CN109020530A - 一种织构化铜铁氧体陶瓷及制备方法 - Google Patents

一种织构化铜铁氧体陶瓷及制备方法 Download PDF

Info

Publication number
CN109020530A
CN109020530A CN201810986006.9A CN201810986006A CN109020530A CN 109020530 A CN109020530 A CN 109020530A CN 201810986006 A CN201810986006 A CN 201810986006A CN 109020530 A CN109020530 A CN 109020530A
Authority
CN
China
Prior art keywords
texturing
preparation
ferrite
slurry
ferrite ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810986006.9A
Other languages
English (en)
Inventor
刘美瑞
简刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Science and Technology
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN201810986006.9A priority Critical patent/CN109020530A/zh
Publication of CN109020530A publication Critical patent/CN109020530A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2666Other ferrites containing nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/763Spinel structure AB2O4

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Magnetic Ceramics (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开一种织构化铜铁氧体陶瓷及其制备方法,所述陶瓷中包括CuxFe3‑xO4,其中0.5≤x≤1,通过先以棒状α‑FeOOH颗粒为模板晶粒,加入以CuO、Fe2O3为原料制备出的水基流延前驱浆料,然后搅拌、除泡,获得CuxFe3‑xO4混合流延浆料,再通过流延成型工艺制备出CuxFe3‑ xO4坯体,成型后干燥、叠层、压片、排胶、烧结,得到织构化铜铁氧体CuxFe3‑xO4膜,其中0.5≤x≤1,厚度为50μm~3mm。本发明所述织构化铜铁氧体陶瓷结合了晶体材料和陶瓷材料的优势,大大提高了陶瓷材料的宏观性能;本发明通过沿固定晶向生长获得织构化的铜铁氧体陶瓷膜,其制备工艺简单,晶粒取向度高、原料容易获取、绿色环保。

Description

一种织构化铜铁氧体陶瓷及制备方法
技术领域
本发明属于磁性材料领域,涉及一种陶瓷材料,更具体涉及一种织构化铜铁氧体CuxFe3-xO4陶瓷以及制备方法。
背景技术
铁氧体是一种具有铁磁性,且通常含有Fe元素的金属氧化物。铁氧体材料具有良好的磁导率、高的居里点、大的压磁系数和良好的稳定性等优点。由于具有较高的居里点,高的饱和磁化强度,高的扩散各向异性能以及良好的稳定性等优点,广泛应用于微波器件等现代电子学领域。在铁氧体材料中,铜铁氧体CuxFe3-xO4具有尖晶石型非对称晶体结构,室温下晶体处于面心立方晶系。
由于织构化陶瓷同时具有陶瓷和晶体的优势,使得陶瓷材料的宏观性能大大提高,因此,制备具有优良性能的铜铁氧体材料成为近年来研究的热点。此前有专利公布了使用棒状模板制备织构化铁氧体材料(CN 103183505 B),但所使用的浆料为有机浆料,如开发水基环保型浆料,则具有绿色环保与成本低廉兼具的优点,而此类工作目前尚未公布。并且,到目前为止,没有关于织构化铜铁氧体及其制备方法的工作的公布。
发明内容
本发明的目的在于提供一种织构化铜铁氧体陶瓷。使用基于水基流延的模板晶粒定向生长(Reacted Templated Grain Growth,RTGG)技术制备得到,至今还未有相关的技术方案被公布。
本发明的另一目的在于提供一种制备上述织构化铜铁氧体陶瓷的方法。
为达到上述目的,本发明采用以下技术方案实现上述发明目的:
一种织构化铜铁氧体陶瓷,所述陶瓷中包括CuxFe3-xO4,其中0.5≤x≤1,陶瓷厚度为50μm~3mm。
一种织构化铜铁氧体陶瓷的制备方法,包括如下步骤:
1)流延前驱浆料制备:称取CuO和Fe2O3粉末,溶于水性溶剂去离子水中,加入分散剂、粘结剂和增塑剂,球磨4~9h,制备出固含量为30wt%~50wt%的流延前驱浆料;
2)混合流延浆料制备:以棒状α-FeOOH颗粒做为模板晶粒,加入步骤(1)得到的水基流延前驱浆料中,搅拌、除泡,配置成CuxFe3-xO4混合流延浆料;
反应原理为:xCuO+yFe2O3+(3-x-2y)FeOOH→CuxFe3-xO4+H2O↑,0<x<1,0<y<1;r=(3-x-2y)/(3-x)为棒状α-FeOOH颗粒的铁元素与最终产物CuxFe3-xO4铁元素摩尔比,4%≤r≤12%;则y值可由x和r的取值决定。棒状α-FeOOH颗粒,可采用水热法制备(制备技术基于参考文献:Z.Z.Sun,Y.M.Feng,W.H.Hou,Nanotechnology,18(2007)455607),长度为2~20μm,直径为1~2μm。
3)成型:通过流延成型工艺将步骤(2)获得的混合流延浆料制备成厚度为10~50μm的CuxFe3-xO4坯体,成型后室温干燥、叠层、压片、排胶、烧结,得到厚度为50μm~3mm的织构化铜铁氧体陶瓷。
进一步优选的,步骤(1)中所述CuO和Fe2O3粉末的总量在流延前驱浆料中的固含量为30wt%~50wt%。
进一步优选的,步骤(1)中所述分散剂、粘结剂和增塑剂占流延前驱浆料的质量百分比含量分别为0.2wt%~1wt%、2wt%~6wt%和5wt%~10wt%。其中所述分散剂为聚丙烯酸,粘结剂为聚乙烯醇,增塑剂为聚乙二醇。
进一步优选的,步骤(1)中所述CuO和Fe2O3粉末均为分析纯,粒度为微米级。
进一步优选的,步骤(1)中所述球磨时间为4~9h。
进一步优选的,步骤(2)中所述棒状α-FeOOH颗粒的铁元素与最终产物CuxFe3-xO4铁元素摩尔比值r为4%~12%;棒状α-FeOOH颗粒的长度为2~20μm,直径为1~2μm。
进一步优选的,步骤(3)中所述干燥时间为12~24h,压片压力为10~15MPa,保压时间为5~25s;排胶温度为280~320℃,排胶时间为24~36h;烧结温度为1050~1150℃,烧结时间为3~8h,升温速率和降温速率控制为5℃/min。
与现有技术相比,本发明具有的优点和有益效果:
本发明采用棒状α-FeOOH颗粒作为模板,以CuO和Fe2O3为原料,通过反应模板晶粒生长技术制备沿固定晶向生长的织构化结构的铜铁氧体陶瓷膜,厚度为50μm~3mm,织构度高,制备工艺简单,成本低廉,原料容易获取,且绿色环保。
附图说明
图1织构化铜铁氧体陶瓷横向压磁系数q31与织构度和晶粒取向的关系图
图2织构化铜铁氧体陶瓷纵向压磁系数q33与织构度和晶粒取向的关系图
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步的详细说明。应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。
以下实施例所用CuO和Fe2O3粉末均购自阿拉丁试剂(分析纯),平均粒径分别为2μm~5μm。制备浆料所采用的溶剂是去离子水。
实施例1
一种织构化铜铁氧体陶瓷,所述陶瓷中包括CuxFe3-xO4,当x=0.8时为Cu0.8Fe2.2O4,且r=8%。所述陶瓷厚度为50μm~3mm。
一种织构化铜铁氧体陶瓷的制备方法,具体步骤是:
1)流延前驱浆料的制备:
按照x=0.8,r=8%,将分析纯CuO和Fe2O3粉末,溶于水性溶剂去离子水中,再加入分散剂、粘结剂和增塑剂,球磨4h,得到固含量为30wt%的流延前驱浆料;其中分散剂、粘结剂和增塑剂占流延前驱浆料的质量百分比含量分别为0.2wt%、3wt%和10wt%;
2)混合流延浆料制备:在步骤(1)得到流延前驱浆料中加入棒状α-FeOOH颗粒(长度2μm,直径1μm),机械搅拌0.5h,静置除泡0.5h,得到Cu0.8Fe2.2O4混合流延浆料;
3)坯体成型和烧结:利用晶粒定向生长技术,将步骤(2)得到的Cu0.8Fe2.2O4混合流延浆料注入流延成型设备,控制坯体厚度为50μm,流延出Cu0.8Fe2.2O4的坯体,借助刮刀使棒状α-FeOOH颗粒在坯体中按照流延方向排列。室温下干燥12h,叠层在10MPa下压片,保压时间为5s,在烘箱中缓慢升温到280℃排胶,持续时间为24h。将样品取出,在高温烧结电炉中1050℃烧结3h,升温速率和降温速率控制为5℃/min,烧结过程中坯体中的粉体晶粒沿模板晶粒方向生长,烧结完得到织构化铜铁氧体Cu0.8Fe2.2O4陶瓷。
本实施例制得的织构化铜铁氧体Cu0.8Fe2.2O4陶瓷具有完整的物相,能够观察到织构纹理,织构度为70%。此织构化铜铁氧体Cu0.8Fe2.2O4陶瓷的横向压磁系数q31沿[001]和[111]方向分别为120×10-12m/A和67×10-12m/A(见图1);纵向压磁系数q33沿[112]和[111]方向分别为92×10-12m/A和135×10-12m/A(见图2)。
实施例2
一种织构化铜铁氧体陶瓷,所述陶瓷中包括CuxFe3-xO4,当x=0.5时为Cu0.5Fe2.5O4。所述陶瓷厚度为50μm~3mm。
一种织构化铜铁氧体陶瓷的制备方法,具体步骤是:
1)流延前驱浆料的制备:棒状α-FeOOH颗粒的铁元素与最终产物Cu0.5Fe2.5O4铁元素摩尔比值r=10%。
按照x=0.5,r=10%,将分析纯CuO和Fe2O3粉末,溶于水性溶剂去离子水中,再加入分散剂、粘结剂和增塑剂,行星球磨9h,得到固含量为50wt%的流延前驱浆料;其中分散剂、粘结剂和增塑剂占流延前驱浆料的质量百分比含量分别0.5wt%、4wt%和8wt%;
2)混合流延浆料制备:在步骤(1)得到流延前驱浆料中加入棒状α-FeOOH颗粒(长度10μm,直径1μm),机械搅拌0.5h,静置除泡0.5h,得到Cu0.5Fe2.5O4混合流延浆料;
3)坯体成型和烧结:利用晶粒定向生长技术,将Cu0.5Fe2.5O4混合流延浆料注入流延成型设备,控制坯体厚度为100μm,流延出Cu0.5Fe2.5O4的坯体,由于刮刀的作用,棒状α-FeOOH颗粒在坯体中按照流延方向排列。室温下干燥18h,叠层在12MPa下压片,保压时间为15s,在烘箱中缓慢升温到320℃进行排胶,持续时间为32h。将样品取出,在高温烧结电炉中1150℃烧结9h,升温速率和降温速率控制为5℃/min,烧结过程中坯体中的粉体晶粒沿模板晶粒方向生长,烧结完得到织构化铜铁氧体Cu0.5Fe2.5O4陶瓷。
本实施例制得的织构化铜铁氧体Cu0.5Fe2.5O4陶瓷,具有完整的物相和明显的织构纹理,织构度为90%。此织构化铜铁氧体Cu0.5Fe2.5O4陶瓷的横向压磁系数q31沿[001]和[111]方向分别为150×10-12m/A和83×10-12m/A(见图1);纵向压磁系数q33沿[112]和[111]方向分别为115×10-12m/A和165×10-12m/A(见图2)。
实施例3
一种织构化铜铁氧体陶瓷,所述陶瓷中包括CuxFe3-xO4,当x=1时为CuFe2O4,所述陶瓷厚度为50μm~3mm。
一种织构化铜铁氧体陶瓷的制备方法,具体步骤是:
1)流延前驱浆料的制备:按照棒状α-FeOOH颗粒的铁元素与最终产物CuFe2O4铁元素摩尔比值r=4%。
按照x=1,r=4%,将分析纯CuO和Fe2O3粉末,溶于水性溶剂去离子水中,再加入分散剂、粘结剂和增塑剂,球磨4h,得到固含量为40wt%的流延前驱浆料;;其中分散剂、粘结剂和增塑剂占流延前驱浆料的质量百分比含量分别1wt%、6wt%和5wt%;
2)混合流延浆料制备:在步骤(1)得到流延前驱浆料中加入棒状α-FeOOH颗粒(长度20μm,直径2μm),机械搅拌0.5h,静置除泡0.5h,得到CuFe2O4混合流延浆料;
3)坯体成型和烧结:利用晶粒定向生长技术,将CuFe2O4混合流延浆料注入流延成型设备,控制坯体厚度为80μm,流延出CuFe2O4的坯体,由于刮刀的作用,棒状α-FeOOH颗粒在坯体中按照流延方向排列。室温下干燥24h,叠层在15MPa下压片,保压时间为25s,在烘箱中缓慢升温到290℃排胶,持续时间28h。将样品取出,在高温烧结电炉中1100℃烧结6h,升温速率和降温速率控制为5℃/min,烧结过程中坯体中的粉体晶粒沿模板晶粒方向生长,烧结完得到织构化铜铁氧体CuFe2O4陶瓷。
本实施例制得的织构化铜铁氧体CuFe2O4陶瓷,具有完整的物相和明显的织构纹理,织构度为80%。此织构化铜铁氧体CuFe2O4陶瓷的横向压磁系数q31沿[001]和[111]方向分别为130×10-12m/A和72×10-12m/A(见图1);纵向压磁系数q33沿[112]和[111]方向分别为100×10-12m/A和143×10-12m/A(见图2)。
以上所述,仅为本发明较佳的具体实施方式。当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,任何熟悉本技术领域的技术人员,当可根据本发明作出各种相应的等效改变和变形,都应属于本发明所附的权利要求的保护范围。

Claims (10)

1.一种织构化铜铁氧体陶瓷,其特征在于,所述陶瓷中包括CuxFe3-xO4,其中0.5≤x≤1。
2.根据权利要求1所述的一种织构化铜铁氧体陶瓷,其特征在于,所述陶瓷的厚度为50μm~3mm。
3.一种如权利要求1所述的织构化铜铁氧体陶瓷的制备方法,其特征在于,包括如下步骤:
(1)流延前驱浆料制备:称取CuO和Fe2O3粉末,溶于水性溶剂去离子水中,加入分散剂、粘结剂和增塑剂,球磨,制备出固含量为30wt%~50wt%的流延前驱浆料;
(2)混合流延浆料制备:以棒状α-FeOOH颗粒为模板晶粒,加入步骤(1)得到的流延前驱浆料中,搅拌、除泡,配置成CuxFe3-xO4混合流延浆料;
(3)成型:通过流延成型工艺将步骤(2)获得的混合流延浆料制备成厚度为10~50μm的CuxFe3-xO4坯体,成型后室温干燥、叠层、压片、排胶、烧结,得到厚度为50μm~3mm的织构化铜铁氧体陶瓷。
4.根据权利要求3所述的织构化铜铁氧体陶瓷的制备方法,其特征在于,步骤(1)中所述CuO和Fe2O3粉末的总量在流延前驱浆料中的固含量为30wt%~50wt%。
5.根据权利要求3所述的织构化铜铁氧体陶瓷的制备方法,其特征在于,步骤(1)中所述分散剂、粘结剂和增塑剂占流延前驱浆料的质量百分比含量分别为0.2wt%~1wt%、2wt%~6wt%和5wt%~10wt%。
6.根据权利要求3所述的织构化铜铁氧体陶瓷的制备方法,其特征在于,所述分散剂为聚丙烯酸,粘结剂为聚乙烯醇,增塑剂为聚乙二醇。
7.根据权利要求3所述的织构化铜铁氧体陶瓷的制备方法,其特征在于,步骤(1)中所述CuO和Fe2O3粉末均为分析纯,粒度为微米级。
8.根据权利要求3所述的织构化铜铁氧体陶瓷的制备方法,其特征在于,步骤(1)中所述球磨时间为4~9h。
9.根据权利要求3所述的织构化铜铁氧体陶瓷的制备方法,其特征在于,步骤(2)中所述棒状α-FeOOH颗粒的铁元素与最终产物CuxFe3-xO4铁元素摩尔比值r为4%~12%;棒状α-FeOOH颗粒的长度为2~20μm,直径为1~2μm。
10.根据权利要求3所述的织构化铜铁氧体陶瓷的制备方法,其特征在于,步骤(3)中所述干燥时间为12~24h;压片压力为10~15MPa,保压时间为5~25s;排胶温度为280~320℃,排胶时间为24~36h;烧结温度为1050~1150℃,烧结时间为3~8h。
CN201810986006.9A 2018-08-28 2018-08-28 一种织构化铜铁氧体陶瓷及制备方法 Pending CN109020530A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810986006.9A CN109020530A (zh) 2018-08-28 2018-08-28 一种织构化铜铁氧体陶瓷及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810986006.9A CN109020530A (zh) 2018-08-28 2018-08-28 一种织构化铜铁氧体陶瓷及制备方法

Publications (1)

Publication Number Publication Date
CN109020530A true CN109020530A (zh) 2018-12-18

Family

ID=64625528

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810986006.9A Pending CN109020530A (zh) 2018-08-28 2018-08-28 一种织构化铜铁氧体陶瓷及制备方法

Country Status (1)

Country Link
CN (1) CN109020530A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111661878A (zh) * 2019-03-05 2020-09-15 中国石油天然气股份有限公司 一种纳米α-羟基氧化铁的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103183505A (zh) * 2013-03-25 2013-07-03 江苏科技大学 一种织构化钴铁氧体膜材料及制备方法
CN104177077A (zh) * 2014-08-25 2014-12-03 成都佳驰电子科技有限公司 一种nfc磁性基板用水基流延浆料及其制备方法和一种nfc磁性基板

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103183505A (zh) * 2013-03-25 2013-07-03 江苏科技大学 一种织构化钴铁氧体膜材料及制备方法
CN104177077A (zh) * 2014-08-25 2014-12-03 成都佳驰电子科技有限公司 一种nfc磁性基板用水基流延浆料及其制备方法和一种nfc磁性基板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111661878A (zh) * 2019-03-05 2020-09-15 中国石油天然气股份有限公司 一种纳米α-羟基氧化铁的制备方法

Similar Documents

Publication Publication Date Title
CN111763087B (zh) 一系列立方萤石型高熵铈氧化物纳米粉体及其制备方法
JP5520210B2 (ja) 固体酸化物型燃料電池用空気極材料粉末及びその製造方法
CN104609859B (zh) 自蔓燃引入纳米烧结助剂低温烧结制备0-3磁电复合陶瓷的方法
CN105601264A (zh) 一种高致密化多铁性(1-y)BiFeO3-yBi1-xRxFeO3复合陶瓷的制备方法
JP6071999B2 (ja) 固体酸化物型燃料電池用の空気極材料粉末及びその製造方法
CN112159219A (zh) 掺杂钇的镍锌钴铁氧体及其制备方法
CN104003707B (zh) 一种钡永磁铁氧体材料的制备方法
Su et al. Low temperature synthesis and characterization of YAG nanopowders by polyacrylamide gel method
CN104003701B (zh) 一种不含稀土永磁铁氧体材料的制备方法
CN103183505B (zh) 一种织构化钴铁氧体膜材料及制备方法
CN105016395A (zh) 一种纳米铁氧体材料及其制备方法
CN109020530A (zh) 一种织构化铜铁氧体陶瓷及制备方法
US7119041B2 (en) Cerium based composite oxide, sintered product thereof and method for preparation thereof
CN106747392B (zh) 一种Ho/Co复合掺杂Ni-Zn铁氧体陶瓷的制备方法
JP3440452B2 (ja) 高周波特性に優れた低温焼結多層チップインダクタ材料の製造方法
CN104003703B (zh) 一种高性能永磁铁氧体材料的制备方法
JP4955142B2 (ja) 希土類・アルミニウム・ガーネット微粉末および該粉末を用いた焼結体
CN108147814B (zh) 一种低温烧结氧化锆陶瓷的方法
Nakamura et al. Low temperature sintered Ni-Zn-Cu ferrite
CN103193476B (zh) 一种制备纯相BiFeO3陶瓷的湿化学方法
CN102910913B (zh) YMnO3电介质陶瓷的制备工艺及YMnO3电介质陶瓷电容器
CN102275919B (zh) 一种超细碳化铌粉末的制备方法
CN108947515A (zh) 一种织构化锰铁氧体陶瓷及制备方法
CN104961162B (zh) 一种基于离子补偿制备单一纯相铁酸铋材料的方法
KR20100104415A (ko) 나노 금속 산화물 분말의 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination