,过滤大于0.22μm的物质。
(5).将上一步得到的液体浓缩后,在3500D的透析袋中进行透析48h处理。通过透析除去碳量子点溶液中含有的部分盐类和小分子杂质。
(6).透析后的溶液在60℃烘干,得到固态碳量子点,以便储存。
2.根据权利要求1所述的一种不饱和金属掺杂的碳量子点及其制备方法,其特征在于:以具有特殊结构的EDTA铁钠盐和EDTA铜钠盐为有机碳源,通过一步热聚法制备一种不饱和金属掺杂的碳量子点。
3.根据权利要求1所述的一种不饱和金属掺杂的碳量子点的制备,其特征在于:反应过程中升温速度控制在1-20℃/min,使原料在预加热阶段不因温度升温过快,导致原料蒸发流失;不因加热温度过低影响生产效率。
4.根据权利要求1所述的一种不饱和金属掺杂碳量子点的制备光催化应用,其特征在于:反应过程中将热聚反应温度控制在200℃-400℃,保证了碳量子点的生成,不会在过高的温度下,发生强烈的热聚反应,生成的物质尺寸过大,以至于降低碳量子点的产率,同时保证碳纳米量子点中铁铜金属配合物的含量。
CN201710442609.8A 2017-06-13 2017-06-13 一种不饱和金属掺杂的碳量子点及其制备方法 Pending CN107057694A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710442609.8A CN107057694A (zh) 2017-06-13 2017-06-13 一种不饱和金属掺杂的碳量子点及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710442609.8A CN107057694A (zh) 2017-06-13 2017-06-13 一种不饱和金属掺杂的碳量子点及其制备方法

Publications (1)

Publication Number Publication Date
CN107057694A true CN107057694A (zh) 2017-08-18

Family

ID=59594911

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710442609.8A Pending CN107057694A (zh) 2017-06-13 2017-06-13 一种不饱和金属掺杂的碳量子点及其制备方法

Country Status (1)

Country Link
CN (1) CN107057694A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108713591A (zh) * 2018-06-03 2018-10-30 云南良旺生物科技有限公司 一种锌掺杂碳量子点涂膜水果保鲜剂及其制备和使用方法
WO2020252847A1 (zh) * 2019-06-18 2020-12-24 中国石油大学(华东) 一种金属掺杂的碳量子点的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105664955A (zh) * 2016-03-21 2016-06-15 中国石油大学(华东) 一种铜锌金属共掺杂的碳量子点的制备方法
CN105838363A (zh) * 2016-04-21 2016-08-10 大连理工大学 一种基于氨基酸和铁离子合成碳量子点的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105664955A (zh) * 2016-03-21 2016-06-15 中国石油大学(华东) 一种铜锌金属共掺杂的碳量子点的制备方法
CN105838363A (zh) * 2016-04-21 2016-08-10 大连理工大学 一种基于氨基酸和铁离子合成碳量子点的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108713591A (zh) * 2018-06-03 2018-10-30 云南良旺生物科技有限公司 一种锌掺杂碳量子点涂膜水果保鲜剂及其制备和使用方法
CN108713591B (zh) * 2018-06-03 2022-01-14 云南良旺生物科技有限公司 一种锌掺杂碳量子点涂膜水果保鲜剂及其制备和使用方法
WO2020252847A1 (zh) * 2019-06-18 2020-12-24 中国石油大学(华东) 一种金属掺杂的碳量子点的应用

Similar Documents

Publication Publication Date Title
CN102807209B (zh) 一种石墨烯量子点的制备方法
Wang et al. Highly efficient photocatalytic hydrogen production of platinum nanoparticle-decorated SiC nanowires under simulated sunlight irradiation
CN103045242B (zh) 高荧光量子产率碳点的制备方法
CN105664955B (zh) 一种铜锌金属共掺杂的碳量子点的制备方法
Sardar et al. InN nanocrystals, nanowires, and nanotubes
CN109956463A (zh) 一种碳纳米管及其制备方法
Liu et al. A review of carbon dots in synthesis strategy
CN105567230B (zh) 一种氮硫共掺石墨烯量子点及其制备方法
CN102259929B (zh) 一种制备具有多孔纳米或亚微米棒状氧化锰的方法
CN106938842A (zh) 一种热解柠檬酸制备石墨烯量子点的方法
Wang et al. Highly efficient visible-light driven photocatalytic hydrogen production from a novel Z-scheme Er3+: YAlO3/Ta2O5-V5+|| Fe3+-TiO2/Au coated composite
CN104479675A (zh) 荧光石墨烯量子点材料的大规模工业化制备方法
Yang et al. Synthesis and strong red photoluminescence of europium oxide nanotubes and nanowires using carbon nanotubes as templates
CN104759283A (zh) 一种基于铜络合物的碳量子点及其制备方法
CN110327980A (zh) 一种金属掺杂的碳量子点的应用
CN105502373A (zh) 一种石墨烯的绿色制备方法
CN104973615A (zh) 一种纳米氧化钆粉体的微波燃烧制备方法
CN107057694A (zh) 一种不饱和金属掺杂的碳量子点及其制备方法
CN106925312A (zh) 一种碳化钼掺杂线性聚合物修饰石墨烯复合材料及其制备方法
CN112409998A (zh) 一种含有n,n,n,n-四甲基对苯二胺的光热转化共晶材料及其制备方法
CN105749949B (zh) 内部包裹金属纳米粒子的含氮碳纳米管的制备方法
JP6762417B2 (ja) 黒鉛類似の微結晶炭素ナノ材料の製造方法、並びに応用
Huang et al. Chaos to order: an eco-friendly way to synthesize graphene quantum dots
CN103555326B (zh) 一种不含氧石墨烯荧光量子点的制备方法
CN107758643B (zh) 石墨烯量子点、其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170818

WD01 Invention patent application deemed withdrawn after publication