CN116197412A - 一种提高3d打印双相不锈钢塑性的方法 - Google Patents

一种提高3d打印双相不锈钢塑性的方法 Download PDF

Info

Publication number
CN116197412A
CN116197412A CN202310062779.9A CN202310062779A CN116197412A CN 116197412 A CN116197412 A CN 116197412A CN 202310062779 A CN202310062779 A CN 202310062779A CN 116197412 A CN116197412 A CN 116197412A
Authority
CN
China
Prior art keywords
stainless steel
powder
duplex stainless
percent
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310062779.9A
Other languages
English (en)
Other versions
CN116197412B (zh
Inventor
向红亮
詹贤明
赵伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202310062779.9A priority Critical patent/CN116197412B/zh
Publication of CN116197412A publication Critical patent/CN116197412A/zh
Application granted granted Critical
Publication of CN116197412B publication Critical patent/CN116197412B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明适用于金属增材制造技术领域,提供了一种提高3D打印双相不锈钢塑性的方法,目的是解决采用增材制造技术制备的双相不锈钢材料组织中奥氏体含量少,延伸率过低的问题。本发明的关键技术在于通过混合不同成分合金粉末调整材料合金成分,通过激光粉末床熔融技术制备材料,能在制造复杂零部件的同时,实现材料中奥氏体含量的调控,提高制备材料的塑性,达到削弱强度与塑性均衡度差的目的,提升材料广泛应用的效果。

Description

一种提高3D打印双相不锈钢塑性的方法
技术领域
本发明属于金属材料增材制造技术领域,具体涉及一种提高双相不锈钢塑性的制备方法。
背景技术
双相不锈钢由铁素体相和奥氏体相构成,有着良好的耐蚀性能和力学性能,广泛应用在工业、航天航空和海洋船舶等领域。增材制造(Additive Manufacturing,AM)技术,是一种通过粉末材料的粘结实现数字化模型打印的技术,又称为3D打印技术。按照不同的原理分类,目前金属增材制造技术主要有粉末床熔融技术(Powder Bed Fusion,PBF)和直接能量沉积(Directed energy deposition,DED)两种。其中,激光粉末床熔融(LaserPowder Bed Fusion,LPBF)技术采用高能激光束熔化材料,逐层累积制备零件,在制备小型精密复杂结构件方面有明显的优势。由于LPBF成形是一个急速熔化和冷却的过程,这限制了合金元素的扩散和迁移,导致采用该技术制备的双相不锈钢材料的两相比例严重失衡,组织几乎全为铁素体,奥氏体含量极少。
奥氏体含量的降低导致制备材料的抗拉强度虽有所提升,但延伸率显著下降,这限制了LPBF技术制备的双相不锈钢材料的广泛应用。因此,如何调控材料的两相比例,提高制备材料延伸率是目前LPBF技术成功运用到双相不锈钢领域急需解决的关键问题。固溶处理能有效提高试样中奥氏体含量,协调两相比例,达到改善材料塑性的目的,但存在需额外的热处理工序,增加成本的同时也造成了能源的浪费。因此,寻求一种技术协调3D打印双相不锈钢材料两相比例,提高延伸率显得非常有必要而且极为迫切。
发明内容
本发明提供了一种通过混合2205双相不锈钢粉末和316L奥氏体不锈钢粉末调控合金成分,LPBF制备一定奥氏体和铁素体比例的双相不锈钢材料,实现提高材料塑性目的的方法。其中所述的2205双相不锈钢粉末的成分为(wt.%):C≤0.03%、Si≤1.00%、Mn≤2.00%、P≤0.04%、S≤0.02%、Cr:21.00~24.00%、Ni:4.50~6.50%、Mo:2.50~3.50%、N:0.10~0.20%,其余为Fe和微量杂质;316L奥氏体不锈钢粉末的成分为(wt.%):C≤0.03%、Si≤1.00%、Mn≤2.00%、P≤0.05%、S≤0.03%、Cr::16.00~18.00%、Ni:10.00~14.00%、Mo:2.00~3.00%,其余为Fe和微量杂质。
为实现上述目的,本发明采用如下技术路线:
步骤1:粉末混合。设计不同比例的混合粉末,将2205双相不锈钢粉末和316L奥氏体不锈钢粉末按预定的比例进行混合,充分混合后干燥处理;
步骤2:材料制备。采用LPBF制备双相不锈钢材料,从基板上切割材料;
步骤3:组织和性能分析。对试样进行XRD测试分析物相组成,EBSD确定相比例,拉伸试验测试力学性能。
优选的,步骤1粉末混合时,采用粉末混合机进行混合,充分混合后用筛粉机筛选粒径为10~53μm的粉末颗粒。
优选的,步骤1干燥处理具体是指将混合粉末置于真空烘干机中,在100℃下烘干4h,消除表面水分。
优选的,步骤1中2205双相不锈钢粉末和316L奥氏体不锈钢粉末的质量比为5:5。
优选的,步骤2材料制备时,LPBF技术的工艺参数为:激光功率250W、激光扫描速度800mm/s、扫描间距0.07mm、铺粉层厚0.03mm以及层间旋转67°扫描策略。
优选的,步骤2材料制备时,分别制备颗粒状试样以及拉伸试样;
优选的,步骤3组织和性能分析时,将颗粒试样通过研磨至镜面后,通过XRD确定物相组成,EBSD观察两相比例,拉伸试样测试力学性能。
本发明对现有技术的技术效果是:
(1)本发明技术方法下,可以直接成形复杂零部件,无需其余机加工工艺,且所制备材料力学性能接近2205双相不锈钢国际标准。
(2)本发明的技术方法下,能在打印态的情况下,通过调整粉末混合比例,制备不同两相比例的双相不锈钢。
(3)本发明技术方法下,相对于2205双相不锈钢粉末打印的零部件,成形的材料具有更高的奥氏体含量,虽然抗拉强度有所下降,但延伸率得到了明显的提升。
(4)本发明的技术方法下,所制备的材料由于无需后续的热处理,所以制备的成本降低显著,设备要求简单,省时省力,具有显著的经济效益。
附图说明
图1拉伸试样尺寸示意图;
图2混合粉末SEM形貌;
图3实施例1XRD图谱;
图4实施例1EBSD相图;
图5实施例2XRD图谱。
具体实施方式
为使本发明所述的内容更易于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但不限制本发明的范围。本发明所述的一种提高3D打印双相不锈钢塑性的方法,按照以下步骤进行:
步骤1:粉末混合。设计不同比例的混合粉末,将2205双相不锈钢粉末和316L奥氏体不锈钢粉末按设计比例称量,采用粉末混合机将粉末充分混合后,用筛粉机筛选粒径为10~53μm的粉末颗粒;为消除粉末表面水分,防止粉末团聚,将混合粉末置于真空烘干机中,在100℃下烘干4h。其中2205双相不锈钢粉末和316L奥氏体不锈钢粉末成分如表1所示。
步骤2:材料制备。将干燥后的混合粉末置于LPBF成形设备中,成形前向设备中通入高纯氩气确保成形室氧含量低于100ppm;打印颗粒试样和拉伸试样:颗粒试样尺寸为8mm×8mm×10mm,拉伸试样尺寸如图1所示;成形参数:激光功率250W、扫描速度800mm/s、扫描间距0.07mm、铺粉层厚0.03mm,扫描策略为全区扫描且扫描旋转角度67°。
步骤3:组织和性能分析。颗粒试样进行研磨并抛光至镜面后采用X’pert3 andEmpyrean型X射线衍射仪分析材料物相;采用EBSD确定两相比例,测试前将试样置于10%HNO3+90%CH3COOH溶液中电解抛光,抛光是设置电压12V,抛光时间90s;拉伸试样在室温下使用AG-X plus电子万能试验机进行,每组实验采用三个平行试样。
实施例1:
采用5:5质量比例混合2205双相不锈钢粉末和316L不锈钢粉末,图2为混合粉末的SEM形貌图。对混合粉末进行LPBF成形,采用XRD检测试样物相,XRD图谱如图3所示,图谱中有多个铁素体和奥氏体衍射峰,表明试样组织中含有铁素体相和奥氏体相。通过EBSD计算材料中两相比例,EBSD相图如图4所示,其中奥氏体的含量为63.9%,表明通过粉末混合能有效调节材料中奥氏体比例。对拉伸试样进行室温拉伸,试样的抗拉强度为686.49MPa,延伸率为21.1%。
实施例2:
采用2:8质量比例混合2205双相不锈钢粉末和316L不锈钢粉末,并进行LPBF成形。采用XRD检测试样物相,XRD图谱如图5所示。XRD图谱显示仅有奥氏体衍射峰,表明试样为全奥氏体组织。对拉伸试样进行室温拉伸,试样的抗拉强度为537.78MPa,延伸率为23.2%。
对比例1:
Papula S,Song M,Pateras A.Selective Laser Melting ofDuplex StainlessSteel2205:Effect of Post-Processing Heat Treatment on Microstructure,Mechanical Properties,and Corrosion Resistance[J].Materials,2019,12(15).
文中采用2205双相不锈钢粉末进行LPBF成形,借助EBSD技术分析物相,结果显示铁素体含量约为99.3%,即作者通过双相不锈钢粉末打印出的试样组织几乎为铁素体相。在室温下对拉伸试样进行拉伸,试样的抗拉强度为1071.30MPa,延伸率为7.0%。
对比例2:
Nigon G N,Isgor O B,Pasebani S.The effect ofannealing on theselective laser melting of 2205duplex stainless steel:Microstructure,grainorientation,and manufacturing challenges[J].Optics&Laser Technology,2021,134:106643.
文中采用2205双相不锈钢粉末进行LPBF成形,采用EBSD技术观察物相,观察所得铁素体含量约为99.0%,即作者通过双相不锈钢粉末进行打印,试样组织几乎为铁素体相。在室温下对拉伸试样进行拉伸,试样的抗拉强度为872.00MPa,延伸率为11.0%。
表1不锈钢粉末和实施例、对比例材料元素成分及其质量百分比(wt.%)。
Figure BDA0004061465230000041
Figure BDA0004061465230000051
表2实施例、对比例材料两相比例和力学性能。
Figure BDA0004061465230000052
表2显示了实施例、对比例两相比例和力学性能。相对于各对比例奥氏体含量少、拉强度高而塑性极差的特点,实施例1中奥氏体含量大幅提升,可达百分之63.9%,此时强度虽有所下降但也高于2205双相不锈钢材料抗拉强度国际标准(≥620MPa),更重要的是延伸率提高到了21.1%,取得了极大的飞跃,材料总体上展现出良好的综合力学性能。实施例2虽然奥氏体含量大幅提高,但塑性提升度不大且强度下降明显。综上,采用本专利方法控制好材料中铁素体和奥氏体相比例,能很好提升材料塑性。此外,本技术无需热处理来调控两相,简化了工艺流程,避免了能源消耗;同时316L奥氏体不锈钢粉末要比2205双相不锈钢粉末便宜许多,进一步降低了制造成本,具有显著的经济价值。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (7)

1.一种提高3D打印双相不锈钢塑性的方法,其特征在于,包括如下步骤:
(1)粉末混合:将2205双相不锈钢粉末和316 L奥氏体不锈钢粉末按一定比例混合;
(2)材料制备:采用激光粉末床熔融技术制备双相不锈钢材料;
所述激光粉末床熔融技术的工艺参数为:激光功率250 W、激光扫描速度800 mm/s、扫描间距0.07 mm、铺粉层厚0.03 mm以及层间旋转67°扫描策略。
2.如权利要求1所述的一种提高3D打印双相不锈钢塑性的方法,其特征在于:所述的2205双相不锈钢粉末的成分按质量百分比计为:C≤0.03%、Si≤1.00%、Mn≤2.00%、P≤0.04%、S≤0.02%、Cr:21.00~24.00%、Ni:4.50~6.50%、Mo:2.50~3.50%、N:0.10~0.20%,其余为Fe和微量杂质。
3. 如权利要求1所述的一种提高3D打印双相不锈钢塑性的方法,其特征在于:所述的316 L奥氏体不锈钢粉末的成分按质量百分比计为:C≤0.03%、Si≤1.00%、Mn≤2.00%、P≤0.05%、S≤0.03%、Cr::16.00~18.00%、Ni:10.00~14.00%、Mo:2.00~3.00%,其余为Fe和微量杂质。
4. 如权利要求1所述的一种提高3D打印双相不锈钢塑性的方法,其特征在于:2205双相不锈钢粉末和316 L奥氏体不锈钢粉末的质量比为5:5。
5. 如权利要求1所述的一种提高3D打印双相不锈钢塑性的方法,其特征在于:所述的2205双相不锈钢粉末和316 L奥氏体不锈钢粉末粒径尺寸均在10-53 μm范围。
6. 如权利要求1所述的一种提高3D打印双相不锈钢塑性的方法,其特征在于:采用粉末混合机将2205双相不锈钢粉末和316 L奥氏体不锈钢粉末充分混合后,用筛粉机筛选粒径为10~53 μm的粉末颗粒。
7. 如权利要求1 所述的一种提高3D打印双相不锈钢塑性的方法,其特征在于:粉末均匀混合之后,将混合粉末置于真空烘干机中,在100 ℃下烘干4 h,消除表面水分。
CN202310062779.9A 2023-01-17 2023-01-17 一种提高3d打印双相不锈钢塑性的方法 Active CN116197412B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310062779.9A CN116197412B (zh) 2023-01-17 2023-01-17 一种提高3d打印双相不锈钢塑性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310062779.9A CN116197412B (zh) 2023-01-17 2023-01-17 一种提高3d打印双相不锈钢塑性的方法

Publications (2)

Publication Number Publication Date
CN116197412A true CN116197412A (zh) 2023-06-02
CN116197412B CN116197412B (zh) 2024-04-30

Family

ID=86514055

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310062779.9A Active CN116197412B (zh) 2023-01-17 2023-01-17 一种提高3d打印双相不锈钢塑性的方法

Country Status (1)

Country Link
CN (1) CN116197412B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101090988A (zh) * 2004-12-27 2007-12-19 Posco公司 具有优异的耐蚀性能的低镍双相不锈钢
CN102251194A (zh) * 2010-05-18 2011-11-23 宝山钢铁股份有限公司 一种表面耐蚀性优良的双相不锈钢冷轧板及其制造方法
KR20150073383A (ko) * 2013-12-23 2015-07-01 주식회사 포스코 듀플렉스 스테인리스강 및 그의 제조방법
CN109396429A (zh) * 2017-08-17 2019-03-01 中国科学院金属研究所 一种改善激光增材制造合金结构钢组织和力学性能方法
CN110355367A (zh) * 2019-07-09 2019-10-22 哈尔滨工程大学 一种Al3Ti/316L不锈钢复合材料的增材制造方法
CN114855092A (zh) * 2022-07-05 2022-08-05 北京科技大学 一种增材制造高强韧不锈钢及其制备工艺
CN115287540A (zh) * 2022-08-07 2022-11-04 襄阳金耐特机械股份有限公司 一种适于焊接的粉末冶金双相不锈钢及其制备方法和焊接件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101090988A (zh) * 2004-12-27 2007-12-19 Posco公司 具有优异的耐蚀性能的低镍双相不锈钢
CN102251194A (zh) * 2010-05-18 2011-11-23 宝山钢铁股份有限公司 一种表面耐蚀性优良的双相不锈钢冷轧板及其制造方法
KR20150073383A (ko) * 2013-12-23 2015-07-01 주식회사 포스코 듀플렉스 스테인리스강 및 그의 제조방법
CN109396429A (zh) * 2017-08-17 2019-03-01 中国科学院金属研究所 一种改善激光增材制造合金结构钢组织和力学性能方法
CN110355367A (zh) * 2019-07-09 2019-10-22 哈尔滨工程大学 一种Al3Ti/316L不锈钢复合材料的增材制造方法
CN114855092A (zh) * 2022-07-05 2022-08-05 北京科技大学 一种增材制造高强韧不锈钢及其制备工艺
CN115287540A (zh) * 2022-08-07 2022-11-04 襄阳金耐特机械股份有限公司 一种适于焊接的粉末冶金双相不锈钢及其制备方法和焊接件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
梁奕明 等: "介质温度对含铌2120双相不锈钢点蚀性能的影响", 《特种铸造及有色合金》, 22 June 2022 (2022-06-22) *

Also Published As

Publication number Publication date
CN116197412B (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
Kiran et al. Refractory metal alloying: A new method for improving mechanical properties of tungsten heavy alloys
CN102751064B (zh) 纳米增韧钕铁硼磁性材料及制备方法
Jia et al. Microstructure and mechanical properties of FeCoNiCr high-entropy alloy strengthened by nano-Y 2 O 3 dispersion
CN110355367B (zh) 一种Al3Ti/316L不锈钢复合材料的增材制造方法
CN107498054A (zh) 一种利用激光选区熔化技术制备增韧24CrNiMo合金钢的方法
CN110273092A (zh) 一种CoCrNi颗粒增强镁基复合材料及其制备方法
Majeed et al. Study the effect of heat treatment on the relative density of SLM built parts of AlSi10Mg alloy
Pan et al. Microstructure evolution and mechanical properties of spark plasma sintered W–Ni–Mn alloy
CN113579237B (zh) 一种降低铜锡合金粉松装密度的制备方法
CN116197412B (zh) 一种提高3d打印双相不锈钢塑性的方法
Zhu et al. Effect of solution and aging treatments on the microstructure and mechanical properties of dual-phase high-entropy alloy prepared by laser-powder bed fusion using AlSi10Mg and FeCoCrNi powders
CN111676409B (zh) 一种低密度低成本Fe-Mn-Al-C中熵合金的制备方法
CN113881865A (zh) 一种提高高温氧化性能的TiAl合金及其制备方法
Popescu et al. Mechanically alloyed high entropy composite
CN111235426A (zh) 一种多元铜合金及其制备方法和在增材制造中的应用
Yang et al. The effect of Cr on the properties and sintering of W skeleton as an activated element
Liu et al. Microstructure and mechanical properties of CoCrCuFeNi high-entropy alloys synthesized by powder metallurgy and spark plasma sintering
Chang et al. Effects of vacuum sintering, HIP and HP treatments on the microstructure, mechanical and electrical properties of Cr70Cu30 alloys
CN111455376A (zh) 一种增强45#钢耐腐蚀性的Cr7C3-Mo2NiB2复相陶瓷涂层的制备方法
Mohapatra et al. Structural characterization of Multicomponent high entropy alloys processed by mechanical alloying
CN115650236B (zh) 一种碳化钛-碳化钽固溶体、制备方法及其用途
Choi et al. Improvement of powder properties and chemical homogeneity of partially alloyed iron powder by a nanopowder process
Li et al. Research on Microstructures and Properties of CoNiCr and CoNiCu Medium-entropy Alloys
JP2009114542A (ja) 第三元素粒子を添加することにより、軽量耐熱金属間化合物の延性と強度を向上させる方法
Zhang et al. Effects of TiC and rare earth on the microstructure and performance of LASER cladding Mo2FeB2

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant