CN107737931B - 一种汽车水泵叶轮的制备工艺 - Google Patents

一种汽车水泵叶轮的制备工艺 Download PDF

Info

Publication number
CN107737931B
CN107737931B CN201711001663.5A CN201711001663A CN107737931B CN 107737931 B CN107737931 B CN 107737931B CN 201711001663 A CN201711001663 A CN 201711001663A CN 107737931 B CN107737931 B CN 107737931B
Authority
CN
China
Prior art keywords
alloy
blade rotor
preparation process
automobile
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711001663.5A
Other languages
English (en)
Other versions
CN107737931A (zh
Inventor
段伟
邓欣
黄淼俊
陈健
吉红伟
陈少华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201711001663.5A priority Critical patent/CN107737931B/zh
Publication of CN107737931A publication Critical patent/CN107737931A/zh
Application granted granted Critical
Publication of CN107737931B publication Critical patent/CN107737931B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明提供一种汽车水泵叶轮材料体系及制备工艺,所述材料为Al合金、镁合金、Al合金‑陶瓷颗粒复合材料、镁合金‑陶瓷颗粒复合材料;将材料粉末平铺,得到当前层;对多叶片转子结构进行切片处理,得到预设的多叶片转子结构逐层截面轮廓;采用激光选区熔化将所述当前层按照预设的多叶片转子结构切片截面轮廓进行扫描及熔融烧结得到截面层;所述打印气氛包括氩气、氮气、氩气及氮气的混合气体;所述激光束功率为50~1500W;所述扫描的间距为0.005~0.07mm;所述扫描的速度为50~3000mm/s。本发明采用气氛反应选区激光熔化3D打印方法可以降低叶轮制备成本,提升疲劳强度、使用寿命等关键服役性能。

Description

一种汽车水泵叶轮的制备工艺
技术领域
本发明涉及3D打印增材制造领域,尤其是涉及一种汽车水泵叶轮的制备工艺。
背景技术
水泵属于水冷发动机强制循环水冷系统的重要组成部分,其一般在发动机温度达到95℃以上时开始运转,负责发动机的冷却,保证发动机正常运转。叶轮是水泵工作的核心,它的性能直接关系到汽车发动机的能否继续工作,叶轮的失效会造成发动机的永久破坏。其失效模式主要包括:磨损、疲劳断裂、液体腐蚀、高温腐蚀等。
目前汽车水泵叶轮普遍采用铝合金材料的铸造方法制备。铸造模具成本高,叶轮几何形状设计优化自由度低,材料选择空间有限。同时其强度、耐磨性、疲劳强度、使用寿命等关键服役性能差。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种汽车水泵叶轮的制备工艺,本发明的方法制备的汽车水泵叶轮其抗拉强度和疲劳强度好。
本发明提供了一种汽车水泵叶轮的制备工艺,包括:
A)提供材料;所述材料为Al合金、镁合金、Al合金-陶瓷颗粒复合材料、镁合金陶瓷颗粒复合材料;
B)将材料颗粒平铺,得到当前层;
C)对多叶片转子结构进行切片、扫描处理,得到预设的多叶片转子结构截面轮廓;
采用激光选区熔化工艺将所述当前层按照预设的多叶片转子结构截面轮廓进行扫描、烧结、打印得到截面层;所述打印气氛包括氮气、氩气及氮气的混合气体;所述激光束功率为50~1500W;所述扫描的间距为0.005~0.07mm;所述扫描的速度为50~3000mm/s;
D)重复步骤B和步骤C,得到汽车水泵叶轮。
优选的,所述材料为Al合金-陶瓷颗粒复合材料、镁合金陶瓷颗粒复合材料;Al合金包括Si、Cu、Mg和Zn中的一种或几种与Al;所述Mg合金包括Re、Zn、Mn、Zr、Al中的一种或几种与Mg;所述陶瓷颗粒包括SiC、Al2O3、B4C、Si3N4、ZrO2、TiC、TiB2、Ti(CN) 中的一种或几种;所述陶瓷颗粒的粒径为0.01~1000微米;所述陶瓷颗粒占复合材料的含量为5~70Vol%。
优选的,所述材料选自Al-Si-Mg、Mg-Al-Mn、SiC/Al-Si-Mg和SiC/Mg-Al-Mn中的一种或几种。
优选的,所述材料颗粒为采用熔融雾化造粒方法制备;所述材料颗粒为球形或类球形;所述材料颗粒的粒径为5~100μm。
优选的,激光选区熔化工艺中所涉及打印气氛为氮气和氩气的混合气氛,或者纯氮气;所述N2所占混合气体积分数为10%~100%。
优选的,步骤C)所述烧结温度为700℃~1100℃。
优选的,步骤C)所述激光束功率为50~600W;所述扫描的间距为0.05~0.06mm;所述扫描的速度为1500~2500mm/s。
优选的,步骤C)所述激光束尺寸为20~300微米。
优选的,步骤D)后还包括后处理过程:所述后处理为退火处理;所述退火处理具体为:
200~600℃退火处理,保温时间0.2~3小时,可以采用氮气保护,或直接在空气气氛中进行。
优选的,所述步骤D)后还包括后处理过程:所述后处理为固溶处理;所述固溶处理具体为:
400~600℃固溶处理,然后进行100~350℃时效处理;固溶处理时间0.5~2小时,时效处理时间1~15小时,可以采用氮气保护,或直接在空气气氛中进行。
与现有技术相比,本发明提供了一种汽车水泵叶轮的制备工艺,包括:A)提供材料;所述材料为Al合金、镁合金、Al合金-陶瓷颗粒复合材料、镁合金陶瓷颗粒复合材料;B)将材料颗粒平铺,得到当前层;C)对多叶片转子结构进行切片、扫描处理,得到预设的多叶片转子结构截面轮廓;采用激光选区熔化工艺将所述当前层按照预设的多叶片转子结构截面轮廓进行扫描、烧结、打印得到截面层;所述打印气氛包括氮气;所述激光束功率为50~1500W;所述扫描的间距为0.005~0.07mm;所述扫描的速度为50~3000mm/s;D)重复步骤B和步骤C,得到汽车水泵叶轮。本发明通过氮气作为打印气氛,采用气氛反应选区激光熔化3D打印方法制备汽车水泵叶轮可以完全避开铸造工艺,显著降低叶轮制备成本,提高叶轮几何形状设计优化自由度,拓宽材料选择空间,采用Al合金、含铝Mg合金材料及其复合材料进行气氛反应3D打印及热处理,有助于材料的表面或内部形成陶瓷相,从而显著提升其强度、耐磨性、疲劳强度、使用寿命等关键服役性能。
附图说明
图1为本发明实施例1~2制备的汽车水泵叶轮的立体结构示意图;
图2为本发明实施例3~4制备的汽车水泵叶轮的立体结构示意图;
图3为本发明实施例1~4中所使用的材料及其3D打印方法制得的拉伸试件立体结构示意图。
具体实施方式
本发明提供了一种汽车水泵叶轮的制备工艺,包括:
A)提供材料;所述材料为Al合金、镁合金、Al合金-陶瓷颗粒复合材料、镁合金陶瓷颗粒复合材料;
B)将材料颗粒平铺,得到当前层;
C)对多叶片转子结构进行切片、扫描处理,得到预设的多叶片转子结构截面轮廓;
采用激光选区熔化工艺将所述当前层按照预设的多叶片转子结构截面轮廓进行扫描、烧结、打印得到截面层;所述打印气氛包括氮气、氮气、氩气及氮气的混合气体;所述激光束功率为50~1500W;所述扫描的间距为0.005~0.07mm;所述扫描的速度为50~3000mm/s;
D)重复步骤B和步骤C,得到汽车水泵叶轮。
本发明提供的汽车水泵叶轮的制备工艺首先提供材料,所述材料为Al合金、镁合金、Al合金-陶瓷颗粒复合材料、镁合金陶瓷颗粒复合材料。本发明对其来源不进行限定,本领域技术人员熟知的即可。可以为市售。
在本发明中,所述材料为Al合金、镁合金、Al合金-陶瓷颗粒复合材料、镁合金陶瓷颗粒复合材料;优选为Al合金-陶瓷颗粒复合材料、镁合金陶瓷颗粒复合材料。
其中,Al合金包括Si、Cu、Mg和Zn中的一种或几种与Al;所述Mg合金包括Re、Zn、Mn、Zr、Al中的一种或几种与Mg;所述陶瓷颗粒包括SiC、Al2O3、B4C、Si3N4、ZrO2、TiC、TiB2、Ti(CN) 中的一种或几种。
在本发明中,所述材料最优选选自Al-Si-Mg、Mg-Al-Mn、SiC/Al-Si-Mg和SiC/Mg-Al-Mn中的一种或几种。
在本发明中,所述Al-Si-Mg合金中Si的质量含量优选大于等于4%且小于15%,和Mg的质量含量大于等于0.2%且小于2%;在本发明具体实施例中,所述Al-Si-Mg合金具体为AlSi10Mg合金。
在本发明中,所述Mg-Al-Mn合金中Mg的质量含量优选大于等于70%且小于100%、Al的质量含量大于等于0.5%且小于5%、Mn的质量含量大于等于0.1%且小于2%;在本发明具体实施例中,所述Mg-Al-Mn合金具体为Mg-2Al-0.3Mn合金。
本发明提供的方法可以改进常规合金成分,最大限度提高其制备的多叶片转子结构合金材料的强度和抗疲劳特性。
所述陶瓷颗粒的粒径优选为0.01~1000微米;更优选为1~500微米;最优选为5~100微米。
所述陶瓷颗粒占复合材料的含量优选为5~70Vol%;更优选为10~60Vol%;最优选为10~50Vol%。
按照本发明,所述材料颗粒优选为采用熔融雾化造粒方法制备;所述材料颗粒的粒径为5~300μm。
具体的,所述颗粒优选为球形或类球形;所述Al-Si-Mg、Mg-Al-Mn颗粒的粒度优选为20~100微米,更优选为20~50微米;所述SiC颗粒的粒度优选为5~20微米,更优选为5~10微米。本发明优选采用熔融雾化造粒的方法制备合金颗粒。
本发明对于上述合金的来源不进行限定,可以为市售或本领域技术人员熟知的方法制备。
具体的,所述Al-Si-Mg合金的制备方法优选包括:将铝、硅和镁混合熔融,雾化造粒,得到Al-Si-Mg合金。
所述Mg-Al-Mn合金的制备方法优选包括:将铝、镁、锰混合熔融,雾化造粒,得到Mg-Al-Mn合金。
本发明对于上述具体的参数不进行限定,本领域技术人员熟知的即可。
得到材料颗粒后,将材料颗粒平铺,得到当前层。
本发明中采用精确调控3D打印腔体内的N2、Ar气的流量和压强。本发明对于所述气体下述会有清楚的描述,在此不再赘述。
本发明将颗粒平铺后,得到当前层。本发明对于所述平铺的厚度不进行限定,优选可以为30~100μm。
得到当前层后,本发明对多叶片转子结构进行切片、扫描处理,得到预设的多叶片转子结构截面轮廓。
本发明上述切片、扫描处理为本领域技术人员公知的3D打印熟知的切片和扫描处理操作,本发明人对此不进行限定。
在本发明中,所述扫描的间距优选为0.005~0.07mm;更优选为0.05~0.06mm;所述扫描的速度为50~3000mm/s;更优选为1500~2500mm/s。
采用激光选区熔化工艺将所述当前层按照预设的多叶片转子结构截面轮廓进行扫描、烧结、打印得到截面层。
得到当前层后,本发明采用激光束将所述当前层按照预设当前层的多叶片转子结构截面轮廓进行扫描,使颗粒烧结,得到截面层。在本发明中,所述激光束的功率为50~1500W;优选为50~600W。
在本发明中,激光选区熔化工艺中所涉及打印气氛为氮气和氩气的混合气氛,或者纯氮气或氩气;所述N2所占混合气体积分数优选为10%~100%;更优选为30%~100%。
本发明所述混合气体的流量优选为10-30L/min,压强优选为0.1-0.15MPa。。
本发明创造性的采用3D打印结合特定的气氛打印,可以完全避开铸造工艺,显著降低叶轮制备成本,提高叶轮几何形状设计优化自由度,拓宽材料选择空间,同时提高其性能。
在本发明中,所述烧结温度优选为700℃~1100℃;更优选为800℃~1000℃。
本发明所述激光束尺寸优选为20~300微米。
重复步骤B和步骤C,得到汽车水泵叶轮。
得到截面层后,本发明在所述截面层上再次平铺颗粒重复步骤b)和步骤c),直至得到预设形状的多叶片转子结构合金材料。
本发明优选采用三维绘图软件设计多叶片转子结构材料的几何形状,尺寸以及分布。
在本发明中,所述步骤D)后还包括后处理过程:所述后处理为退火处理;所述退火处理优选具体为:
200~600℃退火处理,保温时间0.2~3小时,可以采用氮气保护,或直接在空气气氛中进行。
更优选具体为:
300~500℃退火处理,保温时间0.5~2.8小时,可以采用氮气保护,或直接在空气气氛中进行。
所述退火处理后优选还包括固溶处理;所述固溶处理优选具体为:
400~600℃固溶处理,然后进行100~350℃时效处理。固溶处理时间0.5~2小时,时效处理时间1~15小时,可以采用氮气保护,或直接在空气气氛中进行。
更优选具体为:
450~550℃固溶处理,然后进行120~330℃时效处理。固溶处理时间0.7 ~1.8小时,时效处理时间2~13小时,可以采用氮气保护,或直接在空气气氛中进行。
热处理过程,最优选具体为:
a)对于Al合金及Al基复合材料,200-600℃退火处理,保温时间0.2-3小时,在空气或纯N2气氛中进行;
b)对于Al合金及Al基复合材料,400-600℃固溶处理,然后进行100-350℃时效处理。固溶处理时间0.5-2小时,时效处理时间1-15小时,可以采用纯N2保护,或直接在空气气氛中进行;
c)对于含铝Mg合金及含铝Mg基复合材料,200-600℃退火处理,保温时间0.2-3小时,在空气或纯N2气氛中进行;
d)对于Mg合金及Mg基复合材料,400-600℃固溶处理,然后进行100-350℃时效处理。固溶处理时间0.5-2小时,时效处理时间1-15小时,可以采用N2保护,或直接在空气气氛中进行。
优选的温度和时间范围同上,在此不再赘述。
本发明将铝合金按照预设的多叶片转子结构的叶片线性、尺寸以及分布,结合气氛反应激光选区熔化3D打印法,一步到位打印具有规则立体线条的多叶片转子结构合金材料。该方法可对多叶片结构零部件进行更自由的几何形状、尺寸和叶片分布设计制备,从而实现对泵内水流更小的阻力,产生更大的泵水压力,提高汽车水泵整体降温功效。
相对于传统铸造方法制备汽车专用多叶片转子结构水泵叶轮,本发明所提供的气氛反应增材制造方法可以将水泵叶轮的材料体系从常规合金体系扩充至金属基复合材料体系,对于Al合金、含铝Mg合金材料及其复合材料进行气氛反应3D打印及热处理,有助于材料的表面或内部形成陶瓷相,从而显著提升水泵叶轮的耐磨性、强度、抗疲劳性能,从而显著延长其使用寿命;
本发明提供了一种上述技术方案所述多叶片转子结构合金材料在汽车汽车水冷发动机中的应用。本发明提供的多叶片转子结构合金材料在汽车发动机中作为强制循环水冷却系统的重要组成部分,负责维持发动机缸体水道内的冷却液循环。
本发明还提供了上述技术方案制备的多叶片转子结构合金材料在汽车水冷发动机中应用。
本发明提供了一种汽车水泵叶轮的制备工艺,包括:A)提供材料;所述材料为Al合金、镁合金、Al合金-陶瓷颗粒复合材料、镁合金陶瓷颗粒复合材料;B)将材料颗粒平铺,得到当前层;C)对多叶片转子结构进行切片、扫描处理,得到预设的多叶片转子结构截面轮廓;采用激光选区熔化工艺将所述当前层按照预设的多叶片转子结构截面轮廓进行扫描、烧结、打印得到截面层;所述打印气氛包括氮气;所述激光束功率为50~1500W;所述扫描的间距为0.005~0.07mm;所述扫描的速度为50~3000mm/s;D)重复步骤B和步骤C,得到汽车水泵叶轮。本发明通过氮气作为打印气氛,采用气氛反应选区激光熔化3D打印方法制备汽车水泵叶轮可以完全避开铸造工艺,显著降低叶轮制备成本,提高叶轮几何形状设计优化自由度,拓宽材料选择空间,采用Al合金、含铝Mg合金材料及其复合材料进行气氛反应3D打印及热处理,有助于材料的表面或内部形成陶瓷相,从而显著提升其强度、耐磨性、疲劳强度、使用寿命等关键服役性能。
为了进一步说明本发明,以下结合实施例对本发明提供的一种汽车水泵叶轮的制备工艺进行详细描述。
实施例1
将质量比为89.5:10:0.5的铝、硅和镁混合熔融,雾化造粒,得到20~50微米的球形或近球形的AlSi10Mg合金颗粒。
a)、在3D打印腔体中通入N2和Ar气的混合气,控制N2所占混合气的体积分数为10%,混合气流量为20L/min,压强为0.11MPa;
b)、将AlSi10Mg合金颗粒平铺后形成当前层,其中铺粉厚度为30μm;
c)、采用功率为400W激光束按照预设的当前层截面的多叶片转子结构轮廓进行扫描,扫描的间距为0.06mm,扫描的速度为2500mm/s,光斑直径为110μm,使颗粒烧结,得到截面层;
d)、在截面层上再次平铺球形或近球形颗粒重复上述步骤b)~步骤c)的操作过程,直至得到预设形状的多叶片转子结构合金材料,如图1所示,图1为本发明实施例1制备的汽车水泵叶轮的立体结构示意图。
e)、对上述步骤a)~步骤d)所得水泵叶轮进行500℃固溶处理,保温时间为1小时,快速冷却,然后在250℃时效处理,保温时间3小时,快速冷却。
实施例2
将质量比为97.7:2:0.3的镁、铝和锰混合熔融,雾化造粒,得到20~50微米的球形或近球形的Mg-2Al-0.3Mn合金颗粒。
a)、在3D打印腔体中通入N2和Ar气的混合气,控制N2所占混合气的体积分数为10%,混合气流量为20L/min,压强为0.11MPa;
b)、将Mg-2Al-0.3Mn合金平铺后形成当前层,其中铺粉厚度为30μm;
c)、采用功率为150W激光束按照预设的当前层截面的多叶片转子结构轮廓进行扫描,扫描的间距为0.05mm,扫描的速度为2600mm/s,光斑直径为110μm,使颗粒烧结,得到截面层;
d)、在截面层上再次平铺球形或近球形颗粒重复上述步骤b)~步骤c)的操作过程,直至得到预设形状的多叶片转子结构合金材料,如图1所示,图1为本发明实施例2制备的汽车水泵叶轮的立体结构示意图。
e)、对上述步骤a)~步骤d)所得水泵叶轮进行400℃固溶处理,保温时间为1小时,快速冷却,然后在200℃时效处理,保温时间2小时,快速冷却。
实施例3
将质量比为89.5:10:0.5的铝、硅、镁混合熔融,雾化造粒,得到20~50微米的球形或近球形的AlSi10Mg合金颗粒;再添加20%体积分数的SiC与AlSi10Mg合金颗粒均匀混合,得到SiC/AlSi10Mg复合粉末,其中SiC优选粒度为5~10微米的球形或近球形颗粒。
a)、在3D打印腔体中通入N2和Ar气的混合气,控制N2所占混合气的体积分数为10%,流量为20L/min,压强为0.11MPa;
b)、将SiC/AlSi10Mg复合粉末平铺后形成当前层,其中铺粉厚度为30μm;
c)、采用功率为80W激光束按照预设的当前层截面的多叶片转子结构轮廓进行扫描,扫描的间距为0.06mm,扫描的速度为2500mm/s,光斑直径为110μm,使颗粒烧结,得到截面层;
d)、在截面层上再次平铺SiC/AlSi10Mg复合粉末,重复上述步骤b)~步骤c)的操作过程,直至得到预设形状的多叶片转子结构复合材料,如图2所示,图2为本发明实施例3制备的汽车水泵叶轮的立体结构示意图。
e)、对上述步骤a)~步骤d)所得水泵叶轮进行500℃固溶处理,保温时间为1小时,快速冷却,然后在250℃时效处理,保温时间3小时,快速冷却。
实施例4
将质量比为97.7:2:0.3的镁、铝和锰混合熔融,雾化造粒,得到20~50微米的球形或近球形的Mg-2Al-0.3Mn合金颗粒;再添加20%体积分数的SiC与Mg-2Al-0.3Mn合金颗粒均匀混合,得到SiC/Mg-2Al-0.3Mn复合粉末,其中SiC优选粒度为5~10微米的球形或近球形颗粒。
a)、在3D打印腔体中通入N2和Ar气的混合气,控制N2所占混合气的体积分数为10%,流量为20L/min,压强为0.11MPa;
b)、将SiC/Mg-2Al-0.3Mn复合粉末平铺后形成当前层,其中铺粉厚度为30μm;
c)、采用功率为100W激光束按照预设的当前层截面的多叶片转子结构轮廓进行扫描,扫描的间距为0.05mm,扫描的速度为2600mm/s,光斑半径为110μm,使颗粒烧结,得到截面层;
c)、在截面层上再次平铺SiC/Mg-2Al-0.3Mn复合粉末,重复上述步骤b)~步骤c)的操作过程,直至得到预设形状的多叶片转子结构复合材料,如图2所示,图2为本发明实施例4制备的汽车水泵叶轮的立体结构示意图。
e)、对上述步骤a)~步骤d)所得水泵叶轮进行400℃固溶处理,保温时间为1小时,快速冷却,然后在200℃时效处理,保温时间2小时,快速冷却。
实施例5
对本发明对实施例1~4制备的多叶片转子结构合金及其复合材料的性能参数进行测试,包括拉伸试验和疲劳试验。其中拉伸测试采用ASTM E8M标准(拉伸试件采用实施例1~4中所使用的材料及其3D打印方法制得,试件的立体结构如图3所示),疲劳测试采用拉伸疲劳测试,拉伸应力比R=smin/smax=0.1,测试频率20HZ,采用不同应力水平测试其疲劳寿命,绘制最大应力-疲劳寿命曲线(S-N曲线),其疲劳强度定义为疲劳寿命为107循环次数所对应的最大拉伸应力。测试结果与传统铸造法制备合金性能进行了比较,见表1。
表1 本发明实施例1~4制备的多叶片水泵转子结构材料的性能参数
测试结果表明与传统铸造方法比较,SLM3D打印可以明显提高合金强度及疲劳性能,而对于合金与SiC形成的金属基复合材料,其强度及疲劳性能得到进一步的提高,充分体现了SLM工艺优势。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

1.一种汽车水泵叶轮的制备工艺,其特征在于,包括:
A)提供材料;所述材料选自Al-Si-Mg、Mg-Al-Mn、SiC/Al-Si-Mg和SiC/Mg-Al-Mn中的一种或几种;
B)将材料颗粒平铺,得到当前层;
C)对多叶片转子结构进行切片、扫描处理,得到预设的多叶片转子结构截面轮廓;
采用激光选区熔化工艺将所述当前层按照预设的多叶片转子结构截面轮廓进行扫描、烧结、打印得到截面层;打印气氛包括氮气、氩气及氮气的混合气体;所述N2占混合气体积分数为10%~100%;激光束功率为50~1500W;所述扫描的间距为0.05~0.06mm;所述扫描的速度为1500~2500mm/s;
D)重复步骤B和步骤C,得到汽车水泵叶轮。
2.根据权利要求1所述的制备工艺,其特征在于,所述碳化硅的粒径为0.01~1000微米;所述碳化硅占复合材料的含量为5~70Vol%。
3.根据权利要求1所述的制备工艺,其特征在于,所述材料颗粒为采用熔融雾化造粒方法制备;所述材料颗粒为球形或类球形;所述材料颗粒的粒径为5~100μm。
4.根据权利要求1所述的制备工艺,其特征在于,步骤C)所述烧结温度为700℃~1100℃。
5.根据权利要求1所述的制备工艺,其特征在于,步骤C)所述激光束尺寸为20~300微米。
6.根据权利要求1所述的制备工艺,其特征在于,步骤D)后还包括后处理过程:所述后处理为退火处理;所述退火处理具体为:
200~600℃退火处理,保温时间0.2~3小时,采用氮气保护,或直接在空气气氛中进行。
7.根据权利要求1所述的制备工艺,其特征在于,所述步骤D)后还包括后处理过程:所述后处理为固溶处理;所述固溶处理具体为:
400~600℃固溶处理,然后进行100~350℃时效处理;固溶处理时间0.5~2小时,时效处理时间1~15小时,采用氮气保护,或直接在空气气氛中进行。
CN201711001663.5A 2017-10-24 2017-10-24 一种汽车水泵叶轮的制备工艺 Active CN107737931B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711001663.5A CN107737931B (zh) 2017-10-24 2017-10-24 一种汽车水泵叶轮的制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711001663.5A CN107737931B (zh) 2017-10-24 2017-10-24 一种汽车水泵叶轮的制备工艺

Publications (2)

Publication Number Publication Date
CN107737931A CN107737931A (zh) 2018-02-27
CN107737931B true CN107737931B (zh) 2019-11-22

Family

ID=61238268

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711001663.5A Active CN107737931B (zh) 2017-10-24 2017-10-24 一种汽车水泵叶轮的制备工艺

Country Status (1)

Country Link
CN (1) CN107737931B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109185011B (zh) * 2018-09-29 2020-04-17 东方电气集团东方电机有限公司 一种3d打印水泵水轮机转轮模型试验方法
CN109365818B (zh) * 2018-12-25 2021-08-13 鑫精合激光科技发展(北京)有限公司 一种用于多孔夹层蜂窝件的激光选区熔化成形方法及装置
CN110116211A (zh) * 2019-05-16 2019-08-13 沈阳飞机工业(集团)有限公司 一种选择性激光熔化AlSi10Mg合金制品的热处理方法
CN110681869B (zh) * 2019-10-15 2021-08-03 上海交通大学 选区激光熔化增材制造技术制备高强韧镁稀土合金的方法
CN113967744B (zh) * 2020-07-22 2023-07-07 中国航发上海商用航空发动机制造有限责任公司 一种多功能一体化零件及制备其的方法
CN112807857B (zh) * 2021-02-05 2023-12-01 广东工业大学 一种废气处理净化器及其滤芯的制备方法
CN113084194B (zh) * 2021-03-30 2023-05-09 郑州大学 一种基于气固原位复合的镁合金3d打印方法
CN114990415A (zh) * 2022-06-15 2022-09-02 中国重汽集团济南动力有限公司 一种纳米双相增强的铝基复合材料及其3d打印成形方法
CN115163550B (zh) * 2022-07-13 2024-03-08 江苏大学镇江流体工程装备技术研究院 一种基于增材制造的大型叶片泵叶片制造方法
CN115592133B (zh) * 2022-12-13 2023-03-10 中车工业研究院(青岛)有限公司 一种激光烧结扫描方法、装置、设备及可读存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103045914A (zh) * 2012-12-06 2013-04-17 南京航空航天大学 一种纳米碳化硅增强铝基复合材料的制备方法
CN105803271A (zh) * 2016-03-18 2016-07-27 南京航空航天大学 一种基于slm成形的铝基纳米复合材料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA112682C2 (uk) * 2014-10-23 2016-10-10 Приватне Акціонерне Товариство "Нво "Червона Хвиля" Спосіб виготовлення тривимірних об'єктів і пристрій для його реалізації
CN106636706B (zh) * 2016-12-26 2018-07-17 宁夏大学 一种用于3D打印的TiAl合金丝及其制备方法
CN107012381B (zh) * 2017-05-11 2018-09-14 北京科技大学 一种提高3d打印17-4ph不锈钢屈服强度的方法
CN107130133B (zh) * 2017-05-26 2019-02-05 哈尔滨工业大学 一种梯度双连续结构的陶瓷/金属复合材料以及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103045914A (zh) * 2012-12-06 2013-04-17 南京航空航天大学 一种纳米碳化硅增强铝基复合材料的制备方法
CN105803271A (zh) * 2016-03-18 2016-07-27 南京航空航天大学 一种基于slm成形的铝基纳米复合材料及其制备方法

Also Published As

Publication number Publication date
CN107737931A (zh) 2018-02-27

Similar Documents

Publication Publication Date Title
CN107737931B (zh) 一种汽车水泵叶轮的制备工艺
US6723674B2 (en) Multi-component ceramic compositions and method of manufacture thereof
CA2451495C (en) Thermal barrier coating material, method of production thereof, and gas turbine member and gas turbine applying said thermal barrier coating material
CN1180108C (zh) 耐高温腐蚀合金、热障涂层材料、涡轮机构件及燃气涡轮机
Tetsui et al. Evaluation of yttria applicability as a crucible for induction melting of TiAl alloy
EP3219827A1 (en) Heat-resistant member provided with heat-shielding coating, and method for manufacturing same
CN101045981A (zh) 耐氧化膜及其形成方法、隔热涂层、耐热构件和燃气轮机
CN109879669A (zh) 一种具有高强度的高熵陶瓷复合材料及其制备方法和应用
EP2112239A2 (en) High strength aluminium alloys with L12 precipitates
CN108372292A (zh) 一种激光增材制造用铝基复合材料粉末及其制备方法
JP5395428B2 (ja) チタン合金
CN1873035A (zh) 高温铝合金
JP2019513896A (ja) 鉄、ケイ素、バナジウム及び銅を有し、内部セラミック相の体積が大きいアルミニウム合金
Gupta et al. Fabrication of ceramic reinforcement aluminium and its alloys metal matrix composite materials: A review
US20200056268A1 (en) Aluminum alloys having iron and rare earth elements
CN108315598A (zh) 一种in713c镍基高温合金的制备方法
CN112266251B (zh) 一种基于放电等离子烧结的氮化硅/碳化钛陶瓷材料制备方法
JP2000129414A (ja) 粒子強化型チタン合金の製造方法
US20060115375A1 (en) High strength thermally resistant ductile cast aluminum alloys
JPH0967194A (ja) セラミックス複合材料
KR20110105680A (ko) 질화물 강화 텅스텐 나노복합재료 및 그 제조방법
CN109576522A (zh) 一种碳化硅增强铝基复合材料及其制备方法
JPH02192448A (ja) セラミックス焼結体の製造方法
KR101195066B1 (ko) 질화물 강화 텅스텐 나노복합재료 및 그 제조방법
CN114737083A (zh) 一种用于激光增材制造的gh3536原料粉末及其制备方法及其合金的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant