CN107012381B - 一种提高3d打印17-4ph不锈钢屈服强度的方法 - Google Patents
一种提高3d打印17-4ph不锈钢屈服强度的方法 Download PDFInfo
- Publication number
- CN107012381B CN107012381B CN201710330152.1A CN201710330152A CN107012381B CN 107012381 B CN107012381 B CN 107012381B CN 201710330152 A CN201710330152 A CN 201710330152A CN 107012381 B CN107012381 B CN 107012381B
- Authority
- CN
- China
- Prior art keywords
- printing
- powder
- tib
- stainless steel
- nitrogen atmosphere
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 25
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000010146 3D printing Methods 0.000 title claims abstract description 18
- 239000010935 stainless steel Substances 0.000 title claims abstract description 17
- 239000000843 powder Substances 0.000 claims abstract description 36
- 239000002245 particle Substances 0.000 claims abstract description 15
- 239000012299 nitrogen atmosphere Substances 0.000 claims abstract description 13
- 229910033181 TiB2 Inorganic materials 0.000 claims abstract description 12
- 238000000498 ball milling Methods 0.000 claims abstract description 12
- 239000000463 material Substances 0.000 claims abstract description 8
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 5
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 5
- 230000000717 retained effect Effects 0.000 claims abstract description 5
- 239000010959 steel Substances 0.000 claims abstract description 5
- 239000013078 crystal Substances 0.000 claims abstract description 4
- 239000011159 matrix material Substances 0.000 claims abstract description 3
- 239000002667 nucleating agent Substances 0.000 claims abstract description 3
- 238000010791 quenching Methods 0.000 claims abstract description 3
- 230000000171 quenching effect Effects 0.000 claims abstract description 3
- 238000007639 printing Methods 0.000 claims description 21
- 238000009825 accumulation Methods 0.000 claims description 4
- 238000007648 laser printing Methods 0.000 claims description 4
- 239000012298 atmosphere Substances 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 7
- 238000000227 grinding Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000012387 aerosolization Methods 0.000 description 2
- 238000003701 mechanical milling Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
-
- B22F1/0003—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/32—Process control of the atmosphere, e.g. composition or pressure in a building chamber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/36—Process control of energy beam parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/38—Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Automation & Control Theory (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明提供一种提高3D打印17‑4PH不锈钢屈服强度的方法。采用粉末增材技术制备17‑4PH不锈钢时由于残余奥氏体较多造成其屈服强度低,本发明通过在17‑4PH粉末中添加适量TiB2颗粒,并通过球磨使之附着在粉末颗粒的表面,采用氮气氛进行保护,在打印过程中TiB2与激光作用并熔化分解成Ti元素和B元素,Ti元素与氮气氛反应生成TiN颗粒,生成的TiN一方面可以作为形核剂起到细化晶粒的作用,另外一方面可以作为第二相进行弥散强化,而分解产生的B元素则部分固溶到基体中可以提高钢的淬透性,减少残余奥氏体的含量,三者的综合作用最终可以将屈服强度由目前的500‑600MPa提高到1000MPa以上。
Description
技术领域
本发明属于金属材料领域,涉及一种提高3D打印17-4PH不锈钢屈服强度的方法。
背景技术
17-4PH不锈钢属于沉淀硬化不锈钢,具有高的强度,优异的耐腐蚀性能,已广泛应用于石油石化领域。粉末增材制造即3D打印技术基于数字模型,通过逐层熔化和堆积的方式来构造三维实体,在任意复杂形状金属零部件的直接成形上有极大的潜力。该技术将引发产品设计、制造工艺、制造装备、材料制备、乃至整个传统制造业的深刻变革,受到世界各国的极大关注并得到快速发展。根据原材料和送粉方式的不同,目前3D打印技术主要包括粉末床激光3D打印技术、激光送粉堆积技术以及电子束激光堆积技术。对于3D打印技术制备17-4PH不锈钢材料国内外已有相关的报道,所采用的打印方法包括粉末床打印和激光送粉堆积两种方法,但是从报道的性能看,不管采用那种打印方法,其屈服强度都很低,基本在540MPa-590MPa范围内,远低于锻件水平及标准要求值,因此如何提高3D打印17-4PH不锈钢的屈服强度满足标准要求是其获得应用的关键。
发明内容
本发明目的是为了提高3D打印17-4PH不锈钢的屈服强度,满足17-4PH不锈钢屈服强度标准值的要求。
本发明提出了一种提高3D打印17-4PH不锈钢屈服强度的方法,3D打印方式分为粉末床打印和送粉式堆积打印两种,打印前17-4PH粉末中添加适量TiB2颗粒,并通过球磨使之附着在17-4PH不锈钢粉末的表面,然后进行打印制备。TiB2的加入量控制在总质量的3%到10%范围内,TiB2的粒度控制在5微米以下,球磨的转速为160-300转/分钟,球磨时间30-60分钟。
3D打印过程中采用氮气气氛,在打印过程中,TiB2熔化分解成Ti元素和B元素,Ti元素与氮气氛反应生成TiN颗粒,生成的TiN一方面可以作为形核剂起到细化晶粒的作用,另外一方面可以作为第二相进行弥散强化,而分解产生的B元素则部分固溶到基体中可以提高钢的淬透性,减少残余奥氏体的含量,从而最终大幅度提高材料的屈服强度。
进一步的,17-4PH粉末的粒度根据打印方式的不同进行选择,对于送粉式堆积打印粒度控制在30-80微米范围内,打印过程采用氮气氛保护,激光功率控制在700-1000W,扫描速度控制在700-850mm/min,激光光斑直径控制在1-1.5mm,送粉速率5-10g/min。
对于粉床式激光打印,打印粒度控制在50微米以下,气氛采用氮气气氛,激光功率控制在200-250W范围内,扫描速度700-730mm/s,激光直径100μm。
采用上述参数制备的17-4PH不锈钢的屈服强度达到1000MPa以上,较现有报道值提高近一倍,进一步时效处理后其值会进一步增加。
本发明的优点在于,(1)采用球磨工艺并控制球磨工艺参数使得TiB2颗粒能够附着在17-4PH粉末的表面,同时不影响粉末的球形度,这样在铺粉或送粉过程中二者不容易分离;(2)采用TiB2颗粒并采用氮气氛,通过控制激光功率能够使TiB2熔化分解,产生的Ti与N反应生成TiN可以细化晶粒,同时起到第二相强化的作用,分解产生的B能够提高钢的淬透性,减少残余奥氏体的含量,通过三种强化方式的综合作用最终可以大幅度提高屈服强度。
附图说明:
图1为本发明的工艺流程图。
具体实施方式:
(1)采用粉床式激光打印添加5wt%TiB2的17-4PH不锈钢首先选用气雾化17-4PH不锈钢粉末,粒度小于50μm,采用粒度小于5μm的TiB2颗粒,TiB2的比例为5wt%,二者的总重量为5kg,然后进行球磨。球磨过程中球料比为5:1,转速为160转/min,球磨时间60min,这时TiB2颗粒可以均匀地附着在17-4PH不锈钢粉末的表面,然后置于粉床式激光打印机中进行打印,打印气氛采用氮气氛,激光功率250W,扫描速度730mm/s,激光斑点直径100μm,打印尺寸50mm(长)×50mm(宽)×30mm(高),每层铺粉厚度60μm,层与层之间角度为60°,基板温度保持在100℃以下。打印完成后取样进行力学性能检测,屈服强度达到1180MPa,较目前不添加TiB2颗粒的17-4PH不锈钢的屈服强度提高一倍。
(2)采用送粉堆积式打印添加3wt%TiB2的17-4PH不锈钢首先选用气雾化17-4PH不锈钢粉末,粒度30-80微米,采用粒度小于5μm的TiB2颗粒,TiB2的比例为3wt%,二者的总重量为5kg,然后进行球磨。球磨过程中球料比为5:1,转速为300转/min,球磨时间30min,这时TiB2颗粒可以均匀地附着在17-4PH不锈钢粉末的表面,然后置于送粉式激光打印机中进行打印,打印过程中采用氮气氛进行保护,激光功率700W,扫描速度700mm/min,激光斑点直径1mm,打印尺寸60mm(长)×60mm(宽)×30mm(高),每层铺粉厚度0.3mm,层与层之间角度为60°,送粉速率8g/min,基板温度保持在100℃以下。打印完成后取样进行力学性能检测,屈服强度达到1054MPa,较目前不添加TiB2颗粒的17-4PH不锈钢的屈服强度提高近一倍。
Claims (3)
1.一种提高3D打印17-4PH不锈钢屈服强度的方法,其特征在于3D打印方式分为粉床式激光打印和送粉式堆积打印两种,打印前17-4PH不锈钢粉末中添加适量TiB2颗粒,并通过球磨使之附着在17-4PH不锈钢粉末的表面,然后进行打印制备;TiB2的加入量控制在总质量的3%到10%范围内,TiB2的粒度控制在5微米以下,球磨的转速为160-300转/分钟,球磨时间30-60分钟;
3D打印过程中采用氮气气氛,在打印过程中,TiB2熔化分解成Ti元素和B元素,Ti元素与氮气氛反应生成TiN颗粒,生成的TiN一方面作为形核剂起到细化晶粒的作用,另外一方面作为第二相进行弥散强化,而分解产生的B元素则部分固溶到基体中可以提高钢的淬透性,减少残余奥氏体的含量,从而最终大幅度提高材料的屈服强度。
2.据权利要求1所述一种提高3D打印17-4PH不锈钢屈服强度的方法,其特征在于对于送粉式堆积打印方式,打印粒度控制在30-80微米范围内,打印过程采用氮气气氛保护,激光功率控制在700-1000W,扫描速度控制在700-850mm/min,激光光斑直径控制在1-1.5mm,送粉速率5-10g/min。
3.据权利要求1所述一种提高3D打印17-4PH不锈钢屈服强度的方法,其特征在于对于粉床式激光打印方式,打印粒度控制在50微米以下,气氛采用氮气气氛,激光功率控制在200-250W范围内,扫描速度700-730mm/s,激光直径100μm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710330152.1A CN107012381B (zh) | 2017-05-11 | 2017-05-11 | 一种提高3d打印17-4ph不锈钢屈服强度的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710330152.1A CN107012381B (zh) | 2017-05-11 | 2017-05-11 | 一种提高3d打印17-4ph不锈钢屈服强度的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107012381A CN107012381A (zh) | 2017-08-04 |
CN107012381B true CN107012381B (zh) | 2018-09-14 |
Family
ID=59448920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710330152.1A Active CN107012381B (zh) | 2017-05-11 | 2017-05-11 | 一种提高3d打印17-4ph不锈钢屈服强度的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107012381B (zh) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107737931B (zh) * | 2017-10-24 | 2019-11-22 | 广东工业大学 | 一种汽车水泵叶轮的制备工艺 |
CN109317673B (zh) * | 2018-10-19 | 2020-05-01 | 江苏大学 | 一种激光增材制造装置和方法 |
CN109382515B (zh) * | 2018-11-27 | 2020-06-09 | 华中科技大学 | 一种减小铁合金激光増材制造中变形的方法 |
CN110666155B (zh) * | 2019-10-17 | 2022-02-08 | 中北大学 | 一种利用废旧316l不锈钢粉制备3d打印用金属基复合粉的方法 |
CN111118272B (zh) * | 2020-02-12 | 2022-01-04 | 广东省科学院新材料研究所 | 高性能17-4ph不锈钢材料及其高压热处理方法、制造方法与应用 |
CN111230115A (zh) | 2020-03-06 | 2020-06-05 | 南京航空航天大学 | 一种微米银颗粒增强316l不锈钢基复合材料及其制备方法 |
CN111761062B (zh) * | 2020-07-16 | 2022-08-30 | 安徽哈特三维科技有限公司 | 一种用于模具钢粉末的选择性激光熔化方法 |
CN112589117B (zh) * | 2020-12-11 | 2023-10-17 | 成都天齐增材智造有限责任公司 | 增材制造的17-4ph材料及其快速热处理工艺 |
CN113059153A (zh) * | 2021-03-22 | 2021-07-02 | 湖南大学 | 一种奥氏体不锈钢及其激光增材制备方法 |
CN113319270B (zh) * | 2021-04-28 | 2023-12-26 | 广州鑫研锦增材科技有限公司 | 一种面向增材制造颗粒增强17-4ph材料的成型方法 |
CN115446331B (zh) * | 2022-09-21 | 2024-03-05 | 华北理工大学 | 一种纯金属过配粉体选区激光熔化制备高氮不锈钢的方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7771649B2 (en) * | 2007-11-19 | 2010-08-10 | Korea Institute Of Science And Technology | Method of producing ultrafine crystalline TiN/TIB2 composite cermet |
CN102383030A (zh) * | 2011-11-14 | 2012-03-21 | 江苏银宇模具材料有限公司 | 纳米强化耐磨模具钢制备工艺 |
-
2017
- 2017-05-11 CN CN201710330152.1A patent/CN107012381B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN107012381A (zh) | 2017-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107012381B (zh) | 一种提高3d打印17-4ph不锈钢屈服强度的方法 | |
TWI445827B (zh) | A powder containing sintered elements containing Cu, In, Ga and Se, a sintered body and a sputtering target, and a method for producing the powder | |
CN106435568B (zh) | Mo-Ni-ZrO2梯度涂层及激光直接沉积制备方法 | |
KR20090053941A (ko) | 금속 분말 | |
JP7311488B2 (ja) | コールドスプレープロセスのための粉末を調製する方法及びそのための粉末 | |
CN103726046B (zh) | 一种激光冲击诱导化学反应制备化合物涂层的方法 | |
CN109128166B (zh) | 一种超高强度耐腐蚀软磁铁素体不锈钢近净成形方法 | |
EP2502879A1 (en) | Method for preparing ultrafine tungsten carbide powder | |
CN101717881B (zh) | 一种用于核电阀门密封面强化涂层的无钴镍基合金 | |
WO2013014214A2 (de) | Beschichtungsverfahren nutzend spezielle pulverförmige beschichtungsmaterialien und verwendung derartiger beschichtungsmaterialien | |
CN102443714A (zh) | 一种超细硬质合金的制备方法 | |
CN102965590A (zh) | 一种改性硬质合金及其制备 | |
CN102534277A (zh) | 一种粗颗粒及超粗颗粒硬质合金的制备新方法 | |
CN102180693A (zh) | 具有高吸收率的钢坯防氧化及防脱碳涂料及其制备方法 | |
CN101255557B (zh) | 一种合成反应等离子熔覆粉末及其制备工艺 | |
CN113026013B (zh) | 一种耐蚀锆基非晶合金复合材料涂层的制备方法 | |
Soon et al. | Prediction of compressive strength of biodegradable Mg–Zn/HA composite via response surface methodology and its biodegradation | |
JP2010077523A (ja) | 遷移金属内包タングステン炭化物、タングステン炭化物分散超硬合金及びそれらの製造方法 | |
CN110904450A (zh) | 一种调控多组元激光熔覆层应力的方法 | |
CN116275010A (zh) | 一种原位氮化物增强3d打印镍基高温合金粉末 | |
US6333072B1 (en) | Method of producing adherent metal oxide coatings on metallic surfaces | |
CN115446328A (zh) | 一种陶瓷/钢结硬质合金梯度材料的制备方法 | |
JP2022144437A (ja) | Fe基合金及び金属粉末 | |
CN106746662B (zh) | 抗爆搪瓷静电粉末及制备 | |
CN111455253A (zh) | 一种碳化钛基金属陶瓷热喷涂粉末及制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20170804 Assignee: HEBEI WUWEI AERO & POWER TECHNOLOGY CO.,LTD. Assignor: University OF SCIENCE AND TECHNOLOGY BEIJING Contract record no.: X2022990000711 Denomination of invention: A Method to Improve the Yield Strength of 3D Printed 17-4PH Stainless Steel Granted publication date: 20180914 License type: Exclusive License Record date: 20220926 |