CN106984316A - 一种高效异相类芬顿催化剂微纳枝状铁铜合金的制备方法 - Google Patents

一种高效异相类芬顿催化剂微纳枝状铁铜合金的制备方法 Download PDF

Info

Publication number
CN106984316A
CN106984316A CN201710350154.7A CN201710350154A CN106984316A CN 106984316 A CN106984316 A CN 106984316A CN 201710350154 A CN201710350154 A CN 201710350154A CN 106984316 A CN106984316 A CN 106984316A
Authority
CN
China
Prior art keywords
copper
iron
dendritic
electrode
class fenton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710350154.7A
Other languages
English (en)
Other versions
CN106984316B (zh
Inventor
姜兆华
夏琦兴
姚忠平
王建康
李东琦
刘冠杰
张凌儒
孟艳秋
戴鹏程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201710350154.7A priority Critical patent/CN106984316B/zh
Publication of CN106984316A publication Critical patent/CN106984316A/zh
Application granted granted Critical
Publication of CN106984316B publication Critical patent/CN106984316B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C5/00Electrolytic production, recovery or refining of metal powders or porous metal masses
    • C25C5/02Electrolytic production, recovery or refining of metal powders or porous metal masses from solutions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Catalysts (AREA)

Abstract

一种高效异相类芬顿催化剂微纳枝状铁铜合金的制备方法,它属于水处理领域,具体涉及一种高效异相类芬顿催化剂的制备方法。本发明的目的是要解决现有高效异相催化剂制备复杂,活性差,比表面小,Fe离子溶出而产生铁泥造成二次污染的问题。方法:一、活化电极;二、配制电解液;三、制备枝状铜合金粉体;四、清洗,干燥。本发明制备的高效异相类芬顿催化剂微纳枝状铁铜合金可以在15min内完全降解苯酚,与市售铁粉相比,本发明制备的高效异相类芬顿催化剂微纳枝状铁铜合金的催化活性增加了20%~100%,铁溶出降低60%‑80%。本发明可获得一种高效异相类芬顿催化剂微纳枝状铁铜合金的制备方法。

Description

一种高效异相类芬顿催化剂微纳枝状铁铜合金的制备方法
技术领域
本发明属于水处理领域,具体涉及一种高效异相类芬顿催化剂的制备方法。
背景技术
化工产业作为国民经济支柱,为经济快速发展做出了极大的贡献,但随之也带来越来越多的污染问题,如水污染、土壤污染以及大气污染等。在土壤污染和水污染中,以苯酚为代表的芳香烃类污染物,严重危害了人体和生态环境。高级催化氧化(Fenton氧化及类Fenton氧化)在常温常压下反应,操作方便、氧化能力强,在土壤修复和有机废水处理应用前景广阔。而目前的芬顿氧化技术中,常存在Fe离子溶出而产生铁泥等易造成二次污染,且多次循环性能严重下降。故在高效异相催化剂的开发中,制备价廉易得、比表面积大和活性高的类芬顿催化剂材料在水处理领域具有重要的应用价值。
发明内容
本发明的目的是要解决现有高效异相催化剂制备复杂,活性差,比表面小,Fe离子溶出而产生铁泥造成二次污染的问题,而提供一种高效异相类芬顿催化剂微纳枝状铁铜合金的制备方法。
一种高效异相类芬顿催化剂微纳枝状铁铜合金的制备方法,具体是按以下步骤完成的:
一、活化电极:
将纯铜电极进行打磨抛光,得到光亮的纯铜电极;将光亮的纯铜电极浸入到活化电极液中20min~40min,得到活化的纯铜电极;
二、配制电解液:
将硫酸亚铁、硫酸铜、络合剂和蒸馏水混合,得到电解液;
步骤二中所述的电解液中Fe2+与Cu2+的总离子浓度为0.5mol/L~1.0mol/L,且Cu2+占Fe2+与Cu2+总离子的5%~50%;
步骤二中所述的电解液中络合剂的浓度为10g~80g/L;
三、将步骤二中的电解液置于电解槽中,以活化的纯铜电极作为阴极,以环形石墨电极作为阳极,使用导线将直流电源的负极与阴极相连接,再使用导线将电源的正极与阳极相连接,设置初始电流密度为1.4A/dm2~1.6A/dm2,接通直流电源,在初始电流密度为1.4A/dm2~1.6A/dm2下反应10s~15s,再将电流密度增大至初始电流密度的2倍,再在2倍的初始电流密度下反应10s~15s,停止反应,在阴极上得到枝状铜合金粉体;
四、首先使用去离子水对枝状铜合金粉体清洗3次~5次,再使用无水乙醇清洗3次~5次,再在温度为60℃下干燥,得到高效异相类芬顿催化剂微纳枝状铁铜合金。
本发明的优点:
一、本发明制备方法简单,原料廉价易得;
二、本发明制备的高效异相类芬顿催化剂微纳枝状铁铜合金的比表面积为19m2/g~32m2/g,与市售铁粉相比,比表面积增加了80~100倍;
三、本发明制备的高效异相类芬顿催化剂微纳枝状铁铜合金可以在15min内完全降解苯酚,与市售铁粉相比,本发明制备的高效异相类芬顿催化剂微纳枝状铁铜合金的催化活性增加了20%~100%;
四、本发明制备的高效异相类芬顿催化剂微纳枝状铁铜合金降解苯酚30min后,铁溶出小于2.5mg/L,与市售铁粉相比,铁溶出降低了60%~80%。
本发明可获得一种高效异相类芬顿催化剂微纳枝状铁铜合金的制备方法。
本发明的原理:
本发明制备的高效异相类芬顿催化剂微纳枝状铁铜合金相对于纯铁催化性能提高,有3个原因:①、多级结构由三级结构进化为四级结构,使得催化剂在降解体系中分散性更好;②、Fe与Cu会组成微弱原电池,比单一的Fe能够更快地与双氧水反应产生羟基自由基,从而降解苯酚;③、Cu比较稳定,相对于Fe不容易被双氧水钝化,且Cu又能够催化Fe3+还原为Fe2+,达到“专属还原”的效果,从而进一步促进更多的Fe2+与双氧水反应生成羟基自由基。
附图说明
图1为XRD谱图,图1中1为实施例一制备的纯铁的XRD曲线,2为实施例二制备的高效异相类芬顿催化剂微纳枝状铁铜合金的XRD曲线,3为实施例三制备的高效异相类芬顿催化剂微纳枝状铁铜合金的XRD曲线,4为实施例四制备的高效异相类芬顿催化剂微纳枝状铁铜合金的XRD曲线;
图2为实施例一制备的市售铁粉的SEM图;
图3为实施例二制备的高效异相类芬顿催化剂微纳枝状铁铜合金的SEM图;
图4为实施例三制备的高效异相类芬顿催化剂微纳枝状铁铜合金的SEM图;
图5为实施例四制备的高效异相类芬顿催化剂微纳枝状铁铜合金的SEM图;
图6为降解苯酚的曲线图,图6中1为铁粉降解苯酚的曲线,2为实施例二制备的高效异相类芬顿催化剂微纳枝状铁铜合金降解苯酚的曲线,3为实施例三制备的高效异相类芬顿催化剂微纳枝状铁铜合金降解苯酚的曲线,4为实施例四制备的高效异相类芬顿催化剂微纳枝状铁铜合金降解苯酚的曲线;
图7为不同的催化剂降解苯酚30min时的铁溶出情况,图7中1为市售铁粉降解苯酚30min时的铁溶出柱状图,2为实施例一制备的高效异相类芬顿催化剂微纳枝状铁铜合金降解苯酚30min时的铁溶出柱状图,3为实施例二制备的高效异相类芬顿催化剂微纳枝状铁铜合金降解苯酚30min时的铁溶出柱状图,4为实施例三制备的高效异相类芬顿催化剂微纳枝状铁铜合金降解苯酚30min时的铁溶出柱状图。
具体实施方式
具体实施方式一:本实施方式是一种高效异相类芬顿催化剂微纳枝状铁铜合金的制备方法,具体是按以下步骤完成的:
一、活化电极:
将纯铜电极进行打磨抛光,得到光亮的纯铜电极;将光亮的纯铜电极浸入到活化电极液中20min~40min,得到活化的纯铜电极;
二、配制电解液:
将硫酸亚铁、硫酸铜、络合剂和蒸馏水混合,得到电解液;
步骤二中所述的电解液中Fe2+与Cu2+的总离子浓度为0.5mol/L~1.0mol/L,且Cu2+占Fe2+与Cu2+总离子的5%~50%;
步骤二中所述的电解液中络合剂的浓度为10g~80g/L;
三、将步骤二中的电解液置于电解槽中,以活化的纯铜电极作为阴极,以环形石墨电极作为阳极,使用导线将直流电源的负极与阴极相连接,再使用导线将电源的正极与阳极相连接,设置初始电流密度为1.4A/dm2~1.6A/dm2,接通直流电源,在初始电流密度为1.4A/dm2~1.6A/dm2下反应10s~15s,再将电流密度增大至初始电流密度的2倍,再在2倍的初始电流密度下反应10s~15s,停止反应,在阴极上得到枝状铜合金粉体;
四、首先使用去离子水对枝状铜合金粉体清洗3次~5次,再使用无水乙醇清洗3次~5次,再在温度为60℃下干燥,得到高效异相类芬顿催化剂微纳枝状铁铜合金。
本实施方式的优点:
一、本实施方式制备方法简单,原料廉价易得;
二、本实施方式制备的高效异相类芬顿催化剂微纳枝状铁铜合金的比表面积为19m2/g~32m2/g,与市售铁粉相比,比表面积增加了80~100倍;
三、本实施方式制备的高效异相类芬顿催化剂微纳枝状铁铜合金可以在15min内完全降解苯酚,与市售铁粉相比,本实施方式制备的高效异相类芬顿催化剂微纳枝状铁铜合金的催化活性增加了20%~100%;
四、本实施方式制备的高效异相类芬顿催化剂微纳枝状铁铜合金降解苯酚30min后,铁溶出小于2.5mg/L,与市售铁粉相比,铁溶出降低了60%~80%。
本实施方式可获得一种高效异相类芬顿催化剂微纳枝状铁铜合金的制备方法。
本实施方式的原理:
本实施方式制备的高效异相类芬顿催化剂微纳枝状铁铜合金相对于纯铁催化性能提高,有3个原因:①、多级结构由三级结构进化为四级结构,使得催化剂在降解体系中分散性更好;②、Fe与Cu会组成微弱原电池,比单一的Fe能够更快地与双氧水反应产生羟基自由基,从而降解苯酚;③、Cu比较稳定,相对于Fe不容易被双氧水钝化,且Cu又能够催化Fe3+还原为Fe2+,达到“专属还原”的效果,从而进一步促进更多的Fe2+与双氧水反应生成羟基自由基。
具体实施方式二:本实施方式与具体实施方式一不同点是:步骤一中所述的纯铜电极的长度为100mm,直径为1mm。其他步骤与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二之一不同点是:步骤一中所述的活化电极液由硫酸铜、硫酸铁和蒸馏水混合而成;所述的活化电极液中硫酸铜的浓度为1mol/L,硫酸铁的浓度为0.1mol/L。其他步骤与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同点是:步骤二中所述的络合剂为乙二醇、六偏多聚磷酸钠、柠檬酸和十二烷基硫酸钠中的一种或其中几种的混合物。其他步骤与具体实施方式一至三相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同点是:步骤二中所述的电解液中Fe2+与Cu2+的总离子浓度为0.5mol/L~1.0mol/L,且Fe2+与Cu2+的离子比为50:50。其他步骤与具体实施方式一至四相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同点是:步骤二中所述的电解液中Fe2+与Cu2+的总离子浓度为0.5mol/L~1.0mol/L,且Fe2+与Cu2+的离子比为5:95。其他步骤与具体实施方式一至五相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同点是:步骤二中所述的电解液中络合剂的浓度为10g~30g/L。其他步骤与具体实施方式一至六相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同点是:步骤二中所述的电解液中络合剂的浓度为30g~50g/L。其他步骤与具体实施方式一至七相同。
具体实施方式九:本实施方式与具体实施方式一至八之一不同点是:步骤二中所述的电解液中络合剂的浓度为50g~80g/L。其他步骤与具体实施方式一至八相同。
具体实施方式十:本实施方式与具体实施方式一至九之一不同点是:步骤三中将步骤二中的电解液置于电解槽中,以活化的纯铜电极作为阴极,以环形石墨电极作为阳极,使用导线将直流电源的负极与阴极相连接,再使用导线将电源的正极与阳极相连接,设置初始电流密度为1.4A/dm2~1.5A/dm2,接通直流电源,在初始电流密度为1.4A/dm2~1.5A/dm2下反应10s,再将电流密度增大至初始电流密度的2倍,再在2倍的初始电流密度下反应10s,停止反应,在阴极上得到枝状铜合金粉体。其他步骤与具体实施方式一至九相同。
采用以下实施例验证本发明的有益效果:
实施例一:纯铁的制备方法,具体是按以下步骤完成的:
一、活化电极:
将纯铜电极进行打磨抛光,得到光亮的纯铜电极;将光亮的纯铜电极浸入到活化电极液中30min,得到活化的纯铜电极;
步骤一中所述的纯铜电极的长度为100mm,直径为1mm;
步骤一中所述的活化电极液由硫酸铜、硫酸铁和蒸馏水混合而成;所述的活化电极液中硫酸铜的浓度为1mol/L,硫酸铁的浓度为0.1mol/L;
二、配制电解液:
将硫酸亚铁、络合剂和蒸馏水混合,得到电解液;
步骤二中所述的电解液中Fe2+的浓度为0.5mol/L;
步骤二中所述的电解液中络合剂的浓度为20g/L;
步骤二中所述的络合剂为乙二醇;
三、将步骤二中的电解液置于电解槽中,以活化的纯铜电极作为阴极,以环形石墨电极作为阳极,使用导线将直流电源的负极与阴极相连接,再使用导线将电源的正极与阳极相连接,设置初始电流密度为1.6A/dm2,接通直流电源,在初始电流密度为1.6A/dm2下反应10s,再将电流密度增大至3.2A/dm2,再在3.2A/dm2下反应10s,停止反应,在阴极上得到枝状铜合金粉体;
四、首先使用去离子水对枝状铜合金粉体清洗3次,再使用无水乙醇清洗3次,再在温度为60℃下干燥,得到高效异相类芬顿催化剂微纳枝状铁铜合金。
实施例二:一种高效异相类芬顿催化剂微纳枝状铁铜合金的制备方法,具体是按以下步骤完成的:
一、活化电极:
将纯铜电极进行打磨抛光,得到光亮的纯铜电极;将光亮的纯铜电极浸入到活化电极液中30min,得到活化的纯铜电极;
步骤一中所述的纯铜电极的长度为100mm,直径为1mm;
步骤一中所述的活化电极液由硫酸铜、硫酸铁和蒸馏水混合而成;所述的活化电极液中硫酸铜的浓度为1mol/L,硫酸铁的浓度为0.1mol/L;
二、配制电解液:
将硫酸亚铁、硫酸铜、络合剂和蒸馏水混合,得到电解液;
步骤二中所述的电解液中Fe2+与Cu2+的总离子浓度为0.5mol/L;且Cu2+占Fe2+与Cu2 +总离子的5%;
步骤二中所述的电解液中络合剂的浓度为20g/L;
步骤二中所述的络合剂为乙二醇;
三、将步骤二中的电解液置于电解槽中,以活化的纯铜电极作为阴极,以环形石墨电极作为阳极,使用导线将直流电源的负极与阴极相连接,再使用导线将电源的正极与阳极相连接,设置初始电流密度为1.6A/dm2,接通直流电源,在初始电流密度为1.6A/dm2下反应10s,再将电流密度增大至3.2A/dm2,再在3.2A/dm2下反应10s,停止反应,在阴极上得到枝状铜合金粉体;
四、首先使用去离子水对枝状铜合金粉体清洗3次,再使用无水乙醇清洗3次,再在温度为60℃下干燥,得到高效异相类芬顿催化剂微纳枝状铁铜合金。
实施例三:一种高效异相类芬顿催化剂微纳枝状铁铜合金的制备方法,具体是按以下步骤完成的:
一、活化电极:
将纯铜电极进行打磨抛光,得到光亮的纯铜电极;将光亮的纯铜电极浸入到活化电极液中30min,得到活化的纯铜电极;
步骤一中所述的纯铜电极的长度为100mm,直径为1mm;
步骤一中所述的活化电极液由硫酸铜、硫酸铁和蒸馏水混合而成;所述的活化电极液中硫酸铜的浓度为1mol/L,硫酸铁的浓度为0.1mol/L;
二、配制电解液:
将硫酸亚铁、硫酸铜、络合剂和蒸馏水混合,得到电解液;
步骤二中所述的电解液中Fe2+与Cu2+的总离子浓度为0.5mol/L,且Cu2+占Fe2+与Cu2 +总离子的10%;
步骤二中所述的电解液中络合剂的浓度为20g/L;
步骤二中所述的络合剂为乙二醇;
三、将步骤二中的电解液置于电解槽中,以活化的纯铜电极作为阴极,以环形石墨电极作为阳极,使用导线将直流电源的负极与阴极相连接,再使用导线将电源的正极与阳极相连接,设置初始电流密度为1.6A/dm2,接通直流电源,在初始电流密度为1.6A/dm2下反应10s,再将电流密度增大至3.2A/dm2,再在3.2A/dm2下反应10s,停止反应,在阴极上得到枝状铜合金粉体;
四、首先使用去离子水对枝状铜合金粉体清洗3次,再使用无水乙醇清洗3次,再在温度为60℃下干燥,得到高效异相类芬顿催化剂微纳枝状铁铜合金。
实施例四:一种高效异相类芬顿催化剂微纳枝状铁铜合金的制备方法,具体是按以下步骤完成的:
一、活化电极:
将纯铜电极进行打磨抛光,得到光亮的纯铜电极;将光亮的纯铜电极浸入到活化电极液中30min,得到活化的纯铜电极;
步骤一中所述的纯铜电极的长度为100mm,直径为1mm;
步骤一中所述的活化电极液由硫酸铜、硫酸铁和蒸馏水混合而成;所述的活化电极液中硫酸铜的浓度为1mol/L,硫酸铁的浓度为0.1mol/L;
二、配制电解液:
将硫酸亚铁、硫酸铜、络合剂和蒸馏水混合,得到电解液;
步骤二中所述的电解液中Fe2+与Cu2+的总离子浓度为0.5mol/L,且Cu2+占Fe2+与Cu2 +总离子的25%;
步骤二中所述的电解液中络合剂的浓度为20g/L;
步骤二中所述的络合剂为乙二醇;
三、将步骤二中的电解液置于电解槽中,以活化的纯铜电极作为阴极,以环形石墨电极作为阳极,使用导线将直流电源的负极与阴极相连接,再使用导线将电源的正极与阳极相连接,设置初始电流密度为1.6A/dm2,接通直流电源,在初始电流密度为1.6A/dm2下反应10s,再将电流密度增大至3.2A/dm2,再在3.2A/dm2下反应10s,停止反应,在阴极上得到枝状铜合金粉体;
四、首先使用去离子水对枝状铜合金粉体清洗3次,再使用无水乙醇清洗3次,再在温度为60℃下干燥,得到高效异相类芬顿催化剂微纳枝状铁铜合金。
图1为XRD谱图,图1中1为实施例一制备的纯铁的XRD曲线,2为实施例二制备的高效异相类芬顿催化剂微纳枝状铁铜合金的XRD曲线,3为实施例三制备的高效异相类芬顿催化剂微纳枝状铁铜合金的XRD曲线,4为实施例四制备的高效异相类芬顿催化剂微纳枝状铁铜合金的XRD曲线;
从图1可知,随着电解液中Cu源含量的升高,Fe的最强主峰逐渐向左偏移,这是因为Cu离子进入Fe晶格中,导致晶面间距变大导致的。且随着Cu增加,图谱逐渐出现了Cu的衍射峰。
图2为实施例一制备的市售铁粉的SEM图;
从图2可知,电解液中无Cu源,获得的纯铁形貌,可以看出枝晶结构为三级结构,尺寸在3-8μm之间。
图3为实施例二制备的高效异相类芬顿催化剂微纳枝状铁铜合金的SEM图;
从图3可知,电解液中Cu2+占Fe2+与Cu2+总离子的5%,获得的Fe-5Cu合金形貌,可看出枝晶结构变为四级结构,尺寸在3-11μm之间。
图4为实施例三制备的高效异相类芬顿催化剂微纳枝状铁铜合金的SEM图;
从图4可以看出,电解液中Cu2+占Fe2+与Cu2+总离子的10%,获得的Fe-10Cu合金形貌,可看出枝晶结构为四级结构,尺寸在4-12μm之间。
图5为实施例四制备的高效异相类芬顿催化剂微纳枝状铁铜合金的SEM图;
从图5可以看出,电解液中Cu2+占Fe2+与Cu2+总离子的25%,获得的Fe-25Cu合金形貌,可看出枝晶结构为四级结构,尺寸在5-15μm之间。
表1为能谱结果。
表1
从表1中数据可知,样品中Cu源的比例要高于溶液中Cu源占比。这是因为Cu更容易被还原出导致的。
表2为比表面积测试结果。
表2
从表2可知,本发明制备的高效异相类芬顿催化剂微纳枝状铁铜合金的比表面积大大增加,增加了约80~120倍。
苯酚的降解试验:将5mg实施例一制备的纯铁、5mg实施例二制备的高效异相类芬顿催化剂微纳枝状铁铜合金、5mg实施例三制备的高效异相类芬顿催化剂微纳枝状铁铜合金和5mg实施例四制备的高效异相类芬顿催化剂微纳枝状铁铜合金加入到四份50mL浓度为35mg/L、pH值为4的苯酚溶液中,再分别搅拌均匀,再在搅拌下向四份苯酚溶液中分别加入34μL的浓度为6mmol/L的H2O2溶液,再将四份苯酚溶液分别加热至30℃,所述的苯酚溶液的pH值是使用0.1mol/L的硫酸溶液调节的,降解苯酚的效果如图6所示;
图6为降解苯酚的曲线图,图6中1为铁粉降解苯酚的曲线,2为实施例二制备的高效异相类芬顿催化剂微纳枝状铁铜合金降解苯酚的曲线,3为实施例三制备的高效异相类芬顿催化剂微纳枝状铁铜合金降解苯酚的曲线,4为实施例四制备的高效异相类芬顿催化剂微纳枝状铁铜合金降解苯酚的曲线。
从图6可知,随着电解液中Cu源比例的升高,制备的高效异相类芬顿催化剂微纳枝状铁铜合金的降解性能先增加后降低,其中,实施例三制备的Fe-10Cu合金的降解性能最佳,实施例二制备的Fe-5Cu合金次之,实施例四制备的Fe-25Cu合金最差,但仍优于铁粉的降级性能。
图7为不同的催化剂降解苯酚30min时的铁溶出情况,图7中1为市售铁粉降解苯酚30min时的铁溶出柱状图,2为实施例一制备的高效异相类芬顿催化剂微纳枝状铁铜合金降解苯酚30min时的铁溶出柱状图,3为实施例二制备的高效异相类芬顿催化剂微纳枝状铁铜合金降解苯酚30min时的铁溶出柱状图,4为实施例三制备的高效异相类芬顿催化剂微纳枝状铁铜合金降解苯酚30min时的铁溶出柱状图;
从图7可知,相对于市售铁粉,本发明制备的高效异相类芬顿催化剂微纳枝状铁铜合金的铁溶出情况大大降低,降低了大约60~80%。

Claims (10)

1.一种高效异相类芬顿催化剂微纳枝状铁铜合金的制备方法,其特征在于该制备方法具体是按以下步骤完成的:
一、活化电极:
将纯铜电极进行打磨抛光,得到光亮的纯铜电极;将光亮的纯铜电极浸入到活化电极液中20min~40min,得到活化的纯铜电极;
二、配制电解液:
将硫酸亚铁、硫酸铜、络合剂和蒸馏水混合,得到电解液;
步骤二中所述的电解液中Fe2+与Cu2+的总离子浓度为0.5mol/L~1.0mol/L,且Cu2+占Fe2 +与Cu2+总离子的5%~50%;
步骤二中所述的电解液中络合剂的浓度为10g~80g/L;
三、将步骤二中的电解液置于电解槽中,以活化的纯铜电极作为阴极,以环形石墨电极作为阳极,使用导线将直流电源的负极与阴极相连接,再使用导线将电源的正极与阳极相连接,设置初始电流密度为1.4A/dm2~1.6A/dm2,接通直流电源,在初始电流密度为1.4A/dm2~1.6A/dm2下反应10s~15s,再将电流密度增大至初始电流密度的2倍,再在2倍的初始电流密度下反应10s~15s,停止反应,在阴极上得到枝状铜合金粉体;
四、首先使用去离子水对枝状铜合金粉体清洗3次~5次,再使用无水乙醇清洗3次~5次,再在温度为60℃下干燥,得到高效异相类芬顿催化剂微纳枝状铁铜合金。
2.根据权利要求1所述的一种高效异相类芬顿催化剂微纳枝状铁铜合金的制备方法,其特征在于步骤一中所述的纯铜电极的长度为100mm,直径为1mm。
3.根据权利要求1所述的一种高效异相类芬顿催化剂微纳枝状铁铜合金的制备方法,其特征在于步骤一中所述的活化电极液由硫酸铜、硫酸铁和蒸馏水混合而成;所述的活化电极液中硫酸铜的浓度为1mol/L,硫酸铁的浓度为0.1mol/L。
4.根据权利要求1所述的一种高效异相类芬顿催化剂微纳枝状铁铜合金的制备方法,其特征在于步骤二中所述的络合剂为乙二醇、六偏多聚磷酸钠、柠檬酸和十二烷基硫酸钠中的一种或其中几种的混合物。
5.根据权利要求1所述的一种高效异相类芬顿催化剂微纳枝状铁铜合金的制备方法,其特征在于步骤二中所述的电解液中Fe2+与Cu2+的总离子浓度为0.5mol/L~1.0mol/L,且Fe2+与Cu2+的离子比为50:50。
6.根据权利要求1所述的一种高效异相类芬顿催化剂微纳枝状铁铜合金的制备方法,其特征在于步骤二中所述的电解液中Fe2+与Cu2+的总离子浓度为0.5mol/L~1.0mol/L,且Fe2+与Cu2+的离子比为5:95。
7.根据权利要求1所述的一种高效异相类芬顿催化剂微纳枝状铁铜合金的制备方法,其特征在于步骤二中所述的电解液中络合剂的浓度为10g~30g/L。
8.根据权利要求1所述的一种高效异相类芬顿催化剂微纳枝状铁铜合金的制备方法,其特征在于步骤二中所述的电解液中络合剂的浓度为30g~50g/L。
9.根据权利要求1所述的一种高效异相类芬顿催化剂微纳枝状铁铜合金的制备方法,其特征在于步骤二中所述的电解液中络合剂的浓度为50g~80g/L。
10.根据权利要求1所述的一种高效异相类芬顿催化剂微纳枝状铁铜合金的制备方法,其特征在于步骤三中将步骤二中的电解液置于电解槽中,以活化的纯铜电极作为阴极,以环形石墨电极作为阳极,使用导线将直流电源的负极与阴极相连接,再使用导线将电源的正极与阳极相连接,设置初始电流密度为1.4A/dm2~1.5A/dm2,接通直流电源,在初始电流密度为1.4A/dm2~1.5A/dm2下反应10s,再将电流密度增大至初始电流密度的2倍,再在2倍的初始电流密度下反应10s,停止反应,在阴极上得到枝状铜合金粉体。
CN201710350154.7A 2017-05-15 2017-05-15 一种高效异相类芬顿催化剂微纳枝状铁铜合金的制备方法 Active CN106984316B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710350154.7A CN106984316B (zh) 2017-05-15 2017-05-15 一种高效异相类芬顿催化剂微纳枝状铁铜合金的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710350154.7A CN106984316B (zh) 2017-05-15 2017-05-15 一种高效异相类芬顿催化剂微纳枝状铁铜合金的制备方法

Publications (2)

Publication Number Publication Date
CN106984316A true CN106984316A (zh) 2017-07-28
CN106984316B CN106984316B (zh) 2019-04-26

Family

ID=59419501

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710350154.7A Active CN106984316B (zh) 2017-05-15 2017-05-15 一种高效异相类芬顿催化剂微纳枝状铁铜合金的制备方法

Country Status (1)

Country Link
CN (1) CN106984316B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111569878A (zh) * 2020-05-25 2020-08-25 哈尔滨工业大学 一种丝瓜络遗态多孔碳负载类芬顿催化剂的制备方法及应用
CN115403195A (zh) * 2022-08-23 2022-11-29 哈尔滨工业大学 一种利用微纳枝状零价铜催化剂活化分子氧处理有机废水的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101485985A (zh) * 2008-01-17 2009-07-22 中国科学院生态环境研究中心 一种新型高效多相光芬顿催化剂CuOx-FeOOH的研制方法
CN102909073A (zh) * 2012-10-12 2013-02-06 浙江理工大学 一种非均相类芬顿催化剂的制备方法及其应用
CN103521229A (zh) * 2013-10-31 2014-01-22 中国环境科学研究院 一种铁钴类芬顿催化剂的制备方法及其产品和应用
CN105018971A (zh) * 2015-07-20 2015-11-04 哈尔滨工业大学 一种由铁制备功能性的微纳结构枝状α-Fe基材料的方法
CN105540931A (zh) * 2016-01-19 2016-05-04 东华大学 一种工业废水多元组合催化零价铁类芬顿处理方法及其装置
CN106582774A (zh) * 2016-12-13 2017-04-26 天津工业大学 一种铁铜双金属负载介孔硅非均相芬顿催化材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101485985A (zh) * 2008-01-17 2009-07-22 中国科学院生态环境研究中心 一种新型高效多相光芬顿催化剂CuOx-FeOOH的研制方法
CN102909073A (zh) * 2012-10-12 2013-02-06 浙江理工大学 一种非均相类芬顿催化剂的制备方法及其应用
CN103521229A (zh) * 2013-10-31 2014-01-22 中国环境科学研究院 一种铁钴类芬顿催化剂的制备方法及其产品和应用
CN105018971A (zh) * 2015-07-20 2015-11-04 哈尔滨工业大学 一种由铁制备功能性的微纳结构枝状α-Fe基材料的方法
CN105540931A (zh) * 2016-01-19 2016-05-04 东华大学 一种工业废水多元组合催化零价铁类芬顿处理方法及其装置
CN106582774A (zh) * 2016-12-13 2017-04-26 天津工业大学 一种铁铜双金属负载介孔硅非均相芬顿催化材料的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111569878A (zh) * 2020-05-25 2020-08-25 哈尔滨工业大学 一种丝瓜络遗态多孔碳负载类芬顿催化剂的制备方法及应用
CN111569878B (zh) * 2020-05-25 2022-04-29 哈尔滨工业大学 一种丝瓜络遗态多孔碳负载类芬顿催化剂的制备方法及应用
CN115403195A (zh) * 2022-08-23 2022-11-29 哈尔滨工业大学 一种利用微纳枝状零价铜催化剂活化分子氧处理有机废水的方法
CN115403195B (zh) * 2022-08-23 2024-03-29 哈尔滨工业大学 一种利用微纳枝状零价铜催化剂活化分子氧处理有机废水的方法

Also Published As

Publication number Publication date
CN106984316B (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
CN107008326B (zh) 一种碳量子点负载铁基材料高效异相类芬顿催化剂的制备方法
Li et al. Efficient photoreduction strategy for uranium immobilization based on graphite carbon nitride/perovskite oxide heterojunction nanocomposites
CN104966842B (zh) 一种基于多孔碳材料的水氧化反应催化剂及其制备方法
CN112342385B (zh) 一种从含铀废水或海水中提取铀的装置、方法及其应用
CN101811020B (zh) 饮用水高效除氟Fe3O4-ZrO(OH)2磁性纳米吸附材料的制备方法
CN106252673B (zh) 一种基于天然植物组织的Fe-N/C氧还原反应催化剂的制备方法
CN111167513B (zh) 一种用于去除水中硝酸盐的柔性电催化膜及其制备方法和应用
CN110102312A (zh) 一种一维氧化亚铜/银/氧化锌纳米棒光催化复合材料及其制备方法与应用
CN106944043A (zh) 一种微纳异质结可见光复合光催化剂及其制备方法和应用
CN104971760A (zh) 含硫、氮和过渡金属元素大孔碳氧化原催化剂的制备方法
CN107252685A (zh) 一种含羟基胺类化合物功能化磁性氧化石墨烯催化材料及其制备方法和应用
CN106984316B (zh) 一种高效异相类芬顿催化剂微纳枝状铁铜合金的制备方法
CN107611380A (zh) 一种氧化镍/立体结构石墨烯复合材料的制备方法
CN108031479A (zh) 一种贝塔氧化铋-氯氧化铋的制备方法
CN103816903B (zh) 铁基磁性纳米针铁矿的合成方法
CN109336225A (zh) 用于污水处理厂尾水中硝态氮去除的颗粒电极及其制备方法
CN105253963A (zh) 一种AuPd/Fe3O4原位电芬顿催化剂及其制备方法和应用
CN110127819A (zh) 一种采用三维电解装置同步去除水中硝酸盐和磷酸盐的方法
CN109999844A (zh) 一种MoS2/施威特曼石类芬顿复合催化剂、制备方法与应用
Sun et al. Emerging investigator series: hetero-phase junction 1T/2H-MoS 2 nanosheets decorated by FeOOH nanoparticles for enhanced visible light photo-Fenton degradation of antibiotics
CN106732698A (zh) 一种p‑n异质结型可见光光催化剂Bi2WO6/Ag3PO4及其制备方法
CN113441142B (zh) 一种富含氧空位的石墨烯负载多孔纳米氧化铁电催化剂的制备方法及应用
Gao et al. Efficient three-step strategy for reduction recovery of high purity uranium oxide from nuclear wastewater
CN103420458B (zh) 一种负载混合价态铁的活化碳气凝胶电极的制备方法及应用
CN110564715A (zh) 双层金属有机骨架固定化hrp的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant