CN110355367A - 一种Al3Ti/316L不锈钢复合材料的增材制造方法 - Google Patents
一种Al3Ti/316L不锈钢复合材料的增材制造方法 Download PDFInfo
- Publication number
- CN110355367A CN110355367A CN201910633436.7A CN201910633436A CN110355367A CN 110355367 A CN110355367 A CN 110355367A CN 201910633436 A CN201910633436 A CN 201910633436A CN 110355367 A CN110355367 A CN 110355367A
- Authority
- CN
- China
- Prior art keywords
- powder
- stainless steel
- composite material
- ball
- steel composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/34—Process control of powder characteristics, e.g. density, oxidation or flowability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/36—Process control of energy beam parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/36—Process control of energy beam parameters
- B22F10/366—Scanning parameters, e.g. hatch distance or scanning strategy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
- B22F2009/043—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Automation & Control Theory (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明属于选区激光熔化制备金属基复合材料领域,具体涉及具有良好力学性能的一种Al3Ti/316L不锈钢复合材料的增材制造方法。所述方法包括如下步骤:(1)球磨:(2)粉末过筛:(3)粉末混合:(4)粉末烘干;(5)复合材料制备。加入Al3Ti后试样表面的孔隙均比较少,XRD物相表征表明,SLM‑316L不锈钢中只能观察到奥氏体峰,没有明显的铁素体峰,当Al3Ti质量分数为1%时,材料由单相奥氏体转化为奥氏体与铁素体双相组织,当Al3Ti质量分数添加到2%时,几乎只能观察到铁素体峰。
Description
技术领域
本发明属于选区激光熔化制备金属基复合材料领域,具体涉及具有良好力学性能的一种Al3Ti/316L不锈钢复合材料的增材制造方法。
背景技术
激光增材制造作为一种先进的材料加工技术正在迅速发展。与传统的“自上而下”的减材加工工艺不同,激光增材制造是将材料按照“从下而上”的加工方式来实现原料的逐层成型和固结,因此可以通过电脑对激光源的控制来制作结构复杂的零件。
激光增材制造包括多种类型,其中一种是选区激光熔化(SLM),此方法通过使用高能量的激光束熔化附近的粉末后凝固成型。通常使用表面光滑、粒径分布在5-15μm的原形气雾化预合金化金属粉末,主要是因为它们的高包装效率以及流动性,能够既简单又均匀地平铺成一个平而薄的粉末层。与传统的锻造、铸造和粉末冶金相比,SLM可以通过使用金属粉末来生产复杂形状的金属零件,并且与传统制造工艺制备出的金属零件具有相同甚至更优异的性能。与其他的非粉末床激光系统相比,SLM具有可制备高分辨率和高精确率的复杂零件的优势。原料的灵活性和高能光纤激光器金属的高吸收率,实现了具有优越性能的网状金属基复合材料的制造。
Ti元素和Al元素对316L不锈钢的相区有显著影响。Ti元素在高温下可起到扩大了铁素体相区和减小奥氏体相区的作用,并且当Ti含量使Ti/N接近理想配比时,Ti元素会以TiN的形式析出,高温下析出的TiN会阻碍奥氏体晶粒长大,从而产生细晶强化。如果继续增加Ti含量,会使TiN颗粒粗化,细晶强化作用减小,但在低温下析出细小的TiC颗粒可起到析出强化的作用。Al元素在扩大铁素体相区和减小奥氏体相区方面的影响更为显著。Al能减小C原子的扩散速度,阻碍其在晶界处形成碳化物,降低晶间腐蚀速率,所以在Al含量为4%以内时,316L不锈钢的耐腐蚀性随铝含量增加而增强。当铝质量分数增加到2%时,材料为单相奥氏体,其硬度和强度只有少许提高,强化方式主要为固溶强化,316L不锈钢由奥氏体组织转变为奥氏体与铁素体双相组织,而当铝质量增加到6%时,基体完全转变为铁素体单相组织,显微硬度及抗拉强度增加为之前的三倍,强化方式主要是固溶强化及析出的第二相Al4C3相与位错交互作用,但材料也由之前的韧性材料转变为脆性材料。
发明内容
本发明的目的在于提供一种Al3Ti/316L不锈钢复合材料的增材制造方法。
本发明的目的是这样实现的:
一种Al3Ti/316L不锈钢复合材料的增材制造方法,包括如下步骤:
(1)球磨:通过高能行星球磨机将回收的Al3Ti块体球磨为细小的Al3Ti粉末;
(2)粉末过筛:使用前分别用100目、200目的筛子对粉末进行过筛;
(3)粉末混合:将过筛后的粉末按不同质量百分数添加到316L不锈钢粉末基体中进行球磨混粉;
(4)粉末烘干;
(5)复合材料制备:以混合后的粉末作为原材料,通过选区激光熔化的工艺在一定工艺参数下制备出Al3Ti/316L不锈钢复合材料。
所述方法中Al3Ti块体是对真空热压烧结法制备的Al3Ti试样进行动态压缩试验后获得的脆性块状Al3Ti。
所述方法中球磨、球磨罐及磨球材料为Al2O3,球料比为10:1,转速为350r/s,球磨时间为6h。
所述方法中Al3Ti粉末粒度分布均匀,颗粒形状多为圆球状,其粒径范围为:1-5μm。
所述方法中Al3Ti质量百分数分别为1%、2%、3%。
所述方法中316L不锈钢粉末,其粒径范围为10-50μm,振实密度为4.83g/cm3,制备方法为气雾化法。
所述方法中球磨混粉、球磨罐及磨球材料为Al2O3,球料比为1:2,速为350r/s,球磨时间为20min。
所述方法中合适的工艺参数,激光功率为100W,激光扫描速度为0.25m/s,铺粉厚度为0.03mm,扫描间距为0.06mm,光斑直径为75μm。
本发明的有益效果在于:
(1)加入Al3Ti后试样表面的孔隙均比较少,XRD物相表征表明,SLM-316L不锈钢中只能观察到奥氏体峰,没有明显的铁素体峰,当Al3Ti质量分数为1%时,材料由单相奥氏体转化为奥氏体与铁素体双相组织,当Al3Ti质量分数添加到2%时,几乎只能观察到铁素体峰。
(2)与纯316L相同制备参数下,随着加入Al3Ti质量百分数的提高,试样的硬度、抗拉强度和屈服强度随着添加的Al3Ti质量百分数的增加而上升,尤其在加入1%Al3Ti时,抗拉强度和屈服强度大幅提高并能保持良好的塑性。断口分析时观察到明显的韧窝,材料表现出韧性断裂的特征,随着Al3Ti质量分数的增加,韧窝数量减少但均表现出韧性断裂的特征。其理论解释主要有以下两点,首先Ti、Al元素固溶进基体中,产生晶格畸变,从而增加了位错运动阻力,使位错滑移难以进行,强度提高。除此之外,基体由γ相转化为α+γ双相组织,位错在具有不同晶体结构的两相之间穿越时也会受到阻碍作用,从而起到提高强度的作用。
(3)Al3Ti质量分数为2%及3%时,在试样中都可以观察到粒径介于几十到几百纳米之间的黑色相,这种细小的黑色相的含量随着添加的Al3Ti质量分数的增加而增加。对比能谱图中Ti、Al两种元素含量,发现黑色相中Ti、Al两种元素原子百分比接近1:1,推测该黑色相为Ti-Al相。细小的硬质Ti-Al相,均匀地分布在基体中,当位错运动到析出的细小硬质相附近时,运动受阻,需要绕过细小硬质相,从而增加材料强度。当Al3Ti质量分数增加到2%时,基体完全转化为α相,析出的硬质Ti-Al增多,强度也继续提高,但同时也降低了材料的塑性。进一步增加Al3Ti质量分数,析出的第二相也会继续增多,但由于Al3Ti的加入增加,导致粉末之间的结合度下降,材料缺陷增多,加上材料变脆,容易在缺陷处萌生裂纹并迅速扩展,导致材料极易发生断裂,延伸率明显降低。
(4)对加入不同质量分数Al3Ti时材料力学性能数据进行统计。质量分数为1%、2%、3%、5%的试样对应维氏显微硬度分别为301.1HV、380.4HV、426.4HV、514.5HV,显微硬度随之添加Al3Ti质量分数的增加而增加,当质量分数添加到3%以上时,试样表面出现裂纹,材料表现出的脆性明显增加。质量百分数为1%、2%、3%的Al3Ti/316L不锈钢试样进行拉伸力学性能测试,得到抗拉强度分别为919MPa、1140MPa、1261MPa,屈服强度分别为828MPa、1056MPa、1207MPa,延伸率分别为34%、18%、6%。随着Al3Ti质量分数的增加,材料抗拉强度和屈服强度增加;质量百分数为1%时,材料延伸率没有明显下降,2%及3%时试样延伸率随着质量百分数的增加而明显下降。
附图说明
图1为本发明所涉及的气雾化316L不锈钢粉末微观形貌;
图2为本发明所涉及的球磨后纯Al3Ti粉末形貌;
图3为本发明所涉及的Al3Ti/316L混合粉末形貌;
图4为本发明所涉及的激光扫描策略;
图5为本发明所涉及的Al3Ti/316L试样及拉伸断口宏微观形貌。
具体实施方式
下面对本发明做进一步描述。
为了使本发明的目的、技术方案及优点更加清楚明白,以1%质量分数的Al3Ti为例,进行进一步的详细说明。
实施例1
步骤一,粉末制备,对回收实验室废料Al3Ti块体二次利用,通过高能行星球磨机将材料球磨为细小的Al3Ti粉末;球磨后的粉末存在一些粗大的杂质,使用前分别用100目、200目的筛子对粉末进行过筛,确保粉末的质量;将过筛后的粉末按不同质量百分数添加到316L不锈钢粉末基体中进行球磨混粉;为了避免铺粉过程中粉末发生团聚,铺粉不均匀,需要对粉末进行烘干处理,以确保粉末有好的流动性;
步骤二,复合材料成型件的制备,利用三维制图软件做出所需成型零部件的三维模型,并进行切片处理,切片厚度为0.03mm,将切片数据导入SLM设备。在可拆装的基板上铺一层0.03mm的混合粉末,利用激光对成型件截面形状的粉末层进行扫描,扫描过程激光光斑为75μm,激光功率为100W,激光扫描速率为0.25m/s。当前粉末层的激光扫描完成后,基板降低一个粉末层0.03mm的厚度,在基板上重新铺一层金属粉末,激光扫描新铺的金属粉末层横截面的几何形状,扫描过程激光光斑为75μm,激光功率为100W,激光扫描速率为0.25m/s,扫描方向在上一层扫描方向的基础上顺时针转动67°,每隔180层会重复相同的图案。重复上述铺粉和激光扫描过程,直至整个程序运行结束,得到316L复合材料成型件。
本发明提出一种Al3Ti/316L不锈钢复合材料的制备方法,是为了解决现有SLM成型单一316L不锈钢材料难以满足一些高强度工作环境的需求,因此在基体316L不锈钢粉末中加入金属间化合物Al3Ti粉末,开展不同含量Al3Ti粉末增强的316L不锈钢复合材料的制备工艺及性能方面的研究工作。
为了达到上述目的,本发明实现目的所采用的技术方案如下:
一种选区激光熔化技术用316L不锈钢粉末,按质量百分比计,由成分及含量为:Cr17.92%、Ni12.01%、Mo2.49%、Si0.51%、Mn0.049%、O0.0398%、S0.0189%、C0.0089%,其余为铁组成,总质量百分比为100%。
其中,所述铁的纯度为99.99%的纯铁。
为了达到上述目的,本发明实现目的所采用的另一技术方案如下:
本发明在于通过一定的步骤制得Al3Ti和316L不锈钢混合粉末,利用选区激光熔化技术在合适的工艺参数下制备出性能更优的复合材料成型件。
一种使用选区激光熔化技术制备Al3Ti/316L复合材料的方法,包括如下步骤:
S1:球磨:对回收实验室废料Al3Ti块体二次利用,通过高能行星球磨机将材料球磨为细小的Al3Ti粉末;
S2:粉末过筛:球磨后的粉末存在一些粗大的杂质,若直接使用会影响零件的质量甚至对设备造成损害,使用前分别用100目、200目的筛子对粉末进行过筛,确保粉末的质量;
S3:粉末混合:将过筛后的粉末按不同质量百分数添加到316L不锈钢粉末基体中进行球磨混粉;
S4:粉末烘干:为了避免铺粉过程中粉末发生团聚,铺粉不均匀,需要对粉末进行烘干处理,以确保粉末有好的流动性;
S5:复合材料制备:以混合后的粉末作为原材料,通过选区激光熔化的工艺在一定工艺参数下制备出Al3Ti/316L不锈钢复合材料。
所述的Al3Ti块体,是对真空热压烧结法制备的Al3Ti试样进行动态压缩试验后获得的脆性块状Al3Ti。
所述的球磨、球磨罐及磨球材料为Al2O3,球料比为10:1,转速为350r/s,球磨时间为6h。
所述的细小的Al3Ti粉末,粉末粒度分布比较均匀,颗粒形状多为圆球状,其粒径范围为:1-5μm。
所述的不同质量百分数,Al3Ti质量百分数分别为1%、2%、3%。
所述的316L不锈钢粉末,其粒径范围为10-50μm,粉末形貌良好,振实密度为4.83g/cm3,无粘结现象,制备方法为气雾化法。
所述的球磨混粉,球磨罐及磨球材料为Al2O3,球料比为1:2,速为350r/s,球磨时间为20min。
所述的激光选区熔化,能够提供氩气或氦气氛围。
所述的工艺参数,激光功率为100W,激光扫描速度为0.25m/s,铺粉厚度为0.03mm,扫描间距为0.06mm,光斑直径为75μm。
所述的Al3Ti/316L不锈钢复合材料,基体中析出细小的黑色第二相Ti-Al相。
所述的细小的黑色第二相,尺寸小于1μm。
Claims (8)
1.一种Al3Ti/316L不锈钢复合材料的增材制造方法,其特征在于,包括如下步骤:
(1)球磨:通过高能行星球磨机将回收的Al3Ti块体球磨为细小的Al3Ti粉末;
(2)粉末过筛:使用前分别用100目、200目的筛子对粉末进行过筛;
(3)粉末混合:将过筛后的粉末按不同质量百分数添加到316L不锈钢粉末基体中进行球磨混粉;
(4)粉末烘干;
(5)复合材料制备:以混合后的粉末作为原材料,通过选区激光熔化的工艺在一定工艺参数下制备出Al3Ti/316L不锈钢复合材料。
2.根据权利要求1所述的一种Al3Ti/316L不锈钢复合材料的增材制造方法,其特征在于:所述Al3Ti块体是对真空热压烧结法制备的Al3Ti试样进行动态压缩试验后获得的脆性块状Al3Ti。
3.根据权利要求1所述的一种Al3Ti/316L不锈钢复合材料的增材制造方法,其特征在于:所述球磨、球磨罐及磨球材料为Al2O3,球料比为10:1,转速为350r/s,球磨时间为6h。
4.根据权利要求1所述的一种Al3Ti/316L不锈钢复合材料的增材制造方法,其特征在于:所述Al3Ti粉末粒度分布均匀,颗粒形状多为圆球状,其粒径范围为:1-5μm。
5.根据权利要求1所述的一种Al3Ti/316L不锈钢复合材料的增材制造方法,其特征在于:Al3Ti质量百分数分别为1%、2%、3%。
6.根据权利要求1所述的一种Al3Ti/316L不锈钢复合材料的增材制造方法,其特征在于:所述316L不锈钢粉末,其粒径范围为10-50μm,振实密度为4.83g/cm3,制备方法为气雾化法。
7.根据权利要求1所述的一种Al3Ti/316L不锈钢复合材料的增材制造方法,其特征在于:所述球磨混粉、球磨罐及磨球材料为Al2O3,球料比为1:2,速为350r/s,球磨时间为20min。
8.根据权利要求1所述的一种Al3Ti/316L不锈钢复合材料的增材制造方法,其特征在于:所述合适的工艺参数,激光功率为100W,激光扫描速度为0.25m/s,铺粉厚度为0.03mm,扫描间距为0.06mm,光斑直径为75μm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910633436.7A CN110355367B (zh) | 2019-07-09 | 2019-07-09 | 一种Al3Ti/316L不锈钢复合材料的增材制造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910633436.7A CN110355367B (zh) | 2019-07-09 | 2019-07-09 | 一种Al3Ti/316L不锈钢复合材料的增材制造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110355367A true CN110355367A (zh) | 2019-10-22 |
CN110355367B CN110355367B (zh) | 2021-01-05 |
Family
ID=68219068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910633436.7A Active CN110355367B (zh) | 2019-07-09 | 2019-07-09 | 一种Al3Ti/316L不锈钢复合材料的增材制造方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110355367B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111230115A (zh) * | 2020-03-06 | 2020-06-05 | 南京航空航天大学 | 一种微米银颗粒增强316l不锈钢基复合材料及其制备方法 |
CN113059153A (zh) * | 2021-03-22 | 2021-07-02 | 湖南大学 | 一种奥氏体不锈钢及其激光增材制备方法 |
CN113600978A (zh) * | 2021-08-20 | 2021-11-05 | 湘潭大学 | 一种基于电弧增材制造提高强度和耐磨性的一体成形方法 |
CN115989104A (zh) * | 2020-05-12 | 2023-04-18 | 康特霍尔公司 | 用于增材制造的Fe-Cr-Al粉末 |
CN116197412A (zh) * | 2023-01-17 | 2023-06-02 | 福州大学 | 一种提高3d打印双相不锈钢塑性的方法 |
WO2024060607A1 (zh) * | 2022-09-21 | 2024-03-28 | 华北理工大学 | 一种纯金属过配粉体选区激光熔化制备高氮不锈钢的方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102465240A (zh) * | 2010-11-09 | 2012-05-23 | 株式会社日立制作所 | 沉淀硬化型马氏体不锈钢及使用有该不锈钢的汽轮机部件 |
CN108971500A (zh) * | 2018-07-20 | 2018-12-11 | 淮阴工学院 | 高耐蚀性原位纳米碳化物增强不锈钢植入体及其成形方法 |
CN109434118A (zh) * | 2018-10-30 | 2019-03-08 | 华中科技大学 | 一种非晶增强金属基复合材料的制备与成形方法 |
US20190194785A1 (en) * | 2017-12-22 | 2019-06-27 | Purdue Research Foundation | Method of making components with metal matrix composites and components made therefrom |
-
2019
- 2019-07-09 CN CN201910633436.7A patent/CN110355367B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102465240A (zh) * | 2010-11-09 | 2012-05-23 | 株式会社日立制作所 | 沉淀硬化型马氏体不锈钢及使用有该不锈钢的汽轮机部件 |
US20190194785A1 (en) * | 2017-12-22 | 2019-06-27 | Purdue Research Foundation | Method of making components with metal matrix composites and components made therefrom |
CN108971500A (zh) * | 2018-07-20 | 2018-12-11 | 淮阴工学院 | 高耐蚀性原位纳米碳化物增强不锈钢植入体及其成形方法 |
CN109434118A (zh) * | 2018-10-30 | 2019-03-08 | 华中科技大学 | 一种非晶增强金属基复合材料的制备与成形方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111230115A (zh) * | 2020-03-06 | 2020-06-05 | 南京航空航天大学 | 一种微米银颗粒增强316l不锈钢基复合材料及其制备方法 |
WO2021174750A1 (zh) * | 2020-03-06 | 2021-09-10 | 南京航空航天大学 | 一种微米银颗粒增强316l不锈钢基复合材料及其制备方法 |
US11946122B2 (en) | 2020-03-06 | 2024-04-02 | Nanjing University Of Aeronautics And Astronautics | Micron silver particle-reinforced 316L stainless steel matrix composite and preparation method thereof |
CN115989104A (zh) * | 2020-05-12 | 2023-04-18 | 康特霍尔公司 | 用于增材制造的Fe-Cr-Al粉末 |
CN113059153A (zh) * | 2021-03-22 | 2021-07-02 | 湖南大学 | 一种奥氏体不锈钢及其激光增材制备方法 |
CN113600978A (zh) * | 2021-08-20 | 2021-11-05 | 湘潭大学 | 一种基于电弧增材制造提高强度和耐磨性的一体成形方法 |
WO2024060607A1 (zh) * | 2022-09-21 | 2024-03-28 | 华北理工大学 | 一种纯金属过配粉体选区激光熔化制备高氮不锈钢的方法 |
CN116197412A (zh) * | 2023-01-17 | 2023-06-02 | 福州大学 | 一种提高3d打印双相不锈钢塑性的方法 |
CN116197412B (zh) * | 2023-01-17 | 2024-04-30 | 福州大学 | 一种提高3d打印双相不锈钢塑性的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110355367B (zh) | 2021-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110355367A (zh) | 一种Al3Ti/316L不锈钢复合材料的增材制造方法 | |
Xiang et al. | Microstructures and mechanical properties of CrMnFeCoNi high entropy alloys fabricated using laser metal deposition technique | |
Zhou et al. | Preparation and characterization of Mo/Al2O3 composites | |
Wang et al. | La2O3 effects on TZM alloy recovery, recrystallization and mechanical properties | |
Zheng et al. | Selective laser melting of Al–8.5 Fe–1.3 V–1.7 Si alloy: Investigation on the resultant microstructure and hardness | |
Wolf et al. | Recent developments on fabrication of Al‐matrix composites reinforced with quasicrystals: from metastable to conventional processing | |
CN109022920B (zh) | 一种无裂纹的4d打印钛镍形状记忆合金及其制备方法 | |
Veleva et al. | Sintering and characterization of W–Y and W–Y2O3 materials | |
CN109175391B (zh) | 一种原位合成纳米氧化物颗粒弥散强化合金的方法 | |
Xie et al. | Research progress of refractory high entropy alloys: a review | |
Sheng et al. | ZrO2 strengthened NiAl/Cr (Mo, Hf) composite fabricated by powder metallurgy | |
CN107498054A (zh) | 一种利用激光选区熔化技术制备增韧24CrNiMo合金钢的方法 | |
Hu et al. | Secondary phases strengthening-toughening effects in the Mo–TiC–La2O3 alloys | |
Jiang et al. | Enhanced strength-ductility synergy of selective laser melted reduced activation ferritic/martensitic steel via heterogeneous microstructure modification | |
Amar et al. | Additive manufacturing of VCoNi medium-entropy alloy: microstructure evolution and mechanical properties | |
Sun et al. | In-situ synthesis of CoCrFeMnNi high-entropy alloy by selective laser melting | |
CN110629100B (zh) | 一种氧化物弥散强化镍基高温合金的制备方法 | |
Guo et al. | Heat treatment behavior of the 18Ni300 maraging steel additively manufactured by selective laser melting | |
Guo et al. | Laser powder bed fusion of a novel nano-modified tungsten alloy with refined microstructure and enhanced strength | |
Chen et al. | Advanced titanium materials processed from titanium hydride powder | |
Lu et al. | Excellent strength-ductility synergy of NiAl-based composites achieved by a 3-dimensional network structure | |
Xiao et al. | Effect of heat treatment process on mechanical properties and microstructure of FeAlCoCrNiTi0. 5 alloy | |
Cai et al. | In situ investigation on densification mechanism of Ti-20Al-19Nb (at.%) alloy by TiH2-assisted pressureless sintering | |
Geng et al. | High strength Al0. 7CoCrFeNi2. 4 hypereutectic high entropy alloy fabricated by laser powder bed fusion via triple-nanoprecipitation | |
Wang et al. | High-density and low-interstitial Ti-23Al-17Nb prepared by vacuum pressureless sintering from blended elemental powders |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |