CN106964350A - 一种Fe3O4@C@TiO2磁分离光催化剂的简易制备方法 - Google Patents

一种Fe3O4@C@TiO2磁分离光催化剂的简易制备方法 Download PDF

Info

Publication number
CN106964350A
CN106964350A CN201710154025.0A CN201710154025A CN106964350A CN 106964350 A CN106964350 A CN 106964350A CN 201710154025 A CN201710154025 A CN 201710154025A CN 106964350 A CN106964350 A CN 106964350A
Authority
CN
China
Prior art keywords
tio
feooh
photochemical catalyst
magneto separate
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710154025.0A
Other languages
English (en)
Other versions
CN106964350B (zh
Inventor
王雪飞
廖丹
田都
赵文杰
曹雪竹
余火根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201710154025.0A priority Critical patent/CN106964350B/zh
Publication of CN106964350A publication Critical patent/CN106964350A/zh
Application granted granted Critical
Publication of CN106964350B publication Critical patent/CN106964350B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • H01F1/0054Coated nanoparticles, e.g. nanoparticles coated with organic surfactant
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Power Engineering (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种Fe3O4@C@TiO2磁分离光催化剂的简易制备方法,包括以下步骤:1)取β‑FeOOH纳米棒,分散于水中形成分散液;2)以间苯二酚、甲醛合成FeOOH@RF核壳纳米棒,分散于乙醇中形成分散液;3)加入乙醇和CH3CN以及氨水搅拌混匀组成A液;另取乙醇和CH3CN混匀加入TBOT组成B液,混合,室温反应一定时间即合成纳米棒;4)通过高温煅烧,即得。本发明的有益效果在于:利用简易、温和的方法制备了磁响应可回收的Fe3O4@C@TiO2可见光纳米光催化剂。该合成方法操作简单,同时设备要求低,制备的Fe3O4@C@TiO2的核壳结构的纳米棒分散性较好,纳米粒子尺寸比较均匀。

Description

一种Fe3O4@C@TiO2磁分离光催化剂的简易制备方法
技术领域
本发明涉及一种Fe3O4@C@TiO2磁分离光催化剂的简易制备方法。
技术背景
光催化技术具有净化空气、降解废水和抗菌等方面的作用,引起了国内外广泛学者的关注。但粉末态光催化剂却存在着分离困难、容易团聚及不能重复利用等缺点。如果将光催化剂固定化,即制备负载型TiO2,既可以解决分离回收困难的问题,又能克服悬浮粉末态光催化不稳定的缺点。然而,将TiO2制成薄膜,负载在玻璃、沙子、硅片等载体上,虽然可以回收利用,但是TiO2的催化活性会因此受到影响。因此既要保持粉末态TiO2大的表面积,维持其高催化活性,又要将其固定化,解决回收分离困难的问题。利用超顺磁性铁磁性微粒如Fe3O4作为载体制备可磁分离的光催化剂,使得光催化剂在磁场的作用下能够快速有效分析,从而解决了TiO2不能回收利用的问题。
可磁分离光催化剂是一种具有磁响应特性的光催化剂,它不仅具有较高的光催化活性,而且在外加磁场下容易分离回收。磁载光催化剂是核壳结构,即磁载体作为内核,具有光催化活性的组分作为外壳包覆在其上。由于Fe3O4具有磁性,对于工业仪器设备等有不利影响,因此我们拟打算先制备以FeOOH为核的模板而后将FeOOH部分还原成磁性Fe3O4,从而避免对设备的伤害并实现可磁分离。
磁载光催化剂不仅能维持悬浮体系较高的光催化效率,而且可以利用磁性技术回收光催化剂。但由于TiO2和磁载材料的直接接触通常会产生不良的异质结,导致电子空穴复合以及光溶解的几率增加。因此,通过引入如SiO2、C等惰性层来阻止磁性氧化铁和TiO2的直接接触可解决这个问题,然而SiO2不耐碱,并且需要还原气氛和还原剂还原,所以我们选择使用C层作为惰性层,不仅能避免Fe3O4和TiO2的直接接触,减少光生电子与空穴的复合,而且比TiO2材料更有效地利用光和提高降解性能。
发明的内容
本发明所要解决的技术问题就是针对上述问题,提出一种Fe3O4@C@TiO2磁分离光催化剂的简易制备方法,即通过模板法和惰性气体包覆煅烧法制备出Fe3O4@C@TiO2磁分离光催化剂。
本发明解决上述技术问题所采用的技术方案是:一种Fe3O4@C@TiO2磁分离光催化剂的简易制备方法,其特征在于包括以下步骤:
1)取β-FeOOH纳米棒,将其超声分散于水中形成分散液;
2)在步骤1)所制得的分散液中,以间苯二酚、甲醛合成FeOOH@RF核壳纳米棒,并将其分散于乙醇中形成FeOOH@RF分散液;
3)在步骤2)所得FeOOH@RF分散液中,加入乙醇和CH3CN以及氨水剧烈搅拌混匀组成A液;另取乙醇和CH3CN混匀加入TBOT组成B液,将B液快速加入A液中混合,室温反应一定时间即合成FeOOH@RF@TiO2“三明治”纳米棒;
4)在步骤3)合成FeOOH@RF@TiO2核壳纳米棒的基础上,通过高温煅烧,即制得Fe3O4@C@TiO2光催化剂。
按上述方案,步骤2)中间苯二酚与β-FeOOH质量比为5:3,甲醛与β-FeOOH分散液体积比为0.35%。
按上述方案,步骤3)中TBOT与步骤2)中所得FeOOH@RF分散液体积比为2%。
按上述方案,步骤4)所述的煅烧温度为400℃-550℃。
按上述方案,步骤4)所述的煅烧气氛为空气、惰性气体、还原性气体或惰性气体与还原性气体混合气。
按上述方案,步骤4)所述的惰性气体为氮气、氩气或它们的混合。
本发明提出通过以FeOOH纳米棒为模板,使用两步溶胶-凝胶包覆的方法再高温煅烧将其一步转变为碳层保护的Fe3O4@C@TiO2磁分离光催化剂。在磁性材料外层包覆光催化剂来实现光催化剂的回收,其基本原理是:(1)光催化剂固定化,即制备负载型TiO2,既可以解决分离回收困难的问题,而且还可以克服悬浮粉末态光催化不稳定的缺点;(2)为了避免TiO2和磁载材料Fe3O4的直接接触产生不良的异质结,导致电子空穴复合以及光溶解的几率增加,可以通过在两者之间引入惰性层来阻止磁性氧化铁和TiO2的直接接触;(3)为了防止Fe3O4的磁性对使用的仪器设备造成伤害,先制备FeOOH为核的模板而后将聚合物覆在表面进行高温煅烧,有机聚合物将FeOOH部分还原成磁性Fe3O4,自身生成C层的惰性层而避免Fe3O4的磁性对仪器设备的不利影响;(4)利用超顺磁性铁磁性微粒Fe3O4作为载体制备可磁分离的光催化剂,可以实现光催化剂在磁场的作用下能够快速有效分离,从而解决了光催化剂的回收问题。
本发明的有益效果在于:本发明利用简易、温和的方法——模板法和惰性气体包覆煅烧法制备了磁响应可回收的Fe3O4@C@TiO2可见光纳米光催化剂。该合成方法操作简单,同时设备要求低,制备的Fe3O4@C@TiO2的核壳结构的纳米棒分散性较好,纳米粒子尺寸比较均匀;不仅展现了良好的可见光光催化活性,而且表现了快的磁响应速度,实现了催化剂的高效磁回收特性,有望产生良好的社会和经济效益。
附图说明
图1为实施例1中(A)FeOOH,(B)FeOOH@RF,(C)FeOOH@RF@TiO2的SEM图;
图2为实施例1中(A)FeOOH,(B)FeOOH@RF,(C)FeOOH@RF@TiO2粒径分布图;
图3为实施例1中样品的XRD图(a)FeOOH@RF@TiO2,(b)FeOOH@RF@TiO2在空气中煅烧,(c)(d)(e)分别表示在氮气气氛下400℃、450℃、550℃下煅烧的样品;
图4为实施例1样品的UV-Vis漫反射光谱(a)FeOOH@RF@TiO2,(b)FeOOH@RF@TiO2在空气中煅烧,(c)(d)(e)分别表示在氮气气氛下400℃、450℃、550℃下煅烧的样品;
图5为实施例1中(氮气氛围下400℃煅烧Fe3O4@C@TiO2(S1)(A)超声分散1min(B)静置30min(C)加磁铁后30s;
图6为氮气氛围下450℃煅烧Fe3O4@C@TiO2(S2)(A)超声分散1min(B)静置30min(C)加磁铁后30s;
图7为实施例1中氮气氛围下550℃煅烧Fe3O4@C@TiO2(S3)(A)超声分散1min(B)静置30min(C)加磁铁后30s;
图8为实施例1中空气氛围下450℃煅烧Fe3O4@C@TiO2(S3)(A)超声分散1min(B)静置30min(C)加磁铁后30s;
图9为实施例1中不同样品降解甲基橙溶液(A)S1-400(B)S2-450(C)S3-550的紫外-可见吸收光谱;
图10为实施例1中不同样品降解甲基橙溶液的动力学曲线(a)(b)(c)分别表示在氮气气氛下400℃、450℃、550℃下煅烧的样品。
具体实施方式
下面结合实施例对本发明做进一步详细的说明,但是此说明不会构成对本发明的限制。
实施例1:
可磁分离的Fe3O4@C@TiO2光催化剂的制备过程如下:0.1g CTAB和0.108g FeCl3·6H2O(0.4mmol)溶于4mL水中。充分溶解后离心3min,弃置沉降物。澄清液在85℃下缓慢磁力搅拌12h。离心分离(1000rpm 3min),水洗3-5次后得到β-FeOOH纳米棒。随后将0.03g的β-FeOOH纳米棒超声分散在20mL水中,形成分散液。向上述20mL分散液中加入1mL 0.1M PAA溶液,中速搅拌分散12h,1000rpm离心回收固体重新分散在28mL水中,加入间苯二酚(R)溶液(0.05g间苯二酚溶于1ml水中)和70μL的甲醛(F)溶液,搅拌5min,匀速滴加1mL 28%氨水,室温下磁力搅拌下反应12h。得到的产物水洗3-5次,酒精洗3-5次,分散于10ml乙醇中形成FeOOH@RF分散液。取5mL上述分散液,加入15mL的乙醇和7mL CH3CN,再加0.2mL浓氨水,剧烈搅拌下混合搅匀,配成A液;另取3mL乙醇和1mL CH3CN,混匀后加入0.1mL TBOT。将B液快速加入A液中混合,室温反应3h,取上清液离心(7000rpm离心3min)。将上述所得样品置于管式炉中,在450℃下氮气环境中高温煅烧2h,即获得产品。
Fe3O4@C@TiO2复合光催化剂的表征方法:加速电压为10kV的日产场发射扫描电镜(S-4800,Hitachi)测试样品形貌;采用日本Rigaku公司生产的RigakuUltima III型X射线衍射仪测试样品的结构和相组成,其中所用辐射源为Cu Kα;用紫外可见光谱仪(UV-2550)测定样品的紫外可见光漫反射吸收谱。
图1A为FeOOH纳米棒的SEM图,从中可以看出,制备的FeOOH纳米棒模板平均长约为183.49nm,直径约为53.33nm,且分散比较好,尺寸均一。B、C是以FeOOH纳米棒为模板制备的FeOOH@RF和FeOOH@RF@TiO2的SEM图。由B中看出FeOOH@RF分散性比较好,棒状结构很明显,且尺寸比较均一,平均来看棒长约为201.16nm,直径为60.19nm,表明RF层厚度约为20nm。C的FeOOH@RF@TiO2SEM结果显示,所制备的纳米棒尺寸均一,长约为214.68nm,直径约为65.63nm,即表明TiO2层厚度约为15nm。
图2是对每个SEM图进行粒径分析,所得的粒长粒径分布图均大致符合正态分布,说明了数据的准确性。
图3是为进一步确定产物的结构,对其进行了XRD的图,F表示Fe3O4的特征衍射峰,f表示FeOOH的特征衍射峰,T表示TiO2的特征衍射峰。a表示所得到的FeOOH@RF@TiO2样品,d表示将FeOOH@RF@TiO2在450℃的N2中煅烧所得的样品。可见a样品中并无Fe3O4,当将其在450℃的N2中煅烧后,聚合物RF层将FeOOH还原生成了具有磁性的Fe3O4,自身则生成了惰性的C层,从而成功合成了具有核壳结构的Fe3O4@C@TiO2磁分离光催化剂。
图4为样品的UV-Vis漫反射光谱。a表示FeOOH@RF@TiO2,d表示将a在450℃的N2中煅烧后所得的样品。由图可知,a表示的FeOOH@RF@TiO2在200-400nm范围内有很强的吸收峰,但在400-800nm范围内的吸收峰很弱,说明a只对紫外光有响应,对可见光无响应。相比于a,d则在200-800nm范围内都有很强的吸收峰,尤其是在2000-650nm范围,说明在450℃下煅烧的产物其对此波段的光响应很好。
Fe3O4@C@TiO2磁分离光催化剂的光催化性能评价如下:称量50mg样品分散到装有10mL的MO溶液(20mg/L)的直径为5cm的表面皿中。经可见光光照之前,将混合均匀的悬浮液于暗室中静置2h,使光催化剂和MO溶液达到吸附-脱附平衡。光催化的光源为带有紫外滤光片(入射可见光波长≥400nm)的350W氙灯作为可见光光源,照射在反应溶液表面的平均光密度为80mW/cm2(可见光辐射计,北京师范大学光电仪器厂,FZ-A)。通过日产紫外-可见分光光度计(UV-2550,Shimadzu)测定MO的浓度。每光照3min取适量悬浮溶液进行离心,吸取上清液测定MO的吸光度。由于MO溶液的浓度比较低,其光催化降解反应为准一级反应,其动力学公式可以被表示为ln(c/c0)=-kt,其中k为表观速率常数,c0和c分别是MO在初始状态和光照t(min)后的浓度。因此,可用MO降解的速率常数k来评价光催化材料的光催化降解性能。
图9B为450℃氮气气氛下煅烧的催化剂在光降解甲基橙过程中定时取样测得的紫外-可见吸收光谱图,可见在整个紫外可见光范围内特征吸收峰值260nm、463nm都有明显的降低,峰的位置没有改变,也没有出现新的吸收峰,说明实验中甲基橙发生了降解,在降解的过程中没有新物质生成和积累。且由图10降解甲基橙溶液的动力学曲线可看出,在450℃下氮气环境中煅烧所得样品的表观一级光降解常数为0.13min-1。由此可知,该条件下所制备出的Fe3O4@C@TiO2磁分离光催化剂表现出良好的光催化活性。
Fe3O4@C@TiO2磁分离光催化剂的磁性是利用磁铁进行检测的。图6为450℃下N2氛围中煅烧制备的催化剂:在装有催化剂的小玻璃瓶外加磁铁后,催化剂颗粒迅速向磁铁靠近,且溶液很快澄清(溶液呈黄色是因为溶液中有甲基橙),表现出很强的磁效应,由此可知成功地制备出了Fe3O4@C@TiO2磁分离光催化剂。
实施例2:
为了检验不同煅烧温度对Fe3O4@C@TiO2磁分离光催化剂制备以及光催化性能的影响,除煅烧温度外,其他反应条件如FeOOH模板分散液的浓度(1.5mg/mL)和煅烧气体环境采用N2等均与实施例1相同,结果如图3、4的c、e以及图9的A、C所示,在400℃、550℃下N2气氛中煅烧所得到的样品Fe3O4@C@TiO2均有明显的Fe3O4、TiO2特征衍射峰,并且它们的UV-Vis漫反射光谱中,在200-800nm范围内均有很强的吸收峰。煅烧温度为400℃的图9A经过光催化降解后,整个紫外可见光范围内峰值有些许下降,说明少量甲基橙发生降解。图9C表明整个紫外可见光范围内特征吸收峰值260nm、463nm都有明显的降低,说明实验中甲基橙发生了降解,且由图10降解甲基橙溶液的动力学曲线可看出,在550℃下氮气环境中煅烧所得样品的表观一级光降解常数为0.21min-1。当选择300℃的较低煅烧温度时,FeOOH并没有很好的转化生成Fe3O4,且在降解甲基橙实验中并未展现出光催化活性;而当选择800℃的较高煅烧温度时,由于生成了光催化活性较差的金红石相TiO2,导致降解甲基橙实验中显现出较低的光催化活性。由此可知,在400℃-550℃条件下所制备出的Fe3O4@C@TiO2磁分离光催化剂具有良好的光催化活性。
煅烧温度对于催化剂磁性的影响主要表现在图5、6、7,在400℃以及550℃煅烧的催化剂加磁铁后,响应略慢,而在450℃条件时,磁效应明显,说明400℃以及550℃煅烧的催化剂磁性略低。在较低的300℃煅烧温度下因温度过低并未很好地生成磁性的Fe3O4,且温度过高时可能还原为FeO。因此在Fe3O4@C@TiO2磁分离光催化剂制备过程中,最佳煅烧温度为400-550℃。
实施例3:
为了检验煅烧的气体环境对Fe3O4@C@TiO2磁分离光催化剂制备以及性能的影响,除煅烧的气体环境外,其他反应条件如FeOOH模板分散液的浓度(1.5mg/mL)和煅烧温度等均与实施例1相同,结果如图3、4中b所示。当煅烧是在非惰性气体环境,如空气条件下进行时,并未观察到Fe3O4的特征衍射峰,可初步判断,空气中煅烧FeOOH@RF@TiO2无法得到Fe3O4@C@TiO2,而在氮气氛围下能够成功地将FeOOH还原为Fe3O4,并且b与a相似,在200-400nm范围内有很强的吸收峰,而在400-800nm范围内吸收峰很弱,说明b也仅对紫外光有响应而对可见光无响应。
煅烧的气体环境对Fe3O4@C@TiO2磁分离光催化剂磁性的影响主要体现在对450℃空气氛围中煅烧的样品加磁铁后,溶液没有任何反应,说明催化剂并没有磁性。而换作氩气、氢气、氮气与氢气的混合气等,所得到的结果与选取氮气条件结果相似,均能成功制备出核壳结构的Fe3O4@C@TiO2磁分离光催化剂,且有良好的光催化活性以及磁响应特性,但考虑到氢气的安全性因素,因此在Fe3O4@C@TiO2磁分离光催化剂制备过程中,最佳煅烧气体环境必须为惰性气体如氮气、氩气等。

Claims (6)

1.一种Fe3O4@C@TiO2磁分离光催化剂的简易制备方法,其特征在于包括以下步骤:
1)取β-FeOOH纳米棒,将其超声分散于水中形成分散液;
2)在步骤1)所制得的分散液中,以间苯二酚、甲醛合成FeOOH@RF核壳纳米棒,并将其分散于乙醇中形成FeOOH@RF分散液;
3)在步骤2)所得FeOOH@RF分散液中,加入乙醇和CH3CN以及氨水剧烈搅拌混匀组成A液;另取乙醇和CH3CN混匀加入TBOT组成B液,将B液快速加入A液中混合,室温反应一定时间即合成FeOOH@RF@TiO2“三明治”纳米棒;
4)在步骤3)合成FeOOH@RF@TiO2核壳纳米棒的基础上,通过高温煅烧,即制得Fe3O4@C@TiO2光催化剂。
2.根据权利要求1所述的Fe3O4@C@TiO2磁分离光催化剂的简易制备方法,其特征在于步骤2)中间苯二酚与β-FeOOH质量比为5:3,甲醛与β-FeOOH分散液体积比为0.35%。
3.根据权利要求1所述的Fe3O4@C@TiO2磁分离光催化剂的简易制备方法,其特征在于步骤3)中TBOT与步骤2)中所得FeOOH@RF分散液体积比为2%。
4.根据权利要求1所述的Fe3O4@C@TiO2磁分离光催化剂的简易制备方法,其特征在于步骤4)所述的煅烧温度为400℃-550℃。
5.根据权利要求4所述的Fe3O4@C@TiO2磁分离光催化剂的简易制备方法,其特征在于步骤4)所述的煅烧气氛为空气、惰性气体、还原性气体或惰性气体与还原性气体混合气。
6.根据权利要求5所述的Fe3O4@C@TiO2磁分离光催化剂的简易制备方法,其特征在于步骤4)所述的惰性气体为氮气、氩气或它们的混合。
CN201710154025.0A 2017-03-15 2017-03-15 一种Fe3O4@C@TiO2磁分离光催化剂的简易制备方法 Expired - Fee Related CN106964350B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710154025.0A CN106964350B (zh) 2017-03-15 2017-03-15 一种Fe3O4@C@TiO2磁分离光催化剂的简易制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710154025.0A CN106964350B (zh) 2017-03-15 2017-03-15 一种Fe3O4@C@TiO2磁分离光催化剂的简易制备方法

Publications (2)

Publication Number Publication Date
CN106964350A true CN106964350A (zh) 2017-07-21
CN106964350B CN106964350B (zh) 2019-08-23

Family

ID=59329550

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710154025.0A Expired - Fee Related CN106964350B (zh) 2017-03-15 2017-03-15 一种Fe3O4@C@TiO2磁分离光催化剂的简易制备方法

Country Status (1)

Country Link
CN (1) CN106964350B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108456530A (zh) * 2018-03-26 2018-08-28 郑州轻工业学院 一种磁性羧基化空心微球土壤修复剂、其制备方法及应用
CN108480393A (zh) * 2018-03-26 2018-09-04 郑州轻工业学院 一种磁性氨基化空心微球土壤修复剂、其制备方法及应用
CN108514863A (zh) * 2017-08-29 2018-09-11 新疆德安环保科技股份有限公司 利用腐植酸制备炭包覆磁性埃洛石复合物吸附剂的方法及其所得产物
CN110404561A (zh) * 2019-08-02 2019-11-05 南京理工大学 TiO2@C/CdS复合材料及其制备方法
CN112090425A (zh) * 2020-09-24 2020-12-18 青海师范大学 一种磁性碳载TiO2光催化剂及其制备方法
CN114436339A (zh) * 2020-11-03 2022-05-06 中国科学院大连化学物理研究所 单分散FeOOH胶体颗粒及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3926659A (en) * 1973-03-17 1975-12-16 Merck Patent Gmbh Iron-containing mica flake pigments
WO2007005038A1 (en) * 2004-08-31 2007-01-11 University Of Florida Research Foundation, Inc. Photocatalytic nanocomposites and applications thereof
CN102350353A (zh) * 2011-08-25 2012-02-15 东华大学 一种Fe3O4/C/TiO2复合光催化剂的制备方法
CN102407116A (zh) * 2011-10-13 2012-04-11 西北工业大学 一种大孔高比表面磁性可见光催化剂Fe3O4/TiO2的制备方法
CN102580783A (zh) * 2012-01-09 2012-07-18 兰州交通大学 制备TiO2/PS/Fe3O4磁性纳米粒子光催化剂的方法
CN102728349A (zh) * 2012-06-15 2012-10-17 西北有色金属研究院 一种FeOOH修饰的TiO2光催化剂及其制备方法
CN105289609A (zh) * 2015-11-16 2016-02-03 江苏大学 一种磁性TiO2/Fe3O4/C复合光催化剂及其制备方法和应用
CN105944729A (zh) * 2016-05-09 2016-09-21 闽南师范大学 水杨酸表面修饰纳米TiO2磁性复合材料及制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3926659A (en) * 1973-03-17 1975-12-16 Merck Patent Gmbh Iron-containing mica flake pigments
WO2007005038A1 (en) * 2004-08-31 2007-01-11 University Of Florida Research Foundation, Inc. Photocatalytic nanocomposites and applications thereof
CN102350353A (zh) * 2011-08-25 2012-02-15 东华大学 一种Fe3O4/C/TiO2复合光催化剂的制备方法
CN102407116A (zh) * 2011-10-13 2012-04-11 西北工业大学 一种大孔高比表面磁性可见光催化剂Fe3O4/TiO2的制备方法
CN102580783A (zh) * 2012-01-09 2012-07-18 兰州交通大学 制备TiO2/PS/Fe3O4磁性纳米粒子光催化剂的方法
CN102728349A (zh) * 2012-06-15 2012-10-17 西北有色金属研究院 一种FeOOH修饰的TiO2光催化剂及其制备方法
CN105289609A (zh) * 2015-11-16 2016-02-03 江苏大学 一种磁性TiO2/Fe3O4/C复合光催化剂及其制备方法和应用
CN105944729A (zh) * 2016-05-09 2016-09-21 闽南师范大学 水杨酸表面修饰纳米TiO2磁性复合材料及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PEICHANG MA: "Synthesis and photocatalytic property of Fe3O4@TiO2 core/shell nanoparticles supported by reduced graphene oxide sheets", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
龚潇: "TiO2/α-Fe2O3复合光催化剂的制备及表征", 《硅酸盐学报》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108514863A (zh) * 2017-08-29 2018-09-11 新疆德安环保科技股份有限公司 利用腐植酸制备炭包覆磁性埃洛石复合物吸附剂的方法及其所得产物
CN108514863B (zh) * 2017-08-29 2021-04-09 新疆德安环保科技股份有限公司 利用腐植酸制备炭包覆磁性埃洛石复合物吸附剂的方法及其所得产物
CN108456530A (zh) * 2018-03-26 2018-08-28 郑州轻工业学院 一种磁性羧基化空心微球土壤修复剂、其制备方法及应用
CN108480393A (zh) * 2018-03-26 2018-09-04 郑州轻工业学院 一种磁性氨基化空心微球土壤修复剂、其制备方法及应用
CN108480393B (zh) * 2018-03-26 2020-09-04 郑州轻工业学院 一种磁性氨基化空心微球土壤修复剂、其制备方法及应用
CN110404561A (zh) * 2019-08-02 2019-11-05 南京理工大学 TiO2@C/CdS复合材料及其制备方法
CN112090425A (zh) * 2020-09-24 2020-12-18 青海师范大学 一种磁性碳载TiO2光催化剂及其制备方法
CN114436339A (zh) * 2020-11-03 2022-05-06 中国科学院大连化学物理研究所 单分散FeOOH胶体颗粒及其制备方法

Also Published As

Publication number Publication date
CN106964350B (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
CN106964350A (zh) 一种Fe3O4@C@TiO2磁分离光催化剂的简易制备方法
Sun et al. A noble bimetal oxysulfide Cu V OS catalyst for highly efficient catalytic reduction of 4-nitrophenol and organic dyes
Yang et al. Highly efficient photocatalytic hydrogen evolution and simultaneous formaldehyde degradation over Z-scheme ZnIn2S4-NiO/BiVO4 hierarchical heterojunction under visible light irradiation
Sun et al. Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation
Sahoo et al. A bimetallic Au–Ag nanoalloy mounted LDH/RGO nanocomposite: a promising catalyst effective towards a coupled system for the photoredox reactions converting benzyl alcohol to benzaldehyde and nitrobenzene to aniline under visible light
CN104307552B (zh) TiO2/g‑C3N4复合可见光催化剂的制备方法
Guo et al. Photodegradation of rhodamine B and 4-chlorophenol using plasmonic photocatalyst of Ag–AgI/Fe3O4@ SiO2 magnetic nanoparticle under visible light irradiation
CN104801328B (zh) 一种低温制备TiO2/g‑C3N4复合光催化剂的方法
CN105413712B (zh) 金纳米棒‑CdS‑金纳米粒子复合光催化剂和应用
Li et al. Enhanced photocatalytic activity in ZnFe2O4–ZnO–Ag3PO4 hollow nanospheres through the cascadal electron transfer with magnetical separation
CN105944741A (zh) 一种GO/Ag3PO4/AgBr三元复合光催化剂及其制备方法
Liang et al. One-step introduction of metallic Bi and non-metallic C in Bi 2 WO 6 with enhanced photocatalytic activity
CN105289566B (zh) 氨基葡萄糖助晶化的TiO2@石墨烯复合纳米材料的合成方法
Lin et al. Visible-light photocatalytic activity and mechanism of novel AgBr/BiOBr prepared by deposition-precipitation
Liang et al. Recyclable chestnut-like Fe 3 O 4@ C@ ZnSnO 3 core–shell particles for the photocatalytic degradation of 2, 5-dichlorophenol
CN104162426A (zh) 一种制备银负载在纳米钽酸钾表面复合光催化剂的方法
CN111450858A (zh) 一种复合光催化剂Ag/AgCl@Co3O4的制备方法及由此制得的复合光催化剂
CN113275002B (zh) 一种C/MoO2多孔光催化剂及其制备方法、应用
CN107626297A (zh) 一种空心微球状铋/钒酸铋复合光催化剂及其制备方法和应用
CN108568302B (zh) 一种正对称双Z型体系声催化剂SnO2–CdSe–Bi2O3及其制备方法和应用
Xie et al. Preparation of a novel Bi3. 64Mo0. 36O6. 55 nanophotocatalyst by molten salt method and evaluation for photocatalytic decomposition of rhodamine B
CN104607200B (zh) 一种铜/钨酸铋复合光催化材料及其制备方法
CN109876815A (zh) 石墨烯/ZnFe2O4复合可见光催化剂及其制备方法
CN106111179A (zh) 一种小尺寸氮掺杂石墨烯光催化剂及其制备方法和应用
CN105032471B (zh) 一种可见光响应的纳米TiO2/沸石复合材料的制备

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190823

Termination date: 20200315

CF01 Termination of patent right due to non-payment of annual fee