CN106977220A - 一种氧化锆与超细氮化硼多孔纤维复合增韧wc复合材料及其制备方法 - Google Patents

一种氧化锆与超细氮化硼多孔纤维复合增韧wc复合材料及其制备方法 Download PDF

Info

Publication number
CN106977220A
CN106977220A CN201710145920.6A CN201710145920A CN106977220A CN 106977220 A CN106977220 A CN 106977220A CN 201710145920 A CN201710145920 A CN 201710145920A CN 106977220 A CN106977220 A CN 106977220A
Authority
CN
China
Prior art keywords
ultra
boron nitride
porous fibre
zirconium oxide
composites
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710145920.6A
Other languages
English (en)
Inventor
李小强
曹廷
屈盛官
黄阳
梁良
张民爱
杨超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201710145920.6A priority Critical patent/CN106977220A/zh
Publication of CN106977220A publication Critical patent/CN106977220A/zh
Pending legal-status Critical Current

Links

Classifications

    • C04B35/806
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5626Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明属于合金材料技术领域,公开了一种氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料及其制备方法。所述复合材料由87.85~93.99wt.%的WC,6.0~12.0wt.%的氧化锆,0.01~0.15wt.%的超细氮化硼多孔纤维以及不可避免的微量杂质组成。其制备方法为:将WC粉体、超细氮化硼多孔纤维、氧化锆粉体和有机溶剂置于球磨机中进行湿式球磨,将球磨浆料干燥除去溶剂后过筛,获得颗粒尺寸≤300μm的复合粉末,然后烧结固化成形得到。本发明的复合材料以多孔纤维稳定烧结后块体材料中的四方氧化锆,有助于材料力学性能的提升和保持,适合作为刀具材料或者模具材料。

Description

一种氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料及其 制备方法
技术领域
本发明属于合金材料技术领域,具体涉及一种氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料及其制备方法。
背景技术
WC-Co硬质合金,是一种常见的、重要的硬质合金种类(YG系列),广泛地应用于现代刀具材料、耐磨、耐腐蚀和耐高温材料领域,有现代工业的牙齿之称。纯WC材料很难烧结致密,即使烧结致密,烧结温度也往往在2000℃以上,易于对设备造成损害,并且烧结后断裂韧性只有~4MPa·m1/2。Co作为WC烧结时的一种粘结相,对WC有非常好的润湿性,同时能使WC烧结温度降低到~1400℃,烧结时Co成为液相,大大增加WC颗粒扩散速率,使烧结致密,烧结后碳化钨复合材料通常断裂韧性在~12MPa·m1/2。世界Co资源的分布是极其不均衡的,刚果(金)、澳大利亚和古巴三国的Co储量之和就占据世界总储量的68%。对中国的Co原料的供应也存在很多不稳定因素。同时Co作为一种粘结剂,降低了WC材料的硬度、耐腐蚀性和耐高温性,限制了WC材料在某些极端服役环境下的应用。因此,寻找一种常见的来源广泛的非粘结相的材料来替代Co,摆脱对国外的依赖,同时提高WC类硬质合金的硬度和高温性能就显得非常重要。
氧化锆在室温下状态为单斜氧化锆(m-ZrO2)。而常用的力学性能较好的为四方氧化锆(t-ZrO2),正常情况下存在于高温。故一般采用Y2O3等作为稳定剂,使四方氧化锆在常温下也得以保持。此种部分稳定氧化锆也常用于多种陶瓷材料的增韧。此外,氧化锆也易于同基体材料形成固溶体,促进界面结合。但是当烧结后,仍然会有部分单斜氧化锆出现,同时随着时间的推移也伴随着四方氧化锆向单斜氧化锆的退化,造成材料力学性能的下降。
超细氮化硼多孔纤维,由于其多孔结构(total pore volume,0.566cm3/g)和高比表面积(0.515cm2/g)[Jing Lin,Lulu Xu,Yang Huang et al.Ultrafine porous boronnitride nanofibers synthesized via a freeze-drying and pyrolysis process andtheir adsorption properties.RSC Advances,2016,6,1253-1259],添加质量分数小但能够高效利用,易于在制备过程中同时与基体和第二相实现结合。目前采用氧化锆增韧WC复合材料的研究尚未有报道。同时,以超细氮化硼多孔纤维稳定四方氧化锆的方法也未见报道。
发明内容
为了解决以上现有技术的缺点和不足之处,本发明的首要目的在于提供一种氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料。
本发明的另一目的在于提供上述氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料的制备方法。
本发明目的通过以下技术方案实现:
一种氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料,由87.85~93.99wt.%的WC,6.0~12.0wt.%的ZrO2(3Y),0.01~0.15wt.%的超细氮化硼多孔纤维以及不可避免的微量杂质组成。
上述氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料的制备方法,包括以下制备步骤:
(1)将WC粉体、超细氮化硼多孔纤维、氧化锆粉体和有机溶剂置于球磨机中进行湿式球磨,制得球磨浆料;
(2)将球磨浆料干燥除去溶剂后过筛,获得颗粒尺寸≤300μm的复合粉末;
(3)将复合粉末置于模具中烧结固化成形,得到无粘结相的氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料。
优选地,步骤(1)中所述的有机溶剂为乙醇。
优选地,步骤(2)中所述的干燥是指干燥至溶剂残余质量≤1%。
优选地,步骤(3)中所述的烧结是指采用放电等离子烧结技术进行烧结,具体烧结条件如下:
烧结电流类型为直流脉冲电流;
烧结压力:30~50MPa;
烧结气氛:低真空≤6Pa;
升温速率:50~300℃/min;
烧结温度:1400~1500℃;
保温时间:0min。
本发明的复合材料及制备方法具有如下优点及有益效果:
(1)本发明在纯WC中加入氧化锆和超细氮化硼多孔纤维,超细氮化硼多孔纤维具有高比表面积和高孔隙密度,有助于在制备过程中更好的与WC基体和氧化锆实现结合,对传统的第二相增韧方式做出了重要改进;
(2)本发明采用粒径较细的WC粉体和氧化锆,并添加超细氮化硼多孔纤维制备了增韧WC复合材料;细小的WC晶粒、氧化锆和的超细氮化硼多孔纤维的复合增韧机制在有助于提高基体材料韧性的同时,保持基体材料本身的高硬度;
(3)本发明制备的WC复合材料是一种由氧化锆与超细氮化硼多孔纤维复合增韧的不含有任何金属粘结相的WC复合材料,它具有很高的硬度、耐磨性、抗氧化性能以及较好的韧性,适合作为刀具材料或者模具材料;
(4)本发明在氧化锆增韧WC复合材料中添加超细氮化硼多孔纤维,超细氮化硼多孔纤维可稳定四方氧化锆,抑制了单斜氧化锆出现,有助于材料力学性能的提升和保持,与传统添加的稳定剂,例如稀土氧化物等不同。
附图说明
图1为实施例1所得氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料的XRD谱图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
本实施例的一种氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料,通过如下方法制备:
(1)将91.95g WC(0.2μm,纯度>99.9%,徐州捷创新材料科技有限公司),8.0gZrO2(0.1μm,3mol.%Y2O3-稳定四方晶ZrO2,纯度>99.9%,上海超威纳米科技有限公司),0.05g超细氮化硼多孔纤维(外径20-60nm,河北工业大学氮化硼材料研究中心),倒入250ml硬质合金罐中,再加入乙醇作为溶剂(所得混合浆料的体积不超过球磨罐容积的2/3),得到混合浆料;将装有混合浆料的球磨罐置于行星式球磨机上进行湿式球磨(转速180r/min,球磨时间为30h),得到球磨浆料;
(2)将球磨浆料置于真空干燥箱中干燥至溶剂残余量≤1%,取出烘干后的粉末碾碎、过筛,获得颗粒尺寸≤300μm的复合粉末;
(3)取25g复合粉末装进内径和外径的圆筒形石墨模具中,粉料、凹模与冲头两两之间均以石墨纸隔开以便脱模,凹模外还包覆一层10mm厚的石墨毡以减少热辐射损耗;将装有复合粉末的石墨模具置于放电等离子烧结炉中进行烧结,得到氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料。所述烧结参数为:烧结电流类型为直流脉冲电流,烧结气氛为低真空(≤6Pa),烧结压力为30MPa,升温速率为100℃/min,测温方式为红外测温(≥570℃),烧结温度为1450℃,保温时间0min。
本实施例所得氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料经阿基米德法测试后计算得到相对密度为98.9%;采用维氏硬度计并设定载荷10kg力测试硬度,硬度为HV10 24.52GPa;根据维氏硬度压痕,采用压痕法计算得到断裂韧性8.9Mpa·m1/2
本实施例所得氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料的XRD谱图如图1所示。由图1可以看出,添加了超细氮化硼多孔纤维后的氧化锆与WC复合材料相比未添加多孔纤维得到的复合材料未观察到单斜氧化锆的出现。说明了超细氮化硼多孔纤维具有稳定四方氧化锆,抑制了单斜氧化锆出现的作用。
实施例2
本实施例的一种氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料,通过如下方法制备:
步骤(1)~(2)与实施例1相同;
(3)取25g复合粉末装进内径和外径的圆筒形石墨模具中,粉料、凹模与冲头两两之间均以石墨纸隔开以便脱模,凹模外还包覆一层10mm厚的石墨毡以减少热辐射损耗;将装有复合粉末的石墨模具置于放电等离子烧结炉中进行烧结,得到氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料。所述烧结参数为:烧结电流类型为直流脉冲电流,烧结气氛为低真空(≤6Pa),烧结压力为30MPa,升温速率为100℃/min,测温方式为红外测温(≥570℃),烧结温度为1400℃,保温时间0min。
本实施例所得氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料经测量计算其相对密度为98.3%,硬度为HV10 23.58.4GPa,断裂韧性8.4Mpa·m1/2
实施例3
本实施例的一种氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料,通过如下方法制备:
步骤(1)~(2)与实施例1相同;
(3)取25g复合粉末装进内径和外径的圆筒形石墨模具中,粉料、凹模与冲头两两之间均以石墨纸隔开以便脱模,凹模外还包覆一层10mm厚的石墨毡以减少热辐射损耗;将装有复合粉末的石墨模具置于放电等离子烧结炉中进行烧结,得到氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料。所述烧结参数为:烧结电流类型为直流脉冲电流,烧结气氛为低真空(≤6Pa),烧结压力为50MPa,升温速率为300℃/min,测温方式为红外测温(≥570℃),烧结温度为1500℃,保温时间0min。
本实施例所得氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料经测量计算其相对密度为98.5%,硬度为HV10 24.23GPa,断裂韧性9.06Mpa·m1/2
实施例4
本实施例的一种氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料,通过如下方法制备:
步骤(1)~(2)与实施例1相同;
(3)取25g复合粉末装进内径和外径的圆筒形石墨模具中,粉料、凹模与冲头两两之间均以石墨纸隔开以便脱模,凹模外还包覆一层10mm厚的石墨毡以减少热辐射损耗;将装有复合粉末的石墨模具置于放电等离子烧结炉中进行烧结,得到氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料。所述烧结参数为:烧结电流类型为直流脉冲电流,烧结气氛为低真空(≤6Pa),烧结压力为30MPa,升温速率为100℃/min,测温方式为红外测温(≥570℃),测温聚焦点位于模具外壁中心孔底部,离模具内壁7.5mm处,烧结温度为1420℃,保温时间0min。
本实施例所得氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料经测量计算其相对密度为98.3%,硬度为HV10 23.8GPa,断裂韧性9.15Mpa·m1/2
实施例5
本实施例的一种氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料,通过如下方法制备:
步骤(1)~(2)与实施例1相同;
(3)取25g复合粉末装进内径和外径的圆筒形石墨模具中,粉料、凹模与冲头两两之间均以石墨纸隔开以便脱模,凹模外还包覆一层10mm厚的石墨毡以减少热辐射损耗;将装有复合粉末的石墨模具置于放电等离子烧结炉中进行烧结,得到氧化锆与超细氮化硼多孔纤维增韧WC复合材料。所述烧结参数为:烧结电流类型为直流脉冲电流,烧结气氛为低真空(≤6Pa),烧结压力为50MPa,升温速率为100℃/min,测温方式为红外测温(≥570℃),测温聚焦点位于模具外壁中心孔底部,离模具内壁7.5mm处,烧结温度为1500℃,保温时间0min。
本实施例所得氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料经测量计算其相对密度为98.8%,硬度为HV10 24.5GPa,断裂韧性9.06Mpa·m1/2
实施例6
本实施例的一种氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料,通过如下方法制备:
步骤(1)~(2)与实施例1相同;
(3)取25g复合粉末装进内径和外径的圆筒形石墨模具中,粉料、凹模与冲头两两之间均以石墨纸隔开以便脱模,凹模外还包覆一层10mm厚的石墨毡以减少热辐射损耗;将装有复合粉末的石墨模具置于放电等离子烧结炉中进行烧结,得到氧化锆与超细氮化硼多孔纤维增韧WC复合材料。所述烧结参数为:烧结电流类型为直流脉冲电流,烧结气氛为低真空(≤6Pa),烧结压力为50MPa,升温速率为50℃/min,测温方式为红外测温(≥570℃),测温聚焦点位于模具外壁中心孔底部,离模具内壁7.5mm处,烧结温度为1450℃,保温时间0min。
本实施例所得氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料经测量计算其相对密度为98.6%,硬度为HV10 24.1GPa,断裂韧性8.95Mpa·m1/2
实施例7
本实施例的一种氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料,通过如下方法制备:
(1)将93.95g WC(0.2μm,纯度>99.9%,徐州捷创新材料科技有限公司),6g ZrO2(0.1μm,3mol.%Y2O3-稳定四方晶ZrO2,纯度>99.9%,上海超威纳米科技有限公司),0.05g超细氮化硼多孔纤维(外径20-60nm,河北工业大学氮化硼材料研究中心),倒入250ml硬质合金罐中,再加入乙醇作为溶剂(所得混合浆料的体积不超过球磨罐容积的2/3),得到混合浆料;将装有混合浆料的球磨罐置于行星式球磨机上进行湿式球磨(转速180r/min,球磨时间为30h),得到球磨浆料;
步骤(2)~(3)与实施例1相同。
本实施例所得氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料经测量计算其相对密度为98.2%,硬度为HV10 25.5GPa,断裂韧性8.12Mpa·m1/2
实施例8
本实施例的一种氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料,通过如下方法制备:
(1)将87.95g WC(0.2μm,纯度>99.9%,徐州捷创新材料科技有限公司),12g ZrO2(0.1μm,3mol.%Y2O3-稳定四方晶ZrO2,纯度>99.9%,上海超威纳米科技有限公司),0.05g超细氮化硼多孔纤维(外径20-60nm,河北工业大学氮化硼材料研究中心),倒入250ml硬质合金罐中,再加入乙醇作为溶剂(所得混合浆料的体积不超过球磨罐容积的2/3),得到混合浆料;将装有混合浆料的球磨罐置于行星式球磨机上进行湿式球磨(转速180r/min,球磨时间为30h),得到球磨浆料;
步骤(2)~(3)与实施例1相同。
本实施例所得氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料经测量计算其相对密度为98.3%,硬度为HV10 22.8GPa,断裂韧性9.02Mpa·m1/2
实施例9
本实施例的一种氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料,通过如下方法制备:
(1)将91.4g WC(0.2μm,纯度>99.9%,徐州捷创新材料科技有限公司),8.5g ZrO2(0.1μm,3mol.%Y2O3-稳定四方晶ZrO2,纯度>99.9%,上海超威纳米科技有限公司),0.1g超细氮化硼多孔纤维(外径20-60nm,河北工业大学氮化硼材料研究中心),倒入250ml硬质合金罐中,再加入乙醇作为溶剂(所得混合浆料的体积不超过球磨罐容积的2/3),得到混合浆料;将装有混合浆料的球磨罐置于行星式球磨机上进行湿式球磨(转速180r/min,球磨时间为30h),得到球磨浆料;
步骤(2)~(3)与实施例1相同。
本实施例所得氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料经测量计算其相对密度为99.2%,硬度为HV10 23.77GPa,断裂韧性9.4Mpa·m1/2
实施例10
本实施例的一种氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料,通过如下方法制备:
(1)将92.49g WC(0.2μm,纯度>99.9%,徐州捷创新材料科技有限公司),7.5gZrO2(0.1μm,3mol.%Y2O3-稳定四方晶ZrO2,纯度>99.9%,上海超威纳米科技有限公司),0.01g超细氮化硼多孔纤维(外径20-60nm,河北工业大学氮化硼材料研究中心),倒入250ml硬质合金罐中,再加入乙醇作为溶剂(所得混合浆料的体积不超过球磨罐容积的2/3),得到混合浆料;将装有混合浆料的球磨罐置于行星式球磨机上进行湿式球磨(转速180r/min,球磨时间为30h),得到球磨浆料;
步骤(2)~(3)与实施例1相同。
本实施例所得氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料经测量计算其相对密度为98.1%,硬度为HV10 24.3GPa,断裂韧性8.68Mpa·m1/2
实施例11
本实施例的一种氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料,通过如下方法制备:
(1)将91.85g WC(0.2μm,纯度>99.9%,徐州捷创新材料科技有限公司),8g ZrO2(0.1μm,3mol.%Y2O3-稳定四方晶ZrO2,纯度>99.9%,上海超威纳米科技有限公司),0.15g超细氮化硼多孔纤维(外径20-60nm,河北工业大学氮化硼材料研究中心),倒入250ml硬质合金罐中,再加入乙醇作为溶剂(所得混合浆料的体积不超过球磨罐容积的2/3),得到混合浆料;将装有混合浆料的球磨罐置于行星式球磨机上进行湿式球磨(转速180r/min,球磨时间为30h),得到球磨浆料;
步骤(2)~(3)与实施例1相同。
本实施例所得氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料经测量计算其相对密度为98.6%,硬度为HV10 23.5GPa,断裂韧性9.10Mpa·m1/2
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (5)

1.一种氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料,其特征在于:所述复合材料由87.85~93.99wt.%的WC,6.0~12.0wt.%的氧化锆,0.01~0.15wt.%的超细氮化硼多孔纤维以及不可避免的微量杂质组成。
2.权利要求1所述的一种氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料的制备方法,其特征在于包括以下制备步骤:
(1)将WC粉体、超细氮化硼多孔纤维、氧化锆粉体和有机溶剂置于球磨机中进行湿式球磨,制得球磨浆料;
(2)将球磨浆料干燥除去溶剂后过筛,获得颗粒尺寸≤300μm的复合粉末;
(3)将复合粉末置于模具中烧结固化成形,得到无粘结相的氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料。
3.根据权利要求2所述的一种氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料的制备方法,其特征在于:步骤(1)中所述的有机溶剂为乙醇。
4.根据权利要求2所述的一种氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料的制备方法,其特征在于:步骤(2)中所述的干燥是指干燥至溶剂残余质量≤1%。
5.根据权利要求2所述的一种氧化锆与超细氮化硼多孔纤维复合增韧WC复合材料的制备方法,其特征在于步骤(3)中所述的烧结是指采用放电等离子烧结技术进行烧结,具体烧结条件如下:
烧结电流类型为直流脉冲电流;
烧结压力:30~50MPa;
烧结气氛:低真空≤6Pa;
升温速率:50~300℃/min;
烧结温度:1400~1500℃;
保温时间:0min。
CN201710145920.6A 2017-03-13 2017-03-13 一种氧化锆与超细氮化硼多孔纤维复合增韧wc复合材料及其制备方法 Pending CN106977220A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710145920.6A CN106977220A (zh) 2017-03-13 2017-03-13 一种氧化锆与超细氮化硼多孔纤维复合增韧wc复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710145920.6A CN106977220A (zh) 2017-03-13 2017-03-13 一种氧化锆与超细氮化硼多孔纤维复合增韧wc复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN106977220A true CN106977220A (zh) 2017-07-25

Family

ID=59339664

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710145920.6A Pending CN106977220A (zh) 2017-03-13 2017-03-13 一种氧化锆与超细氮化硼多孔纤维复合增韧wc复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106977220A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109320249A (zh) * 2018-09-12 2019-02-12 华南理工大学 一种含氧化硼的碳化钨复合材料及其制备方法
CN110845249A (zh) * 2019-11-01 2020-02-28 华南理工大学 一种弹性模量提升的氮化硅复合材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102863218A (zh) * 2012-09-27 2013-01-09 华南理工大学 含氧化锆颗粒与氮化硅晶须的碳化钨复合材料及制备方法
CN106116617A (zh) * 2016-06-20 2016-11-16 华南理工大学 一种超细氮化硼多孔纤维增韧wc复合材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102863218A (zh) * 2012-09-27 2013-01-09 华南理工大学 含氧化锆颗粒与氮化硅晶须的碳化钨复合材料及制备方法
CN106116617A (zh) * 2016-06-20 2016-11-16 华南理工大学 一种超细氮化硼多孔纤维增韧wc复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
尹建军等: "添加硼对氧化锆晶化过程的影响", 《兰州理工大学学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109320249A (zh) * 2018-09-12 2019-02-12 华南理工大学 一种含氧化硼的碳化钨复合材料及其制备方法
CN109320249B (zh) * 2018-09-12 2022-02-15 华南理工大学 一种含氧化硼的碳化钨复合材料及其制备方法
CN110845249A (zh) * 2019-11-01 2020-02-28 华南理工大学 一种弹性模量提升的氮化硅复合材料及其制备方法
CN110845249B (zh) * 2019-11-01 2022-04-22 华南理工大学 一种弹性模量提升的氮化硅复合材料及其制备方法

Similar Documents

Publication Publication Date Title
Deng et al. Microstructure and mechanical properties of hot-pressed B4C/(W, Ti) C ceramic composites
CN105272260B (zh) 一种无粘结相碳化钨复合材料及其制备方法
CN107794430B (zh) 一种超细晶粒金属陶瓷及其制备方法
Guo et al. Effect of heating rate on densification, microstructure and strength of spark plasma sintered ZrB2-based ceramics
CN110511035A (zh) 一种高韧性高耐磨性的高熵陶瓷及其制备方法和应用
CN103182506B (zh) 一种TiCp/M2高速钢复合材料及其SPS制备方法
Li et al. The influence of sintering procedure and porosity on the properties of 3D printed alumina ceramic cores
CN108640663A (zh) 一种石墨烯/碳化硅增强氧化铝基复合材料及其制备方法
US10259751B2 (en) Tungsten carbide-cubic boron nitride composite material and preparation method thereof
CN108285355A (zh) 制备SiC纳米线增强反应烧结碳化硅陶瓷基复合材料的方法
CN106116617B (zh) 一种超细氮化硼多孔纤维增韧wc复合材料及其制备方法
CN110330318A (zh) 一种微纳复合陶瓷刀具材料及其制备方法
CN111943702B (zh) 一种原位自生β-SIALON晶须增韧碳化钨复合材料及其制备方法与应用
CN109320249B (zh) 一种含氧化硼的碳化钨复合材料及其制备方法
CN110468320A (zh) 一种高硬度和高韧性的金属陶瓷及其制备方法和应用
CN106977220A (zh) 一种氧化锆与超细氮化硼多孔纤维复合增韧wc复合材料及其制备方法
CN112500167A (zh) 一种致密化碳化钛复合陶瓷的制备方法
CN104140265B (zh) 采用液相烧结制备以氧化锆为增韧相的碳化硅陶瓷的方法
CN106542838B (zh) 一种立体网络增韧wc复合材料及其制备方法
CN107903060A (zh) 一种电子束物理气相沉积用锆酸镧基陶瓷靶材及其制备方法
CN101948326A (zh) 一种SiC晶须增韧ZrC基超高温陶瓷复合材料及其制备方法
CN104261822A (zh) 一种氧化锆复合陶瓷及其制备方法
CN104561628B (zh) 一种低温制备二硼化锆基陶瓷复合材料的方法
Song et al. Microstructure and mechanical properties of TiB 2-HfC ceramic tool materials
CN105503230A (zh) 一种CNTs增韧WC复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170725