CN111230115A - 一种微米银颗粒增强316l不锈钢基复合材料及其制备方法 - Google Patents

一种微米银颗粒增强316l不锈钢基复合材料及其制备方法 Download PDF

Info

Publication number
CN111230115A
CN111230115A CN202010153865.7A CN202010153865A CN111230115A CN 111230115 A CN111230115 A CN 111230115A CN 202010153865 A CN202010153865 A CN 202010153865A CN 111230115 A CN111230115 A CN 111230115A
Authority
CN
China
Prior art keywords
stainless steel
powder
composite material
spherical
based composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010153865.7A
Other languages
English (en)
Inventor
林开杰
顾冬冬
全景峰
方亚美
葛庆
庄杰
刘洋
董伟菘
帅朋江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN202010153865.7A priority Critical patent/CN111230115A/zh
Publication of CN111230115A publication Critical patent/CN111230115A/zh
Priority to US17/263,876 priority patent/US11946122B2/en
Priority to PCT/CN2020/103772 priority patent/WO2021174750A1/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/007Ferrous alloys, e.g. steel alloys containing silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • B22F10/322Process control of the atmosphere, e.g. composition or pressure in a building chamber of the gas flow, e.g. rate or direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Plasma & Fusion (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及一种微米银颗粒增强316L不锈钢基复合材料,包括316L不锈钢基体和均匀分布于316L不锈钢基体中的银颗粒,所述银颗粒占复合材料总重量的1~5%;所述复合材料的密度为7.9~8.2g/cm3,致密度为98%以上。制备方法:以球形银粉和球形316L不锈钢粉末作为原料,混合后进行机械球磨,得到混合粉末,过筛后,加入到SLM成形机的粉料缸中,然后通入惰性保护气体进行打印,即得。本发明通过SLM技术将银颗粒均匀分布于316L不锈钢基体中,工艺简单、节省时间、成本低,制得的复合材料具有优异的导电性和耐蚀性能,适合用于燃料电池双极板等对耐蚀性和导电性有较高要求的技术领域。

Description

一种微米银颗粒增强316L不锈钢基复合材料及其制备方法
技术领域
本发明涉及一种微米银颗粒增强316L不锈钢基复合材料及其制备方法,属于材料制备技术领域。
背景技术
316L不锈钢由于具有良好的耐蚀性、易加工性、低成本等优点,被广泛用于食品加工、医疗器械及燃料电池双极板等领域。然而,质子交换膜燃料电池双极板对材料的耐蚀性和导电性有较高的要求,单纯的316L不锈钢还不能满足要求。这一缺陷可以通过在316L不锈钢中引入能增强耐蚀性和导电性的颗粒形成颗粒增强不锈钢基复合材料来克服。
颗粒增强不锈钢基复合材料由于其增强相成本低、微观结构均匀、材料性能各向同性、可以采用传统的金属加工工艺进行加工,因此引起了人们的广泛关注。以前颗粒增强不锈钢基复合材料的制造工艺的研究往往侧重于传统的外加增强体复合法,但人们却发现传统的复合技术存在着许多问题,如增强体与基体结合不良、增强体易于偏聚,工艺复杂,成本昂贵等。与传统的复合技术相比,选区激光熔化(SLM)技术由于具有熔凝速度快、成形材料组织细小、增强相分布均匀等优点,能够节省时间、节约材料、实现复杂结构一体化成形,因此受到人们的重视。相对于传统材料表面改性处理,通过SLM技术进行材料合金化改性处理不但能简化工艺、降低成本,还能够提高材料的使用寿命。
本发明人选用银颗粒作为增强相,并对用量进行优化,通过SLM技术使其均匀分布于316L不锈钢基体中,制得的复合材料优异的导电性和耐蚀性能,这对于扩大316L不锈钢在燃料电池双极板等领域(以及其他对耐蚀性和导电性有较高的要求的技术领域)的应用具有重要的意义。
发明内容
本发明的目的在于克服上述现有技术的不足,提供一种微米银颗粒增强316L不锈钢基复合材料及其制备方法。
技术方案
一种微米银颗粒增强316L不锈钢基复合材料,包括316L不锈钢基体和均匀分布于316L不锈钢基体中的银颗粒,所述银颗粒占复合材料总重量的1~5%;所述复合材料的密度为7.9~8.2g/cm3,致密度为98%以上。
本发明将微米银颗粒作为合金化元素引入到316L不锈钢基体中,提高了316L不锈钢的耐蚀性和导电性。
上述微米银颗粒增强316L不锈钢基复合材料的制备方法,包括如下步骤:
(1)以球形银粉和球形316L不锈钢粉末作为原料,混合后进行机械球磨,得到混合粉末;混合粉末中,球形银粉的质量分数为1~5%;
(2)将混合粉末过筛后,加入到SLM成形机的粉料缸中,然后通入惰性保护气体进行打印,即得。
进一步,步骤(1)中,所述球形银粉的纯度为99.99%,球形银粉的粒度为1~5μm。
进一步,步骤(1)中,所述球形316L不锈钢粉末的粒度为30~60μm。
进一步,步骤(1)中,所述机械球磨以氧化锆为研磨球,球形银粉和球形316L不锈钢粉末的总质量与研磨球的质量比为1:1,球磨时间为4~6小时。
进一步,步骤(2)中,所述过筛为过200目筛。
进一步,步骤(2)中,所述SLM成形机的打印参数为:激光功率为300~325W,扫描速度为1500~2000mm/s,层厚为30um,扫描间距为50um,岛状扫描,起始角度为0°,旋转角度为90°。
本发明的有益效果:本发明通过SLM技术将银颗粒均匀分布于316L不锈钢基体中,工艺简单、节省时间、成本低,制得的复合材料具有优异的导电性和耐蚀性能,本发明对于扩大316L不锈钢在燃料电池双极板等领域(以及其他对耐蚀性和导电性有较高的要求的技术领域)的应用具有重要的意义。
附图说明
图1为实施例1中球形银粉的SEM图;
图2为实施例1中球形316L不锈钢粉末的SEM图;
图3为实施例1中混合粉末的SEM图;
图4为实施例1制得的微米银颗粒增强316L不锈钢基复合材料成形件的光学显微镜图;
图5为实施例1制得的微米银颗粒增强316L不锈钢基复合材料成形件的SEM图。
具体实施方式
下面结合附图和具体实施例对本发明的技术方案作进一步说明。
下述实施例中,球形银粉购自上海超威纳米科技有限公司,纯度为99.99%;球形316L不锈钢粉末购自Powder Alloy corporation;SLM成形机,采用的是南京航空航天大学的SLM成形机,最大功率为500W,聚焦光斑直径为70um。但均不限于此。
实施例1
一种微米银颗粒增强316L不锈钢基复合材料的制备方法,包括如下步骤:
(1)以球形银粉(粒度为4μm)和球形316L不锈钢粉末(粒度为40μm)作为原料,混合后进行机械球磨(以氧化锆为研磨球,球形银粉和球形316L不锈钢粉末的总质量与研磨球的质量比为1:1,球磨时间为5小时),得到混合粉末;混合粉末中,球形银粉的质量分数为5%;
(2)将混合粉末过筛后,加入到SLM成形机的粉料缸中,然后通入惰性保护气体进行打印(SLM成形机的打印参数为:激光功率为325W,扫描速度为2000mm/s,层厚为30um,扫描间距为50um,岛状扫描,起始角度为0°,旋转角度为90°),即得微米银颗粒增强316L不锈钢基复合材料成形件。测得密度为7.94g/cm3,致密度为98.34%。
球形银粉的SEM图见图1,球形316L不锈钢粉末的SEM图见图2,混合粉末的SEM图见图3,微米银颗粒增强316L不锈钢基复合材料成形件的光学显微镜图和SEM图分别见图4和图5,从图1-5可以看出,原始银粉和316L不锈钢发粉末具有较高的球形度。球磨后,银粉和316L不锈钢粉末混合均匀,且部分银粉被挤压成片状附在316L不锈钢粉末的表面。在微米银颗粒增强316L不锈钢基复合材料成形件中同时存在微米级的银颗粒和纳米级的银颗粒,微米级的银颗粒均匀分布在316L不锈钢的基体中而纳米级的银颗粒倾向于沿着316L不锈钢亚晶的晶界处分布。
实施例2
一种微米银颗粒增强316L不锈钢基复合材料的制备方法,包括如下步骤:
(1)以球形银粉(粒度为4μm)和球形316L不锈钢粉末(粒度为60μm)作为原料,混合后进行机械球磨(以氧化锆为研磨球,球形银粉和球形316L不锈钢粉末的总质量与研磨球的质量比为1:1,球磨时间为6小时),得到混合粉末;混合粉末中,球形银粉的质量分数为5%;
(2)将混合粉末过筛后,加入到SLM成形机的粉料缸中,然后通入惰性保护气体进行打印(SLM成形机的打印参数为:激光功率为325W,扫描速度为1500mm/s,层厚为30um,扫描间距为50um,岛状扫描,起始角度为0°,旋转角度为90°),即得微米银颗粒增强316L不锈钢基复合材料成形件。
测得密度为7.91g/cm3,致密度为98%。
实施例3
一种微米银颗粒增强316L不锈钢基复合材料的制备方法,包括如下步骤:
(1)以球形银粉(粒度为4μm)和球形316L不锈钢粉末(粒度为30μm)作为原料,混合后进行机械球磨(以氧化锆为研磨球,球形银粉和球形316L不锈钢粉末的总质量与研磨球的质量比为1:1,球磨时间为4小时),得到混合粉末;混合粉末中,球形银粉的质量分数为5%;
(2)将混合粉末过筛后,加入到SLM成形机的粉料缸中,然后通入惰性保护气体进行打印(SLM成形机的打印参数为:激光功率为300W,扫描速度为1500mm/s,层厚为30um,扫描间距为50um,岛状扫描,起始角度为0°,旋转角度为90°),即得微米银颗粒增强316L不锈钢基复合材料成形件。
测得密度为7.98g/cm3,致密度为98.87%。
将实施例1-3制得的微米银颗粒增强316L不锈钢基复合材料成形件进行耐蚀性和导电性的测试,并与316L不锈钢进行对比:
1.耐蚀性测试
测试方法:采用传统的三电极体系(以铂电极作为对电极,饱和甘汞电极作为参比电极),利用辰华电化学工作站chi760e测试试样的动电位极化曲线来分析试样的耐蚀性能。将试样表面打磨抛光成镜面,最后将试样浸入电解液液(0.5mol/L H2SO4+2ppm HF)中进行的测试。测试条件为:起始电位=-0.6V,终止电位=1.2V,扫描速度=0.001V/s。
测试结果见表1:
表1
Figure BDA0002402471250000041
2.导电性测试
测试方法:利用Wang文中所采用的方法和步骤测试表面接触电阻(参考文献:WangH,Sweikart MA,Turner JA.Stainless steel as bipolar plate material for polymerelectrolyte membrane fuel cells.2003;115:243-251.doi:10.1016/S0378-7753(03)00023-5),测试参数如下:加载压力=1.4Mpa,加载速度=1N/s。测试结果见表2:
表2
Figure BDA0002402471250000042
由表1和表2的测试结果可以看出,本发明的微米银颗粒增强316L不锈钢基复合材料具有优异的导电性和耐蚀性能。

Claims (7)

1.一种微米银颗粒增强316L不锈钢基复合材料,其特征在于,包括316L不锈钢基体和均匀分布于316L不锈钢基体中的银颗粒,所述银颗粒占复合材料总重量的1~5%;所述复合材料的密度为7.9~8.2g/cm3,致密度为98%以上。
2.权利要求1所述微米银颗粒增强316L不锈钢基复合材料的制备方法,其特征在于,包括如下步骤:
(1)以球形银粉和球形316L不锈钢粉末作为原料,混合后进行机械球磨,得到混合粉末;混合粉末中,球形银粉的质量分数为1~5%;
(2)将混合粉末过筛后,加入到SLM成形机的粉料缸中,然后通入惰性保护气体进行打印,即得。
3.如权利要求2所述微米银颗粒增强316L不锈钢基复合材料的制备方法,其特征在于,步骤(1)中,所述球形银粉的纯度为99.99%,球形银粉的粒度为1~5μm。
4.如权利要求2所述微米银颗粒增强316L不锈钢基复合材料的制备方法,其特征在于,步骤(1)中,所述球形316L不锈钢粉末的粒度为30~60μm。
5.如权利要求2所述微米银颗粒增强316L不锈钢基复合材料的制备方法,其特征在于,步骤(1)中,所述机械球磨以氧化锆为研磨球,球形银粉和球形316L不锈钢粉末的总质量与研磨球的质量比为1:1,球磨时间为4~6小时。
6.如权利要求2所述微米银颗粒增强316L不锈钢基复合材料的制备方法,其特征在于,步骤(2)中,所述过筛为过200目筛。
7.如权利要求2至6任一项所述微米银颗粒增强316L不锈钢基复合材料的制备方法,其特征在于,步骤(2)中,所述SLM成形机的打印参数为:激光功率为300~325W,扫描速度为1500~2000mm/s,层厚为30um,扫描间距为50um,岛状扫描,起始角度为0°,旋转角度为90°。
CN202010153865.7A 2020-03-06 2020-03-06 一种微米银颗粒增强316l不锈钢基复合材料及其制备方法 Pending CN111230115A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010153865.7A CN111230115A (zh) 2020-03-06 2020-03-06 一种微米银颗粒增强316l不锈钢基复合材料及其制备方法
US17/263,876 US11946122B2 (en) 2020-03-06 2020-07-23 Micron silver particle-reinforced 316L stainless steel matrix composite and preparation method thereof
PCT/CN2020/103772 WO2021174750A1 (zh) 2020-03-06 2020-07-23 一种微米银颗粒增强316l不锈钢基复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010153865.7A CN111230115A (zh) 2020-03-06 2020-03-06 一种微米银颗粒增强316l不锈钢基复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN111230115A true CN111230115A (zh) 2020-06-05

Family

ID=70867099

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010153865.7A Pending CN111230115A (zh) 2020-03-06 2020-03-06 一种微米银颗粒增强316l不锈钢基复合材料及其制备方法

Country Status (3)

Country Link
US (1) US11946122B2 (zh)
CN (1) CN111230115A (zh)
WO (1) WO2021174750A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021174750A1 (zh) * 2020-03-06 2021-09-10 南京航空航天大学 一种微米银颗粒增强316l不锈钢基复合材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103213344A (zh) * 2013-04-17 2013-07-24 东南大学 不锈钢-银复合板材及其制备方法
CN105921755A (zh) * 2016-06-22 2016-09-07 依波精品(深圳)有限公司 一种高氮无镍抗菌不锈钢表壳及其制备方法
CN107385306A (zh) * 2016-05-16 2017-11-24 中国科学院上海硅酸盐研究所 一种碳化硅颗粒增强316l不锈钢基复合材料及其制备方法
US20170341145A1 (en) * 2016-05-24 2017-11-30 Edison Welding Institute, Inc. Laser-stirred powder bed fusion
CN109865836A (zh) * 2019-04-04 2019-06-11 西安建筑科技大学 一种3D打印增强体/Ti2AlNb基复合材料及其制备方法
CN110355367A (zh) * 2019-07-09 2019-10-22 哈尔滨工程大学 一种Al3Ti/316L不锈钢复合材料的增材制造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3710589B2 (ja) * 1997-03-19 2005-10-26 日新製鋼株式会社 Ag含有抗菌ステンレス鋼板及び製造方法
US20040081573A1 (en) * 2002-10-23 2004-04-29 3D Systems, Inc. Binder removal in selective laser sintering
CN1280445C (zh) * 2003-07-17 2006-10-18 住友金属工业株式会社 具有耐渗碳性和耐焦化性的不锈钢和不锈钢管
CN107012381B (zh) * 2017-05-11 2018-09-14 北京科技大学 一种提高3d打印17-4ph不锈钢屈服强度的方法
CN107245659A (zh) * 2017-05-27 2017-10-13 太仓源壬金属科技有限公司 一种耐磨金属钢材
CN107760946B (zh) * 2017-10-26 2019-08-02 中南大学 一种含有纳米氧化镁和纳米银的生物镁合金及其制备方法
CN111344091A (zh) * 2017-11-30 2020-06-26 Eos有限公司电镀光纤系统 在借助于增材制造方法制造三维物体时使用的粉末混合物
JP7472467B2 (ja) * 2019-11-08 2024-04-23 セイコーエプソン株式会社 三次元造形物製造用粉末、三次元造形物製造用組成物および三次元造形物の製造方法
CN111230115A (zh) * 2020-03-06 2020-06-05 南京航空航天大学 一种微米银颗粒增强316l不锈钢基复合材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103213344A (zh) * 2013-04-17 2013-07-24 东南大学 不锈钢-银复合板材及其制备方法
CN107385306A (zh) * 2016-05-16 2017-11-24 中国科学院上海硅酸盐研究所 一种碳化硅颗粒增强316l不锈钢基复合材料及其制备方法
US20170341145A1 (en) * 2016-05-24 2017-11-30 Edison Welding Institute, Inc. Laser-stirred powder bed fusion
CN105921755A (zh) * 2016-06-22 2016-09-07 依波精品(深圳)有限公司 一种高氮无镍抗菌不锈钢表壳及其制备方法
CN109865836A (zh) * 2019-04-04 2019-06-11 西安建筑科技大学 一种3D打印增强体/Ti2AlNb基复合材料及其制备方法
CN110355367A (zh) * 2019-07-09 2019-10-22 哈尔滨工程大学 一种Al3Ti/316L不锈钢复合材料的增材制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JINGFENG QUAN ET AL.: "Selective laser melting of silver submicron powder modified 316L stainless steel_ Influence of silver addition on microstructures and performances", 《POWDER TECHNOLOGY》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021174750A1 (zh) * 2020-03-06 2021-09-10 南京航空航天大学 一种微米银颗粒增强316l不锈钢基复合材料及其制备方法
US11946122B2 (en) 2020-03-06 2024-04-02 Nanjing University Of Aeronautics And Astronautics Micron silver particle-reinforced 316L stainless steel matrix composite and preparation method thereof

Also Published As

Publication number Publication date
US20220112584A1 (en) 2022-04-14
US11946122B2 (en) 2024-04-02
WO2021174750A1 (zh) 2021-09-10

Similar Documents

Publication Publication Date Title
CN102139371B (zh) 一种钨合金靶材及其制备方法
TW201119119A (en) Manufacture method of bi-polar plates of fuel cell and bi-polar plates thereof
CN111360272A (zh) 一种氧化物界面增韧非晶基复合材料及其制备方法
CN111230115A (zh) 一种微米银颗粒增强316l不锈钢基复合材料及其制备方法
CN109755603A (zh) 一种超薄金属薄板夹心柔性石墨双极板及其制备方法
Zhang et al. Electrodeposited platinum with various morphologies on carbon paper as efficient and durable self-supporting electrode for methanol and ammonia oxidation reactions
CN114349993A (zh) 一种HPC/CNC/MXene复合薄膜材料及其制备方法和应用
Li et al. Properties, mechanisms and advantages of metallic glass for electrocatalysis and HER in water splitting: A review
CN110923490B (zh) 一种钛钼合金去合金化制备高强微米多孔金属钛块体的方法
CN101654803A (zh) 获得耐磨损、抗高温氧化纳米复合镀层的复合镀液和电镀方法
WO2017028771A1 (zh) 一种多孔材料
CN111112629A (zh) 一种基于3d打印石墨烯增强钛基复合材料的制备方法
CN110224143A (zh) 铅酸电池集流体、其制备方法、极板及铅酸电池
JP2004039516A (ja) すぐれた接面通電性を長期に亘って発揮する固体高分子形燃料電池の多孔質金属ガス拡散シート
CN115322516A (zh) 一种高性能燃料电池双极板基材及其制备方法
CN115548286A (zh) 一种包覆改性磷酸铁锂复合材料及制备方法和应用
Zhao et al. Influence of tensile twinning on electrochemical and corrosion behavior of Mg alloy
CN114792831A (zh) 一种高性能、长寿命、抗反极膜电极及其制备方法
Wlodarczyk Porous composite for bipolar plate in low emission hydrogen fuel cells
Hui et al. Effects of resin type on properties of graphite/polymer composite bipolar plate for proton exchange membrane fuel cell
FENG et al. Research progress in carbon-based composite molded bipolar plates
CN1147949C (zh) 固体氧化物燃料电池的复合阳极材料及电极制作方法
CN100353598C (zh) 质子交换膜燃料电池金属双极板改性的方法
CN115445445A (zh) 一种制备多孔纳米金属膜的方法
CN117525472B (zh) 一种质子交换膜燃料电池金属双极板及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination