CN107043914A - 一种非晶钴基磁性薄膜的间歇式直流磁控溅射制备方法 - Google Patents

一种非晶钴基磁性薄膜的间歇式直流磁控溅射制备方法 Download PDF

Info

Publication number
CN107043914A
CN107043914A CN201710267180.3A CN201710267180A CN107043914A CN 107043914 A CN107043914 A CN 107043914A CN 201710267180 A CN201710267180 A CN 201710267180A CN 107043914 A CN107043914 A CN 107043914A
Authority
CN
China
Prior art keywords
sputtering
batch
type
film
magnetically controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710267180.3A
Other languages
English (en)
Inventor
罗国强
鄢凤麟
林耀军
张建
张联盟
沈强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201710267180.3A priority Critical patent/CN107043914A/zh
Publication of CN107043914A publication Critical patent/CN107043914A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15316Amorphous metallic alloys, e.g. glassy metals based on Co
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • H01F41/183Sputtering targets therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Thin Magnetic Films (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种非晶钴基磁性薄膜的间歇式直流磁控溅射制备方法,包括以下步骤:1)采用铸造Co67FexMo5.5‑xSiyB27‑y(2<x<5;10<y<17)晶态合金作为靶材,石英为基片,先在石英基片上溅射一层纯金属缓冲层,采用间歇式直流磁控溅射的方法,控制基片温度50~70℃。磁控溅射工艺为:溅射功率为120~180W,氩气流量为40~200ml/min,氩气分压为0.4~1.2Pa;2)溅射态薄膜的退火处理:将溅射态Co67FexMo5.5‑xSiyB27‑y薄膜置于真空退火炉中,采用梯度升温的方式,在300~430℃的温度下保温1h,随炉冷却,制备的薄膜非晶程度高,饱和磁化强度达到了0.27T。本发明适合不同种类磁性薄膜的制备方法,操作简便,生产周期短,对设备要求低,易于实现工业化。

Description

一种非晶钴基磁性薄膜的间歇式直流磁控溅射制备方法
技术领域
本发明涉及一种非晶态的、软磁性能好的Co67FexMo5.5-xSiyB27-y薄膜的制备方法。
背景技术
非晶和纳米晶合金因为其优异的软磁特性而广泛应用在不同的领域:如磁光存储,磁屏蔽和磁传感器。其中富含钴和铁的磁性合金具有高居里温度、高磁导率、低磁损耗、低矫顽力和高饱和磁化强度等优异的磁特性,被广泛应用于传感器,执行器和磁记录头等磁性器件。随着磁性器件向微型化方向发展,需要磁性合金材料实现微型化,因此磁性合金的薄膜化是必不可少的。
非晶态磁性薄膜的制备多采用物理气相沉积的方式:真空蒸镀和直流磁控溅射。真空蒸镀镀膜速度缓慢,不适应于工业化大批量生产;直流磁控溅射设备简易,适用于溅射强磁性靶材,生产效率高,广泛用于非晶态磁性薄膜的制备,但溅射时温度升高较快,损害薄膜质量。
目前所报道的多元合金靶材中:以多层累叠的旋凝非晶薄带为溅射靶材时,由于薄带间的界面上会产生高电流,从而导致合金液滴的产生,液滴溅射到基片上后由于冷却速度不够,不能形成非晶,损害薄膜质量;多个非晶合金靶组成的多靶系统又难以溅射出所需的成分均匀的非晶薄膜。
本发明采用铸造的晶态合金为靶材,不仅可以解决现有靶材制备非晶磁性薄膜的难题,并且生产效率高,能满足工业化批量生产的需求。通过采用间歇式直流磁控溅射工艺,可以控制溅射温度,解决直流磁控溅射时温度升高较快的问题。此方法制备的薄膜非晶程度高,软磁性能好。
发明内容
本发明所要解决的技术问题是:以铸造晶态合金为靶材,采用间歇式磁控溅射方法制备非晶态的软磁性能优异的Co67FexMo5.5-xSiyB27-y薄膜,该方法中铸态晶态合金靶材能改善薄膜的非晶形成能力以及均匀性并适用于工业化大批量生产,间歇式磁控溅射方法可以控制基片温度区间,提高薄膜的非晶程度和软磁性能。
本发明解决其技术问题采用以下的技术方案:
本发明提供的非晶钴基磁性薄膜的间歇式直流磁控溅射制备方法,包括以下步骤:
1)在石英基片上溅射一层厚度≤300nm的纯金属应力缓冲层;将铸造Co67FexMo5.5- xSiyB27-y晶态合金切割成厚度为1.5~2.5mm的圆柱形靶材,2<x<5;10<y<17;
2)采用间歇式直流磁控溅射技术沉积Co67FexMo5.5-xSiyB27-y薄膜,有效溅射时间1~2h,得到溅射态薄膜;
3)将溅射态薄膜置于真空退火炉中退火,采用梯度升温方式,退火处理的保温温度为300~430℃,保温时间1h,随真空退火炉冷却。
所述的纯金属应力缓冲层是钽、钼、钨或钛。
所述的间歇式直流磁控溅射方法为:每溅射10min关闭溅射挡板10min,控制石英基片温度为50~70℃。
所述的间歇式直流磁控溅射工艺为:溅射功率120~180W,氩气流量40~200ml/min,氩气分压0.4~1.2Pa,每溅射10min关闭溅射挡板10~15min,有效溅射时间1~2h。
所述的梯度升温方式为:在室温至100℃时升温速率为2~2.5℃/min;100~200℃时,升温速率为2~3℃/min;200~430℃时,升温速率为1~2℃/min。
本发明提供的上述方法制备的非晶钴基磁性薄膜,其非晶程度高,饱和磁化强度达到了0.27T。
本发明与现有技术相比具有以下主要优点:
1.使用常规铸态合金Co67FexMo5.5-xSiyB27-y为靶材,避免了现有的多元合金溅射镀膜靶材中薄膜非晶态不高和均匀性不好的问题,同时克服了以旋凝非晶薄带为靶材时一靶只能溅射一膜,生产效率低下的问题。
2.通过采用间歇式直流磁控溅射镀膜技术,有效的解决了低温时直流磁控溅射升温较快的问题,并经退火处理后制备得到非晶态钴基磁性薄膜,非晶程度高,软磁性能好,饱和磁化强度达到了0.27T,矫顽力107oe,磁滞损耗基本为零。
3.工艺简单、所需设备价格低廉、适应性强,利于推广。
附图说明
图1为实施例1合成的Co67FexMo5.5-xSiyB27-y薄膜截面SEM图片。
图2为实施例1合成的Co67FexMo5.5-xSiyB27-y薄膜XRD测试图片。
图3为实施例1合成的Co67FexMo5.5-xSiyB27-y薄膜VSM测试图片。
图4为实施例2合成的Co67FexMo5.5-xSiyB27-y薄膜XRD测试图片。
具体实施方式
下面结合实施例及附图对本发明做进一步说明,但并不局限于下面所述的内容。
实施例1
首先,将钼靶与石英基片固定在直流磁控溅射仪中。对溅射腔体抽真空,使真空度优于5x10-4Pa,开启氩气阀通入氩气,并控制氩气分压为0.4Pa,调节氩气阀流量,控制氩气流量为200ml/min,开启电压控制旋钮并控制溅射功率为150W,然后在石英基片上溅射15min,获得一层约200nm厚的应力缓冲层。再将钼靶更换为Co67FexMo5.5-xSiyB27-y靶材在同样的溅射工艺下进行溅射,每溅射10min关闭溅射挡板13min,控制石英基片温度在50-70℃之间。有效溅射时间达到1.5h后停止溅射,关闭氩气阀,待石英基片温度冷却至50℃以下后方可打开腔体,取出溅射好的溅射态Co67FexMo5.5-xSiyB27-y薄膜。
然后,将溅射态薄膜置于真空退火炉中,对退火炉腔体抽真空,使真空度优于1x10-3Pa,从室温开始2.5℃/min升温至200℃,1℃/min从200℃升温至300℃,保温1h后随退火炉冷却,待薄膜温度低于50℃后,取出退火后的退火态Co67FexMo5.5-xSiyB27-y磁性薄膜。
实施例2
首先,将钨靶与石英基片固定在直流磁控溅射仪中。对溅射腔体抽真空,使真空度优于5x10-4Pa,开启氩气阀通入氩气,并控制氩气分压为1.2Pa,调节氩气阀流量,控制氩气流量40ml/min,开启电压控制旋钮并控制溅射功率为120W,先在石英基片上溅射20min,获得一层约300nm厚的应力缓冲层。然后将钨靶更换为Co67FexMo5.5-xSiyB27-y靶材进行溅射,每溅射10min关闭溅射挡板10min,控制基片温度在50-70℃之间。有效溅射时间达到2h后停止溅射,关闭氩气阀,待石英基片温度冷却至50℃以下后方可打开腔体取出溅射好的溅射态Co67FexMo5.5-xSiyB27-y薄膜。
然后,将溅射态薄膜置于真空退火炉中,对腔体抽真空,使真空度优于1x10-3Pa.从室温开始2℃/min升温至100℃,3℃/min从100℃升温至200℃,2℃/min从200℃升温至430℃,保温1h后随退火炉冷却,待腔体温度低于50℃后取出退火后的退火态Co67FexMo5.5- xSiyB27-y薄膜。
实施例3
首先,将钛靶与石英基片固定在直流磁控溅射仪中。对溅射腔体抽真空,使真空度优于5x10-4Pa,开启氩气阀通入氩气,并控制氩气分压为0.8Pa,调节氩气阀流量,控制氩气流量为100ml/min,开启电压控制旋钮并控制溅射功率为180W,先用在石英基片上溅射15min,获得一层约250nm厚的应力缓冲层。然后将钨靶更换为Co67FexMo5.5-xSiyB27-y靶材进行溅射,每溅射10min关闭溅射挡板15min,控制基片温度在50-70℃之间。有效溅射时间达到1h后停止溅射,关闭氩气阀,待基片温度冷却至50℃以下后方可打开腔体取出溅射好的溅射态Co67FexMo5.5-xSiyB27-y薄膜。
然后,将溅射态薄膜置于真空退火炉中,对腔体抽真空,保证真空度优于1x10-3Pa.从室温开始2℃/min升温至200℃,1.5℃/min从200℃升温至350℃,保温1h后随炉冷却,待薄膜温度低于50℃后取出退火后的退火态Co67FexMo5.5-xSiyB27-y薄膜。
实施例4
首先,将钛靶与石英基片固定在直流磁控溅射仪中。对溅射腔体抽真空,使真空度优于5x10-4Pa,开启氩气阀通入氩气,并控制氩气分压为0.6Pa,调节氩气阀流量,控制氩气流量为120ml/min,开启电压控制旋钮并控制溅射功率为140W,先用钽靶在石英基片上溅射18min,获得一层约240nm厚的应力缓冲层。然后将更换为Co67FexMo5.5-xSiyB27-y靶材进行溅射,每溅射10min关闭溅射挡板12min,控制基片温度在50-70℃之间。有效溅射时间达到1.5h后停止溅射,关闭氩气阀,待基片温度冷却至50℃以下后方可打开腔体取出溅射好的溅射态Co67FexMo5.5-xSiyB27-y薄膜。
然后,将溅射态薄膜置于真空退火炉中,对腔体抽真空,保证真空度优于1x10-3pa.从室温开始2℃/min升温至100℃,2.5℃/min从100℃升温至200℃,1℃/min从200℃升温至400℃,保温1h后随炉冷却,待腔体温度低于50℃后取出退火后的退火态Co67FexMo5.5- xSiyB27-y薄膜。

Claims (6)

1.一种非晶钴基磁性薄膜的间歇式直流磁控溅射制备方法,其特征是包括以下步骤:
1)在石英基片上溅射一层厚度≤300nm的纯金属应力缓冲层;将铸造Co67FexMo5.5- xSiyB27-y晶态合金切割成厚度为1.5~2.5mm的圆柱形靶材,2<x<5;10<y<17;
2)采用间歇式直流磁控溅射技术沉积Co67FexMo5.5-xSiyB27-y薄膜,有效溅射时间1~2h,得到溅射态薄膜;
3)将溅射态薄膜置于真空退火炉中退火,采用梯度升温方式,退火处理的保温温度为300~430℃,保温时间1h,随真空退火炉冷却。
2.根据权利要求1所述的非晶钴基磁性薄膜的间歇式直流磁控溅射制备方法,其特征在于:所述的纯金属应力缓冲层是钽、钼、钨或钛。
3.根据权利要求1所述的非晶钴基磁性薄膜的间歇式直流磁控溅射制备方法,其特征在于所述的间歇式直流磁控溅射方法为:每溅射10min关闭溅射挡板10min,控制石英基片温度为50~70℃。
4.根据权利要求1所述的非晶钴基磁性薄膜的间歇式直流磁控溅射制备方法,其特征在于所述的间歇式直流磁控溅射工艺为:溅射功率120~180W,氩气流量40~200ml/min,氩气分压0.4~1.2Pa,每溅射10min关闭溅射挡板10~15min,有效溅射时间1~2h。
5.根据权利要求1所述的非晶钴基磁性薄膜的间歇式直流磁控溅射制备方法,其特征在于所述的梯度升温方式为:在室温至100℃时升温速率为2~2.5℃/min;100~200℃时,升温速率为2~3℃/min;200~430℃时,升温速率为1~2℃/min。
6.根据权利要求1至5中任一所述方法制备的非晶钴基磁性薄膜,其特征在于该薄膜非晶程度高,饱和磁化强度达到了0.27T。
CN201710267180.3A 2017-04-21 2017-04-21 一种非晶钴基磁性薄膜的间歇式直流磁控溅射制备方法 Pending CN107043914A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710267180.3A CN107043914A (zh) 2017-04-21 2017-04-21 一种非晶钴基磁性薄膜的间歇式直流磁控溅射制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710267180.3A CN107043914A (zh) 2017-04-21 2017-04-21 一种非晶钴基磁性薄膜的间歇式直流磁控溅射制备方法

Publications (1)

Publication Number Publication Date
CN107043914A true CN107043914A (zh) 2017-08-15

Family

ID=59544908

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710267180.3A Pending CN107043914A (zh) 2017-04-21 2017-04-21 一种非晶钴基磁性薄膜的间歇式直流磁控溅射制备方法

Country Status (1)

Country Link
CN (1) CN107043914A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110004419A (zh) * 2019-02-28 2019-07-12 武汉理工大学 一种利用非平衡磁控溅射技术制备Fe-Si薄膜的方法
CN110724921A (zh) * 2019-10-12 2020-01-24 华中科技大学 用于提高非晶材料无序性的间歇磁控溅射方法
CN110983112A (zh) * 2019-12-30 2020-04-10 华南理工大学 一种精密电流检测用钴基非晶软磁合金及其制备方法
CN112760608A (zh) * 2020-12-14 2021-05-07 兰州空间技术物理研究所 碳纤维复合材料表面薄膜沉积过程防止层间放气的方法
CN113061859A (zh) * 2021-03-19 2021-07-02 成都齐兴真空镀膜技术有限公司 一种用于x射线管阳极靶的金属涂层及其制备方法
CN114134472A (zh) * 2020-12-24 2022-03-04 佛山市中研非晶科技股份有限公司 钴基非晶合金薄膜及制备方法、应用其的电磁屏蔽膜与设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943838A (ja) * 1982-09-07 1984-03-12 Nippon Telegr & Teleph Corp <Ntt> 非晶質磁性合金
CN1812021A (zh) * 2006-02-16 2006-08-02 上海交通大学 非晶FeCuNbCrSiB薄膜螺线管微电感器件的制作方法
CN106011757A (zh) * 2016-07-07 2016-10-12 燕山大学 一种防止用作溅射靶材的脆性合金开裂的铸造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943838A (ja) * 1982-09-07 1984-03-12 Nippon Telegr & Teleph Corp <Ntt> 非晶質磁性合金
CN1812021A (zh) * 2006-02-16 2006-08-02 上海交通大学 非晶FeCuNbCrSiB薄膜螺线管微电感器件的制作方法
CN106011757A (zh) * 2016-07-07 2016-10-12 燕山大学 一种防止用作溅射靶材的脆性合金开裂的铸造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郭博等: "用于低功耗微型磁通门的Co77Fe2.5Mn1.4Mo2.1Si13B4非晶薄膜研究", 《功能材料》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110004419A (zh) * 2019-02-28 2019-07-12 武汉理工大学 一种利用非平衡磁控溅射技术制备Fe-Si薄膜的方法
CN110724921A (zh) * 2019-10-12 2020-01-24 华中科技大学 用于提高非晶材料无序性的间歇磁控溅射方法
CN110724921B (zh) * 2019-10-12 2021-04-06 华中科技大学 用于提高非晶材料无序性的间歇磁控溅射方法
CN110983112A (zh) * 2019-12-30 2020-04-10 华南理工大学 一种精密电流检测用钴基非晶软磁合金及其制备方法
CN110983112B (zh) * 2019-12-30 2021-11-02 华南理工大学 一种精密电流检测用钴基非晶软磁合金及其制备方法
CN112760608A (zh) * 2020-12-14 2021-05-07 兰州空间技术物理研究所 碳纤维复合材料表面薄膜沉积过程防止层间放气的方法
CN114134472A (zh) * 2020-12-24 2022-03-04 佛山市中研非晶科技股份有限公司 钴基非晶合金薄膜及制备方法、应用其的电磁屏蔽膜与设备
CN113061859A (zh) * 2021-03-19 2021-07-02 成都齐兴真空镀膜技术有限公司 一种用于x射线管阳极靶的金属涂层及其制备方法

Similar Documents

Publication Publication Date Title
CN107043914A (zh) 一种非晶钴基磁性薄膜的间歇式直流磁控溅射制备方法
JP7371108B2 (ja) 希土類拡散磁石の製造方法と希土類拡散磁石
CN102242342B (zh) 成膜方法和成膜装置以及永磁铁和永磁铁的制造方法
CN109360728B (zh) 一种蒸发晶界扩散增强钕铁硼磁体矫顽力的方法
CN108039259A (zh) 一种渗透有重稀土的钕铁硼磁体及在钕铁硼磁体表面渗透重稀土的方法
CN105989983B (zh) 永久磁铁
Li et al. Tuning magnetic properties, thermal stability and microstructure of NdFeB magnets with diffusing Pr-Zn films
CN105331942B (zh) 钇铁石榴石薄膜材料及其制备方法
CN110021702A (zh) 一种快速提高垂直磁各向异性的方法
JPWO2005091315A1 (ja) R−Fe−B系薄膜磁石及びその製造方法
CN106384637A (zh) 一种改善边界结构制备高性能钕铁硼磁体的方法
CN109192493A (zh) 一种高性能烧结钕铁硼永磁材料的制备方法
CN107881475B (zh) 一种通过磁控溅射直流共溅射制备Ni-Co-Mn-Ti合金薄膜的方法
CN111180191A (zh) 一种制备高性能烧结钕铁硼磁体的方法
Zhu et al. Magnetic properties and microstructures of terbium coated and grain boundary diffusion treated sintered Nd-Fe-B magnets by magnetron sputtering
CN104233119A (zh) 一种防腐耐磨铁基非晶薄膜及其制备方法
CN112927921A (zh) 一种晶界扩散制备高矫顽力烧结钕铁硼磁体的方法
CN104221100A (zh) NdFeB系烧结磁体
JP2022520091A (ja) ネオジム鉄ホウ素磁石の保磁力と耐摩耗性及び耐食性を改善する方法
WO2018113717A1 (zh) 钕铁硼永磁材料的制备方法
CN112680695B (zh) 一种同时提高烧结钕铁硼矫顽力和耐蚀性的方法
CN108914080A (zh) 一种制备具有室温交换偏置效应锰铋合金薄膜的方法
CN108231394A (zh) 一种高矫顽力钕铁硼磁体的低温制备方法
CN105441877B (zh) 电阻式热蒸发制备铁磁性材料Fe3Si薄膜的工艺
CN107134341A (zh) 一种垂直取向强磁性介质薄膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170815

RJ01 Rejection of invention patent application after publication