CN107010978B - 一种碳纳米管增强热解碳材料的制备方法 - Google Patents
一种碳纳米管增强热解碳材料的制备方法 Download PDFInfo
- Publication number
- CN107010978B CN107010978B CN201710180211.1A CN201710180211A CN107010978B CN 107010978 B CN107010978 B CN 107010978B CN 201710180211 A CN201710180211 A CN 201710180211A CN 107010978 B CN107010978 B CN 107010978B
- Authority
- CN
- China
- Prior art keywords
- carbon
- pyrolytic carbon
- nano tube
- carbon nano
- graphite carrier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/52—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5284—Hollow fibers, e.g. nanotubes
- C04B2235/5288—Carbon nanotubes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明涉及一种碳纳米管增强热解碳材料的制备方法,通过在载体上生长杂乱无章的碳纳米管层,然后采用化学气相沉积法促进碳纳米管层的继续生长以及已有碳纳米管层的进一步致密化,即碳纳米管的生长与热解碳沉积协同进行,最终制得表层为疏松的碳纳米管层,而表层以下为致密的碳纳米管增强热解碳材料。通过在热解碳材料中引入碳纳米管,来提高热解碳材料的力学强度以及减小其密度。
Description
技术领域
本发明属于复合材料制备领域,涉及一种碳纳米管增强热解碳材料的制备方法。
背景技术
高性能热解炭材料在拥有与普通C/C复合材料的高强度相当的情况下,其结构致密性更优异、耐高温和耐腐蚀性更好,并且各项性能均为各向同性,不会因为加工方向的不同而造成性能上的差异。因此,热解炭块体材料可作为一种综合性能优异的机械密封材料,在航空、航天、航海、军工等领域有巨大的应用前景。此外,高性能热解炭材料也可用于制备原子反应堆中燃料球的包覆涂层、人工心脏瓣膜和人体植入材料的涂层等。到现在为止,有关块体热解碳材料的已有报道主要涉及到两方面:一是块体热解碳材料由颗粒状的微米颗粒组成,其颗粒形貌更接近于碳黑,外面包覆有热解碳;二是热解碳作为填充基体,纳米碳纤维杂乱的分布在基体中作为增强体,这类热解碳块体材料具有更高的强度以及较低的密度。根据已有的报道,前者被研究的较多,沉积工艺较为成熟,而后者纳米碳纤维增强热解碳材料也仅限于本课题组的研究成果。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种碳纳米管增强热解碳材料的制备方法,通过对纳米碳纤维杂乱分布在热解碳基体中的特点的深入研究,制备出了热解碳基体中有大量碳纳米管杂乱分布的热解碳材料。
技术方案
一种碳纳米管增强热解碳材料的制备方法,其特征在于步骤如下:
步骤1:石墨载体浸入浓度为2.0~10.0wt%的硝酸溶液中进行表面活化处理,后进行烘干;所述石墨载体采用丙酮超声清洗;
步骤2:再浸入浓度为5.0~60.0wt%的无机盐溶液中60min,然后烘干;
步骤3:将步骤2处理的石墨载体置于管式电阻炉内进行热处理;
步骤4、碳纳米管生长:将步骤3处理的石墨载体置于等温化学气相沉积炉中进行碳纳米管生长,温度为700~1150℃,时间为8~30h;
步骤5、热解碳生长:将步骤4所得的表面生长有碳纳米管的石墨载体置于热梯度化学气相沉积炉中进行碳纳米管和热解碳的协同生长,温度为800~1200℃,得到低孔隙率并且密度不大于1.8g/cm3的碳纳米管增强热解碳复合材料。
所述的载体为石墨、碳碳复合材料、镍基高温合金、钨铜合金或钼合金。
所述的无机盐为CuSO4、Cu(NO3)2、FeSO4、Fe(NO3)2或NiSO4。
有益效果
本发明提出的一种碳纳米管增强热解碳材料的制备方法,通过在载体上生长杂乱无章的碳纳米管层,然后采用化学气相沉积法促进碳纳米管层的继续生长以及已有碳纳米管层的进一步致密化,即碳纳米管的生长与热解碳沉积协同进行,最终制得表层为疏松的碳纳米管层,而表层以下为致密的碳纳米管增强热解碳材料。通过在热解碳材料中引入碳纳米管,来提高热解碳材料的力学强度以及减小其密度。
本发明
附图说明
图1为在石墨载体表面生长的碳纳米管
图2为碳纳米管表层下较疏松的热解碳层
图3为试样经过致密化后,碳纳米管增强热解碳材料的断口及断口中的碳纳米管
具体实施方式
现结合实施例、附图对本发明作进一步描述:
实施例一
本实施例是一种碳纳米管增强热解碳材料的制备方法,具体过程是:
步骤1:将使用丙酮超声清洗后的石墨载体浸入浓度为2.0wt%的硝酸溶液中进行表面活化处理,后进行烘干;
步骤2:将步骤1处理后的石墨载体浸泡入浓度为5.0wt%的无机盐溶液中60min,然后烘干;
步骤3:将步骤2所得石墨载体置于管式电阻炉内进行热处理;
步骤4:碳纳米管生长:将步骤3所得石墨载体置于等温化学气相沉积炉中进行碳纳米管生长,温度为800℃,时间为30h;
步骤5:热解碳生长:将步骤4所得的表面生长有碳纳米管的石墨载体置于热梯度化学气相沉积炉中进行碳纳米管和热解碳的协同生长,温度为1200℃。
最终得到孔隙率小于1%并且密度不大于1.8g/cm3的碳纳米管增强热解碳复合材料。
实施例二
本实施例是一种碳纳米管增强热解碳材料的制备方法,具体过程是:
步骤1:将使用丙酮超声清洗后的石墨载体浸入浓度为5.0wt%的硝酸溶液中进行表面活化处理,后进行烘干;
步骤2:将步骤1处理后的石墨载体浸泡入浓度为20.0wt%的无机盐溶液中60min,然后烘干;
步骤3:将步骤2所得石墨载体置于管式电阻炉内进行热处理;
步骤4:碳纳米管生长:将步骤3所得石墨载体置于等温化学气相沉积炉中进行碳纳米管生长,温度为900℃,时间为30h;
步骤5:热解碳生长:将步骤4所得的表面生长有碳纳米管的石墨载体置于热梯度化学气相沉积炉中进行碳纳米管和热解碳的协同生长,温度为1000℃。
最终得到孔隙率小于1%并且密度不大于1.8g/cm3的碳纳米管增强热解碳复合材料,其三点弯曲强度约为200MPa。
实施例三
本实施例是一种碳纳米管增强热解碳材料的制备方法,具体过程是:
步骤1:将使用丙酮超声清洗后的石墨载体浸入浓度为10.0wt%的硝酸溶液中进行表面活化处理,后进行烘干;
步骤2:将步骤1处理后的石墨载体浸泡入浓度为60.0wt%的无机盐溶液中60min,然后烘干;
步骤3:将步骤2所得石墨载体置于管式电阻炉内进行热处理;
步骤4:碳纳米管生长:将步骤3所得石墨载体置于等温化学气相沉积炉中进行碳纳米管生长,温度为1150℃,时间为30h;
步骤5:热解碳生长:将步骤4所得的表面生长有碳纳米管的石墨载体置于热梯度化学气相沉积炉中进行碳纳米管和热解碳的协同生长,温度为900℃。
最终得到孔隙率小于1%并且密度不大于1.8g/cm3的碳纳米管增强热解碳复合材料,其压缩强度在热处理前超过500MPa,热处理后超过350MPa。
Claims (1)
1.一种碳纳米管增强热解碳材料的制备方法,其特征在于步骤如下:
步骤1:石墨载体浸入浓度为2.0~10.0wt%的硝酸溶液中进行表面活化处理,后进行烘干;所述石墨载体采用丙酮超声清洗;
步骤2:再浸入浓度为5.0~60.0wt%的无机盐溶液中60min,然后烘干;
步骤3:将步骤2处理的石墨载体置于管式电阻炉内进行热处理;
步骤4、碳纳米管生长:将步骤3处理的石墨载体置于等温化学气相沉积炉中进行碳纳米管生长,温度为700~1150℃,时间为8~30h;
步骤5、热解碳生长:将步骤4所得的表面生长有碳纳米管的石墨载体置于热梯度化学气相沉积炉中进行碳纳米管和热解碳的协同生长,温度为800~1200℃,得到低孔隙率并且密度不大于1.8g/cm3的碳纳米管增强热解碳复合材料;
所述的无机盐为CuSO4、Cu(NO3)2、FeSO4、Fe(NO3)2或NiSO4。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710180211.1A CN107010978B (zh) | 2017-03-24 | 2017-03-24 | 一种碳纳米管增强热解碳材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710180211.1A CN107010978B (zh) | 2017-03-24 | 2017-03-24 | 一种碳纳米管增强热解碳材料的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107010978A CN107010978A (zh) | 2017-08-04 |
CN107010978B true CN107010978B (zh) | 2020-04-03 |
Family
ID=59444927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710180211.1A Active CN107010978B (zh) | 2017-03-24 | 2017-03-24 | 一种碳纳米管增强热解碳材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107010978B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110684375B (zh) * | 2019-11-01 | 2020-11-17 | 青岛科技大学 | 一种将碳纳米管负载到热解炭黑表面的热解炭黑改性方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101376597A (zh) * | 2008-09-25 | 2009-03-04 | 中南大学 | 原位碳纳米管增强炭/炭复合材料的制备方法 |
CN105693263A (zh) * | 2016-01-14 | 2016-06-22 | 西北工业大学 | 一种碳纳米管多维编织预制体陶瓷基复合材料的制备方法 |
CN105948777A (zh) * | 2016-06-14 | 2016-09-21 | 西北工业大学 | 一种密度为0.5~0.8g/cm3的碳/碳复合材料的制备方法 |
-
2017
- 2017-03-24 CN CN201710180211.1A patent/CN107010978B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101376597A (zh) * | 2008-09-25 | 2009-03-04 | 中南大学 | 原位碳纳米管增强炭/炭复合材料的制备方法 |
CN105693263A (zh) * | 2016-01-14 | 2016-06-22 | 西北工业大学 | 一种碳纳米管多维编织预制体陶瓷基复合材料的制备方法 |
CN105948777A (zh) * | 2016-06-14 | 2016-09-21 | 西北工业大学 | 一种密度为0.5~0.8g/cm3的碳/碳复合材料的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107010978A (zh) | 2017-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2020102002A4 (en) | Preparation method of graphene-carbon nanotube hybrid sponge | |
CN106866148B (zh) | SiC纳米线原位增强的SiCf/SiC复合材料及其制备方法 | |
Maqbool et al. | Mechanical characterization of copper coated carbon nanotubes reinforced aluminum matrix composites | |
CN100406596C (zh) | 气相沉积原位反应制备碳纳米管增强铝基复合材料的方法 | |
US20180123137A1 (en) | A composite material of metal foam-carbon nanotube, the preparation method thereof and the use thereof | |
CN104150939B (zh) | 一种电泳沉积CNTs增强陶瓷基复合材料的制备方法 | |
CN102021817A (zh) | 原位生长有碳纳米管的碳化硅纤维立体织物及其复合材料及制备方法 | |
CN109126846B (zh) | 一种碳化硅纳米线/碳纤维布复合材料及其制备方法与应用 | |
CN102936147A (zh) | 一种高比表面积SiC/C多孔复合陶瓷及其制备方法 | |
CN105779962B (zh) | 一种铜-碳纳米管复合粉末的制备方法 | |
Wang et al. | Synthesis and characterization of self-assembled ZnO nanoarrays on hybrid structural fibers | |
CN113754455B (zh) | 多尺度增韧铺层结构吸波陶瓷基复合材料及其制备方法 | |
CN107570192A (zh) | 一种镍填充掺氮碳纳米管及其制备方法和应用 | |
CN109909504A (zh) | 一种多孔泡沫增强金属复合材料及其制备方法 | |
CN102676860B (zh) | 碳纳米管增强铝基复合材料的制备方法 | |
CN112341230B (zh) | 一种受树叶启发的分级增韧超高温陶瓷基复合材料及其制备方法 | |
CN107010978B (zh) | 一种碳纳米管增强热解碳材料的制备方法 | |
CN109825815B (zh) | 一种降低金刚石/铜导热复合材料界面热阻的制备方法 | |
CN113004044A (zh) | 一种添加石墨烯的SiCf/SiC复合材料制备方法 | |
CN108383536B (zh) | 一种碳基复合材料的制备方法 | |
CN109750492A (zh) | 一种碳布表面均匀生长碳纳米管前期的表面处理方法 | |
CN117626039A (zh) | 一种高强塑多级混杂异质结构钛基复合材料及其制备方法 | |
CN117342540A (zh) | 一种炭气凝胶-热解炭复合材料及其制备方法 | |
CN109518307A (zh) | 一种具有试管刷状b4c纳米线/c纤维多级结构纤维的制备方法 | |
CN102276282A (zh) | 一种纳米炭纤维增强炭/炭复合材料的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20221109 Address after: No. 25, Yangbei Road, Luoshe Town, Huishan District, Wuxi City, Jiangsu Province, 214154 Patentee after: Wuxi Bozhi Composite Materials Co.,Ltd. Address before: 710072 No. 127 Youyi West Road, Shaanxi, Xi'an Patentee before: Northwestern Polytechnical University |