CN107012381B - 一种提高3d打印17-4ph不锈钢屈服强度的方法 - Google Patents

一种提高3d打印17-4ph不锈钢屈服强度的方法 Download PDF

Info

Publication number
CN107012381B
CN107012381B CN201710330152.1A CN201710330152A CN107012381B CN 107012381 B CN107012381 B CN 107012381B CN 201710330152 A CN201710330152 A CN 201710330152A CN 107012381 B CN107012381 B CN 107012381B
Authority
CN
China
Prior art keywords
printing
powder
tib
stainless steel
nitrogen atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710330152.1A
Other languages
English (en)
Other versions
CN107012381A (zh
Inventor
任淑彬
陈玉红
曲选辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201710330152.1A priority Critical patent/CN107012381B/zh
Publication of CN107012381A publication Critical patent/CN107012381A/zh
Application granted granted Critical
Publication of CN107012381B publication Critical patent/CN107012381B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供一种提高3D打印17‑4PH不锈钢屈服强度的方法。采用粉末增材技术制备17‑4PH不锈钢时由于残余奥氏体较多造成其屈服强度低,本发明通过在17‑4PH粉末中添加适量TiB2颗粒,并通过球磨使之附着在粉末颗粒的表面,采用氮气氛进行保护,在打印过程中TiB2与激光作用并熔化分解成Ti元素和B元素,Ti元素与氮气氛反应生成TiN颗粒,生成的TiN一方面可以作为形核剂起到细化晶粒的作用,另外一方面可以作为第二相进行弥散强化,而分解产生的B元素则部分固溶到基体中可以提高钢的淬透性,减少残余奥氏体的含量,三者的综合作用最终可以将屈服强度由目前的500‑600MPa提高到1000MPa以上。

Description

一种提高3D打印17-4PH不锈钢屈服强度的方法
技术领域
本发明属于金属材料领域,涉及一种提高3D打印17-4PH不锈钢屈服强度的方法。
背景技术
17-4PH不锈钢属于沉淀硬化不锈钢,具有高的强度,优异的耐腐蚀性能,已广泛应用于石油石化领域。粉末增材制造即3D打印技术基于数字模型,通过逐层熔化和堆积的方式来构造三维实体,在任意复杂形状金属零部件的直接成形上有极大的潜力。该技术将引发产品设计、制造工艺、制造装备、材料制备、乃至整个传统制造业的深刻变革,受到世界各国的极大关注并得到快速发展。根据原材料和送粉方式的不同,目前3D打印技术主要包括粉末床激光3D打印技术、激光送粉堆积技术以及电子束激光堆积技术。对于3D打印技术制备17-4PH不锈钢材料国内外已有相关的报道,所采用的打印方法包括粉末床打印和激光送粉堆积两种方法,但是从报道的性能看,不管采用那种打印方法,其屈服强度都很低,基本在540MPa-590MPa范围内,远低于锻件水平及标准要求值,因此如何提高3D打印17-4PH不锈钢的屈服强度满足标准要求是其获得应用的关键。
发明内容
本发明目的是为了提高3D打印17-4PH不锈钢的屈服强度,满足17-4PH不锈钢屈服强度标准值的要求。
本发明提出了一种提高3D打印17-4PH不锈钢屈服强度的方法,3D打印方式分为粉末床打印和送粉式堆积打印两种,打印前17-4PH粉末中添加适量TiB2颗粒,并通过球磨使之附着在17-4PH不锈钢粉末的表面,然后进行打印制备。TiB2的加入量控制在总质量的3%到10%范围内,TiB2的粒度控制在5微米以下,球磨的转速为160-300转/分钟,球磨时间30-60分钟。
3D打印过程中采用氮气气氛,在打印过程中,TiB2熔化分解成Ti元素和B元素,Ti元素与氮气氛反应生成TiN颗粒,生成的TiN一方面可以作为形核剂起到细化晶粒的作用,另外一方面可以作为第二相进行弥散强化,而分解产生的B元素则部分固溶到基体中可以提高钢的淬透性,减少残余奥氏体的含量,从而最终大幅度提高材料的屈服强度。
进一步的,17-4PH粉末的粒度根据打印方式的不同进行选择,对于送粉式堆积打印粒度控制在30-80微米范围内,打印过程采用氮气氛保护,激光功率控制在700-1000W,扫描速度控制在700-850mm/min,激光光斑直径控制在1-1.5mm,送粉速率5-10g/min。
对于粉床式激光打印,打印粒度控制在50微米以下,气氛采用氮气气氛,激光功率控制在200-250W范围内,扫描速度700-730mm/s,激光直径100μm。
采用上述参数制备的17-4PH不锈钢的屈服强度达到1000MPa以上,较现有报道值提高近一倍,进一步时效处理后其值会进一步增加。
本发明的优点在于,(1)采用球磨工艺并控制球磨工艺参数使得TiB2颗粒能够附着在17-4PH粉末的表面,同时不影响粉末的球形度,这样在铺粉或送粉过程中二者不容易分离;(2)采用TiB2颗粒并采用氮气氛,通过控制激光功率能够使TiB2熔化分解,产生的Ti与N反应生成TiN可以细化晶粒,同时起到第二相强化的作用,分解产生的B能够提高钢的淬透性,减少残余奥氏体的含量,通过三种强化方式的综合作用最终可以大幅度提高屈服强度。
附图说明:
图1为本发明的工艺流程图。
具体实施方式:
(1)采用粉床式激光打印添加5wt%TiB2的17-4PH不锈钢首先选用气雾化17-4PH不锈钢粉末,粒度小于50μm,采用粒度小于5μm的TiB2颗粒,TiB2的比例为5wt%,二者的总重量为5kg,然后进行球磨。球磨过程中球料比为5:1,转速为160转/min,球磨时间60min,这时TiB2颗粒可以均匀地附着在17-4PH不锈钢粉末的表面,然后置于粉床式激光打印机中进行打印,打印气氛采用氮气氛,激光功率250W,扫描速度730mm/s,激光斑点直径100μm,打印尺寸50mm(长)×50mm(宽)×30mm(高),每层铺粉厚度60μm,层与层之间角度为60°,基板温度保持在100℃以下。打印完成后取样进行力学性能检测,屈服强度达到1180MPa,较目前不添加TiB2颗粒的17-4PH不锈钢的屈服强度提高一倍。
(2)采用送粉堆积式打印添加3wt%TiB2的17-4PH不锈钢首先选用气雾化17-4PH不锈钢粉末,粒度30-80微米,采用粒度小于5μm的TiB2颗粒,TiB2的比例为3wt%,二者的总重量为5kg,然后进行球磨。球磨过程中球料比为5:1,转速为300转/min,球磨时间30min,这时TiB2颗粒可以均匀地附着在17-4PH不锈钢粉末的表面,然后置于送粉式激光打印机中进行打印,打印过程中采用氮气氛进行保护,激光功率700W,扫描速度700mm/min,激光斑点直径1mm,打印尺寸60mm(长)×60mm(宽)×30mm(高),每层铺粉厚度0.3mm,层与层之间角度为60°,送粉速率8g/min,基板温度保持在100℃以下。打印完成后取样进行力学性能检测,屈服强度达到1054MPa,较目前不添加TiB2颗粒的17-4PH不锈钢的屈服强度提高近一倍。

Claims (3)

1.一种提高3D打印17-4PH不锈钢屈服强度的方法,其特征在于3D打印方式分为粉床式激光打印和送粉式堆积打印两种,打印前17-4PH不锈钢粉末中添加适量TiB2颗粒,并通过球磨使之附着在17-4PH不锈钢粉末的表面,然后进行打印制备;TiB2的加入量控制在总质量的3%到10%范围内,TiB2的粒度控制在5微米以下,球磨的转速为160-300转/分钟,球磨时间30-60分钟;
3D打印过程中采用氮气气氛,在打印过程中,TiB2熔化分解成Ti元素和B元素,Ti元素与氮气氛反应生成TiN颗粒,生成的TiN一方面作为形核剂起到细化晶粒的作用,另外一方面作为第二相进行弥散强化,而分解产生的B元素则部分固溶到基体中可以提高钢的淬透性,减少残余奥氏体的含量,从而最终大幅度提高材料的屈服强度。
2.据权利要求1所述一种提高3D打印17-4PH不锈钢屈服强度的方法,其特征在于对于送粉式堆积打印方式,打印粒度控制在30-80微米范围内,打印过程采用氮气气氛保护,激光功率控制在700-1000W,扫描速度控制在700-850mm/min,激光光斑直径控制在1-1.5mm,送粉速率5-10g/min。
3.据权利要求1所述一种提高3D打印17-4PH不锈钢屈服强度的方法,其特征在于对于粉床式激光打印方式,打印粒度控制在50微米以下,气氛采用氮气气氛,激光功率控制在200-250W范围内,扫描速度700-730mm/s,激光直径100μm。
CN201710330152.1A 2017-05-11 2017-05-11 一种提高3d打印17-4ph不锈钢屈服强度的方法 Active CN107012381B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710330152.1A CN107012381B (zh) 2017-05-11 2017-05-11 一种提高3d打印17-4ph不锈钢屈服强度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710330152.1A CN107012381B (zh) 2017-05-11 2017-05-11 一种提高3d打印17-4ph不锈钢屈服强度的方法

Publications (2)

Publication Number Publication Date
CN107012381A CN107012381A (zh) 2017-08-04
CN107012381B true CN107012381B (zh) 2018-09-14

Family

ID=59448920

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710330152.1A Active CN107012381B (zh) 2017-05-11 2017-05-11 一种提高3d打印17-4ph不锈钢屈服强度的方法

Country Status (1)

Country Link
CN (1) CN107012381B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107737931B (zh) * 2017-10-24 2019-11-22 广东工业大学 一种汽车水泵叶轮的制备工艺
CN109317673B (zh) * 2018-10-19 2020-05-01 江苏大学 一种激光增材制造装置和方法
CN109382515B (zh) * 2018-11-27 2020-06-09 华中科技大学 一种减小铁合金激光増材制造中变形的方法
CN110666155B (zh) * 2019-10-17 2022-02-08 中北大学 一种利用废旧316l不锈钢粉制备3d打印用金属基复合粉的方法
CN111118272B (zh) * 2020-02-12 2022-01-04 广东省科学院新材料研究所 高性能17-4ph不锈钢材料及其高压热处理方法、制造方法与应用
CN111230115A (zh) 2020-03-06 2020-06-05 南京航空航天大学 一种微米银颗粒增强316l不锈钢基复合材料及其制备方法
CN111761062B (zh) * 2020-07-16 2022-08-30 安徽哈特三维科技有限公司 一种用于模具钢粉末的选择性激光熔化方法
CN112589117B (zh) * 2020-12-11 2023-10-17 成都天齐增材智造有限责任公司 增材制造的17-4ph材料及其快速热处理工艺
CN113059153A (zh) * 2021-03-22 2021-07-02 湖南大学 一种奥氏体不锈钢及其激光增材制备方法
CN113319270B (zh) * 2021-04-28 2023-12-26 广州鑫研锦增材科技有限公司 一种面向增材制造颗粒增强17-4ph材料的成型方法
CN115446331B (zh) * 2022-09-21 2024-03-05 华北理工大学 一种纯金属过配粉体选区激光熔化制备高氮不锈钢的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7771649B2 (en) * 2007-11-19 2010-08-10 Korea Institute Of Science And Technology Method of producing ultrafine crystalline TiN/TIB2 composite cermet
CN102383030A (zh) * 2011-11-14 2012-03-21 江苏银宇模具材料有限公司 纳米强化耐磨模具钢制备工艺

Also Published As

Publication number Publication date
CN107012381A (zh) 2017-08-04

Similar Documents

Publication Publication Date Title
CN107012381B (zh) 一种提高3d打印17-4ph不锈钢屈服强度的方法
TWI445827B (zh) A powder containing sintered elements containing Cu, In, Ga and Se, a sintered body and a sputtering target, and a method for producing the powder
CN106435568B (zh) Mo-Ni-ZrO2梯度涂层及激光直接沉积制备方法
KR20090053941A (ko) 금속 분말
JP7311488B2 (ja) コールドスプレープロセスのための粉末を調製する方法及びそのための粉末
CN103726046B (zh) 一种激光冲击诱导化学反应制备化合物涂层的方法
CN109128166B (zh) 一种超高强度耐腐蚀软磁铁素体不锈钢近净成形方法
EP2502879A1 (en) Method for preparing ultrafine tungsten carbide powder
CN101717881B (zh) 一种用于核电阀门密封面强化涂层的无钴镍基合金
WO2013014214A2 (de) Beschichtungsverfahren nutzend spezielle pulverförmige beschichtungsmaterialien und verwendung derartiger beschichtungsmaterialien
CN102443714A (zh) 一种超细硬质合金的制备方法
CN102965590A (zh) 一种改性硬质合金及其制备
CN102534277A (zh) 一种粗颗粒及超粗颗粒硬质合金的制备新方法
CN102180693A (zh) 具有高吸收率的钢坯防氧化及防脱碳涂料及其制备方法
CN101255557B (zh) 一种合成反应等离子熔覆粉末及其制备工艺
CN113026013B (zh) 一种耐蚀锆基非晶合金复合材料涂层的制备方法
Soon et al. Prediction of compressive strength of biodegradable Mg–Zn/HA composite via response surface methodology and its biodegradation
JP2010077523A (ja) 遷移金属内包タングステン炭化物、タングステン炭化物分散超硬合金及びそれらの製造方法
CN110904450A (zh) 一种调控多组元激光熔覆层应力的方法
CN116275010A (zh) 一种原位氮化物增强3d打印镍基高温合金粉末
US6333072B1 (en) Method of producing adherent metal oxide coatings on metallic surfaces
CN115446328A (zh) 一种陶瓷/钢结硬质合金梯度材料的制备方法
JP2022144437A (ja) Fe基合金及び金属粉末
CN106746662B (zh) 抗爆搪瓷静电粉末及制备
CN111455253A (zh) 一种碳化钛基金属陶瓷热喷涂粉末及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170804

Assignee: HEBEI WUWEI AERO & POWER TECHNOLOGY CO.,LTD.

Assignor: University OF SCIENCE AND TECHNOLOGY BEIJING

Contract record no.: X2022990000711

Denomination of invention: A Method to Improve the Yield Strength of 3D Printed 17-4PH Stainless Steel

Granted publication date: 20180914

License type: Exclusive License

Record date: 20220926