CN107010953B - 一种单相多铁陶瓷材料及其制备方法 - Google Patents
一种单相多铁陶瓷材料及其制备方法 Download PDFInfo
- Publication number
- CN107010953B CN107010953B CN201710346564.4A CN201710346564A CN107010953B CN 107010953 B CN107010953 B CN 107010953B CN 201710346564 A CN201710346564 A CN 201710346564A CN 107010953 B CN107010953 B CN 107010953B
- Authority
- CN
- China
- Prior art keywords
- powder
- ceramic material
- phase
- phase multiferroic
- multiferroic ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/495—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3215—Barium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3272—Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/782—Grain size distributions
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/786—Micrometer sized grains, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/788—Aspect ratio of the grains
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
一种单相多铁陶瓷材料及其制备方法,本发明涉及多铁陶瓷及其制备方法。本发明是要解决现有的单相多铁材料铁酸铋的磁性弱的技术问题。本发明的单相多铁陶瓷材料的化学表达式为Ba0.7Ca0.3FeTaO3。制法:碳酸钡、碳酸钙三氧化二铁和五氧化二钽粉末混合后湿法球磨,烘干后放在管式炉预烧,然后再湿法球磨,烘干后加入粘结剂压制成预制体,再将预制体于管式炉中烧结,得到单相多铁陶瓷材料。单相多铁陶瓷材料在室温下是四方相结构,同时具有铁磁性和铁电性,可用于电气、电子领域。
Description
技术领域
本发明涉及多铁陶瓷及其制备方法。
背景技术
多铁性材料是指在同一种相中存在两种或者两种以上铁序的材料,是由瑞士科学家Schmid于1994年首次提出,其中铁序包括铁磁序、铁电序、铁弹序和铁涡序。而研究最多的多铁材料是磁性与铁电性共存的磁电多铁材料,一般将磁性(铁磁、亚铁磁、反铁磁和非共线磁性等)与铁电性共存的材料称为磁电多铁材料。在磁电多铁材料中,磁性与铁电性之间存在一定的耦合效应,在信息存储、自旋电子器件、电容-电感一体化器件和微波吸收技术领域存在着广泛的应用前景。但是目前能够应用的单相多铁材料非常稀少,因为从经验角度看磁性与铁电性具有一定的互斥性,再加上多数材料的磁性居里温度和铁电居里温度低于室温,所以就使得在室温下能够应用的单相多铁材料更少了。目前研究最多的室温单相多铁材料是铁酸铋(BiFeO3),它在室温下同时具有铁电性和反铁磁性,铁电居里温度约1103K,铁磁尼尔温度约643K。但是由于具有反铁磁性,所以能表现出来的宏观磁性非常弱,也就限制了铁酸铋作为多铁材料的应用。
发明内容
本发明是要解决现有的室温共存反铁磁性和铁电性的单相多铁材料铁酸铋磁性弱的技术问题,而提供一种单相多铁陶瓷材料及其制备方法。
本发明的单相多铁陶瓷材料的化学表达式为Ba0.7Ca0.3FeTaO3,简写为BCFT,且为棒状晶粒构成的陶瓷材料。
上述的单相多铁陶瓷材料的制备方法,按以下步骤进行:
一、将碳酸钡(BaCO3)、碳酸钙(CaCO3)、三氧化二铁(Fe2O3)和五氧化二钽(Ta2O5)粉末按照Ba0.7Ca0.3FeTaO3的化学计量比称量并混合均匀,得到混合粉末;
二、将步骤一得到的混合粉末加入酒精,在球磨机中以200~400rpm的转速球磨12~48h,得到悬浊液A;
三、将步骤二得到的悬浊液A烘干,得到粉末A,然后再将该粉末A放入管式炉中,在温度为1100~1250℃的条件下保持3~6h,得到预烧粉末;
四、将步骤三得到的预烧粉末加入酒精,在球磨机中以200~400rpm的转速球磨12~48h,得到悬浊液B;
五、将步骤四得到的悬浊液B烘干,得到粉末B,然后按20g粉末B加入1~3ml质量百分浓度为5%~10%的聚乙烯醇溶液的比例,向粉末B中加入聚乙烯醇溶液,混合均匀后,加入模具中,压制成预制体;
六、将步骤五中得到的预制体置于管式炉中,在空气气氛下升温至500~700℃保温2~5h,进行排胶处理;
七、将步骤六中得到的排胶之后的预制体置于管式炉中,在空气气氛下升温至1250~1500℃烧结3~8h,得到单相多铁陶瓷材料。
本发明的单相多铁陶瓷材料Ba0.7Ca0.3FeTaO3在室温下是四方相结构,属于P4bm点群。在室温下同时具有铁磁性和铁电性,是一种无铅的磁性与铁电性共存的单相多铁陶瓷。本发明的制备方法简单,不使用专用设备,不需要特殊气氛烧结,可大规模制备。
本发明的单相多铁陶瓷材料可用于电气、电子领域。
附图说明
图1是实施例1中得到的BCFT陶瓷样品的表面形貌图。
图2是实施例1中得到的BCFT陶瓷样品的表面形貌图,是对图1的局部放大图。
图3是实施例1中得到的BCFT陶瓷样品的断面形貌图。
图4是实施例1中得到的BCFT陶瓷样品的X射线衍射图谱(XRD)。
图5是实施例1中得到的BCFT陶瓷样品在不同激励电场下得到的电滞回线。
图6是实施例1中得到的BCFT陶瓷样品测量得到的磁滞回线。
图7是实施例2中得到的BCFT陶瓷样品的表面形貌图。
具体实施方式
具体实施方式一:本实施方式的单相多铁陶瓷材料的化学表达式为Ba0.7Ca0.3FeTaO3,且为棒状晶粒构成的陶瓷材料,简写为BCFT。
本实施方式的单相多铁陶瓷材料的晶粒棒的直径为0.5~1μm,长度为5~20μm。
具体实施方式二:具体实施方式一所述的单相多铁陶瓷材料的制备方法,按以下步骤进行:
一、将碳酸钡(BaCO3)、碳酸钙(CaCO3)、三氧化二铁(Fe2O3)和五氧化二钽(Ta2O5)粉末按照Ba0.7Ca0.3FeTaO3的化学计量比称量并混合均匀,得到混合粉末;
二、将步骤一得到的混合粉末加入酒精,在球磨机中以200~400rpm的转速球磨12~48h,得到悬浊液A;
三、将步骤二得到的悬浊液A烘干,得到粉末A,然后再将该粉末A放入管式炉中,在温度为1100~1250℃的条件下保持3~6h,得到预烧粉末;
四、将步骤三得到的预烧粉末加入酒精,在球磨机中以200~400rpm的转速球磨12~48h,得到悬浊液B;
五、将步骤四得到的悬浊液B烘干,得到粉末B,然后按20g粉末B加入1~3ml质量分数为5~10%的聚乙烯醇溶液的比例,向粉末B中加入聚乙烯醇溶液,混合均匀后,加入模具中,压制成预制体;
六、将步骤五中得到的预制体置于管式炉中,在空气气氛下升温至500~700℃保温2~5h进行排胶处理;
七、将步骤六中得到的排胶之后的预制体置于管式炉中,在空气气氛下升温至1250~1500℃烧结3~8h,得到单相多铁陶瓷材料。
具体实施方式三:本实施方式与具体实施方式二不同的是步骤三中烘干温度为80℃~100℃;其它与具体实施方式二相同。
具体实施方式四:本实施方式与具体实施方式二或三不同的是步骤三中的预烧温度为1150℃,预烧时间为4h。其它与具体实施方式二或三相同。
具体实施方式五:本实施方式与具体实施方式二至四之一不同的是步骤五中的烘干温度为80℃~100℃。其它与具体实施方式二至四之一相同。
具体实施方式六:本实施方式与具体实施方式二至五之一不同的是步骤五中预制体是在200~500MPa的压强下保持1~5分钟后得到的。其它与具体实施方式二至五之一相同。
具体实施方式七:本实施方式与具体实施方式二至六之一不同的是步骤六中排胶过程是在600℃保温4h条件下进行的。其它与具体实施方式二至六之一相同。
具体实施方式八:本实施方式与具体实施方式二至七之一不同的是步骤七的烧结温度为1300~1400℃,烧结时间为5~6h。其它与具体实施方式二至七之一相同。
用以下实施例验证本发明的有益效果:
实施例1:本实施例的单相多铁陶瓷材料的制备方法按以下步骤进行:
一、按单相多铁陶瓷材料Ba0.7Ca0.3FeTaO3的化学计量比称取0.042mol的碳酸钡(BaCO3)、0.018mol的碳酸钙(CaCO3)、0.06mol的三氧化二铁(Fe2O3)和0.06mol的五氧化二钽(Ta2O5)粉末按并混合均匀,得到混合粉末;
二、将步骤一得到的混合粉末加入60mL酒精,在球磨机中以250rpm的转速球磨24h,得到悬浊液A;
三、将步骤二得到的悬浊液A在80℃烘干,得到粉末A,然后再将该粉末A放入管式炉中,在温度为1150℃的条件下保持4h,得到预烧粉末;
四、将步骤三得到的预烧粉末加入60mL酒精,在球磨机中以250rpm的转速球磨24h,得到悬浊液B;
五、将步骤四得到的悬浊液B在80℃烘干,得到粉末B,然后向粉末B中加入2ml的质量百分浓度为5%的聚乙烯醇溶液,混合均匀后,加入直径为Φ13mm的模具中,在400MPa的压强下保持1分钟压制成厚度约为1.5mm的片状预制体;
六、将步骤五中得到的预制体置于管式炉中,在空气气氛下升温至600℃保温4h进行排胶处理,使得在步骤五中加入的聚乙烯醇完全去除;
七、将步骤六中得到的排胶之后的预制体置于管式炉中,在空气气氛下升温至1400℃烧结4h,得到单相多铁陶瓷材料。
实施例1制备出了成瓷效果较好的BCFT陶瓷样品。图1是实施例1得到的BCFT陶瓷样品在扫描电子显微镜(SEM)下的表面形貌图,模式为二次电子模式。从SEM图片可以看出,BCFT陶瓷的晶粒为微米级棒状晶粒。图2是图1的局部放大图。从图中可以明显地看出微米棒晶粒的直径约为0.7~1μm,长度约为10~20μm,并且晶粒全部为微米棒晶粒。图3是实施例1得到的BCF陶瓷样品的断面SEM图片。从断面图可以看出断面也是呈现出和表面一致的微米级棒状晶粒。
图4是实施例1所得到的BCFT陶瓷样品的X射线衍射图谱(XRD)。主相为四方相结构,点群为P4bm,图中标出晶面指数是根据BaSrTa4O12(PDF卡片号54-1163)的晶面指数标出的。其中用倒三角标出的两个峰是少量的杂质第二相BaFeO3-x(PDF卡片号23-1024)的峰。
图5是实施例1得到的BCFT陶瓷样品在不同激励电场下的电滞回线。从图中可以看出该陶瓷样品具有一定的滞回特性,具有一定的铁电性。
图6是实施例1得到的BCFT陶瓷样品所测量得到的磁滞回线,说明样品具有铁磁性。矫顽力(2Hc)为216Oe,剩余磁化强度为0.72emu/g。
从图5和图6可知,本实施例制备的单相多铁陶瓷材料Ba0.7Ca0.3FeTaO3在室温下同时具有铁磁性和铁电性。
实施例2:本实施例的单相多铁陶瓷材料的制备方法按以下步骤进行:
一、按单相多铁陶瓷材料Ba0.7Ca0.3FeTaO3的化学计量比称取0.042mol的碳酸钡(BaCO3)、0.018mol的碳酸钙(CaCO3)、0.06mol的三氧化二铁(Fe2O3)和0.06mol的五氧化二钽(Ta2O5)粉末按并混合均匀,得到混合粉末;
二、将步骤一得到的混合粉末加入60mL酒精,在球磨机中以250rpm的转速球磨48h,得到悬浊液A;
三、将步骤二得到的悬浊液A烘干,得到粉末A,然后再将该粉末A放入管式炉中,在温度为1200℃的条件下保持4h,得到预烧粉末;
四、将步骤三得到的预烧粉末加入60mL酒精,在球磨机中以250rpm的转速球磨48h,得到悬浊液B;
五、将步骤四得到的悬浊液B在80℃烘干,得到粉末B,然后向粉末B中加入1ml的质量分数8%的聚乙烯醇溶液,混合均匀后,混合均匀后,加入直径为Φ13mm的模具中,在300MPa的压强下保持1分钟压制成厚度为约1.5mm的片状预制体;
六、将步骤五中得到的预制体置于管式炉中,在空气气氛下升温至600℃保温2h进行排胶处理,使得在步骤五中加入的聚乙烯醇完全去除。
七、将步骤六中得到的排胶之后的预制体置于管式炉中,在空气气氛下升温至1350℃烧结4h,得到单相多铁陶瓷材料。
图7是实施例2所得到的BCFT陶瓷样品的表面形貌图,图中可以看出该陶瓷样品的晶粒也为微米级棒状晶粒,直径约为0.5~0.8μm,长度约为5~10μm。
本实施例制备的单相多铁陶瓷材料Ba0.7Ca0.3FeTaO3在室温下同时具有铁磁性和铁电性。
Claims (7)
1.一种单相多铁陶瓷材料的制备方法,其特征在于该方法按以下步骤进行:
一、将碳酸钡、碳酸钙、三氧化二铁和五氧化二钽粉末按照Ba0.7Ca0.3FeTaO3的化学计量比称量并混合均匀,得到混合粉末;
二、将步骤一得到的混合粉末加入酒精,在球磨机中以200~400 rpm的转速球磨12~48h,得到悬浊液A;
三、将步骤二得到的悬浊液A烘干,得到粉末A,然后再将该粉末A放入管式炉中,在温度为1100~1250℃的条件下保持3~6 h,得到预烧粉末;
四、将步骤三得到的预烧粉末加入酒精,在球磨机中以200~400 rpm的转速球磨12~48h,得到悬浊液B;
五、将步骤四得到的悬浊液B烘干,得到粉末B,然后按20 g粉末B加入1~3 mL质量分数为5%~10%的聚乙烯醇溶液的比例,向粉末B中加入聚乙烯醇溶液,混合均匀后,加入模具中,压制成预制体;
六、将步骤五中得到的预制体置于管式炉中,在空气气氛下升温至500~700℃保温2~5h进行排胶处理;
七、将步骤六中得到的排胶之后的预制体置于管式炉中,在空气气氛下升温至1250~1500℃烧结3~8 h,得到单相多铁陶瓷材料;该材料的化学表达式为Ba0.7Ca0.3FeTaO3,为棒状晶粒构成的陶瓷材料。
2.根据权利要求1所述的一种单相多铁陶瓷材料的制备方法,其特征在于步骤三中烘干温度为80℃~100℃。
3.根据权利要求1或2所述的一种单相多铁陶瓷材料的制备方法,其特征在于步骤三中的预烧温度为1150℃,预烧时间为4 h。
4.根据权利要求1或2所述的一种单相多铁陶瓷材料的制备方法,其特征在于步骤五中的烘干温度为80℃~100℃。
5.根据权利要求1或2所述的一种单相多铁陶瓷材料的制备方法,其特征在于步骤五中预制体是在200~500 MPa的压强下保持1~5分钟后得到的。
6.根据权利要求1或2所述的一种单相多铁陶瓷材料的制备方法,其特征在于步骤六中排胶过程是在600℃保温4 h条件下进行的。
7.根据权利要求1或2所述的一种单相多铁陶瓷材料的制备方法,其特征在于步骤七的烧结温度为1300~1400℃,烧结时间为5~6h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710346564.4A CN107010953B (zh) | 2017-05-17 | 2017-05-17 | 一种单相多铁陶瓷材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710346564.4A CN107010953B (zh) | 2017-05-17 | 2017-05-17 | 一种单相多铁陶瓷材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107010953A CN107010953A (zh) | 2017-08-04 |
CN107010953B true CN107010953B (zh) | 2020-01-03 |
Family
ID=59449081
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710346564.4A Active CN107010953B (zh) | 2017-05-17 | 2017-05-17 | 一种单相多铁陶瓷材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107010953B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107488035B (zh) * | 2017-09-19 | 2019-11-05 | 哈尔滨工业大学 | 一种钛酸钡基陶瓷材料中类圆形晶粒与高长径比棒状晶粒比例的调节方法 |
CN108516827B (zh) * | 2018-06-19 | 2020-01-03 | 哈尔滨工业大学 | 一种无铅高介电储能密度和高储能效率的陶瓷材料及其制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101948303A (zh) * | 2010-09-14 | 2011-01-19 | 辽宁石油化工大学 | 一种A位Ba、Sr、Ca三离子共掺杂的SrCo0.8Fe0.2O3-δ基钙钛矿透氧膜材料及其应用 |
-
2017
- 2017-05-17 CN CN201710346564.4A patent/CN107010953B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101948303A (zh) * | 2010-09-14 | 2011-01-19 | 辽宁石油化工大学 | 一种A位Ba、Sr、Ca三离子共掺杂的SrCo0.8Fe0.2O3-δ基钙钛矿透氧膜材料及其应用 |
Non-Patent Citations (1)
Title |
---|
Structural and dielectric properties of A(Fe1/2Ta1/2)O3 [A = Ba, Sr, Ca];Alo Dutta et al.;《Materials Research Bulletin》;20111231;第46卷;第518-524页 * |
Also Published As
Publication number | Publication date |
---|---|
CN107010953A (zh) | 2017-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3364426B1 (en) | Ferrite magnetic material and ferrite sintered magnet | |
CN110323027A (zh) | 铁氧体烧结磁铁及铁氧体烧结磁铁的制造方法 | |
Hossain et al. | Tailoring the properties of Ni-Zn-Co ferrites by Gd3+ substitution | |
Trukhanov et al. | Microstructure evolution and magnetoresistance of the A-site ordered Ba-doped manganites | |
CN110323025B (zh) | 铁氧体烧结磁铁 | |
Taguchi et al. | High energy ferrite magnets | |
US11610705B2 (en) | Ferrite sintered magnet and rotating electric machine comprising the same | |
WO1999034376A1 (fr) | Aimant en ferrite et son procede de production | |
CN104496443A (zh) | 一种高磁能积m型钙系永磁铁氧体材料及其制备方法 | |
CN107010953B (zh) | 一种单相多铁陶瓷材料及其制备方法 | |
CN109516796B (zh) | 一种多铁性固溶体陶瓷及其制备方法 | |
CN111533550A (zh) | 铁氧体烧结磁铁 | |
Troyanchuk et al. | Magnetic ordering in perovskites containing manganese and cobalt | |
US11557412B2 (en) | Ferrite sintered magnet and rotating electric machine comprising the same | |
US20220199298A1 (en) | Room-temperature multiferroicity material, method for preparing same, and electronic device comprising same | |
JP7338361B2 (ja) | フェライト焼結磁石 | |
Rubavathi et al. | Enrichment of magnetoelectric effect in the hexagonal BaTi1-xCoxO3 artificial type-II multiferroics by defects | |
Esha et al. | Synthesis and analysis of the influence of Eu3+ on the structural, ferromagnetic, dielectric and conductive characteristics of Ni0. 4Zn0. 45Cu0. 15Fe (2-x) EuxO4 composites using conventional double sintering ceramic method | |
Effendi et al. | The effects of milling time on structure, magnetic properties and microwave absorption capability of strontium lanthanum ferrite compounds | |
CN114591074A (zh) | 自偏置环行器用高剩磁m型钡铁氧体制备技术 | |
Idayanti et al. | Magnetic properties of barium ferrite after milling by high energy milling (hem) | |
WO2005073147A1 (ja) | フェライト焼結体の製造方法 | |
Effendi et al. | Transformation of Structure, Magnetic Properties and Microwave Absorption Capability in Nd-Doped Strontium Hexaferrite | |
KR102156117B1 (ko) | 상온 다강성 물질, 그의 제조방법 및 그를 포함하는 전자장치 | |
Shihai et al. | Magnetic properties of Gd and Tb doped Co2Z type hexagonal soft magnetic ferrites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |