CN106927847A - 一种基于3d打印技术的纤维增强陶瓷基复合材料成形方法及装置 - Google Patents
一种基于3d打印技术的纤维增强陶瓷基复合材料成形方法及装置 Download PDFInfo
- Publication number
- CN106927847A CN106927847A CN201710109163.7A CN201710109163A CN106927847A CN 106927847 A CN106927847 A CN 106927847A CN 201710109163 A CN201710109163 A CN 201710109163A CN 106927847 A CN106927847 A CN 106927847A
- Authority
- CN
- China
- Prior art keywords
- ceramic
- printing
- frcmc
- initiator
- ceramic size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
- C04B35/82—Asbestos; Glass; Fused silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/001—Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B11/00—Apparatus or processes for treating or working the shaped or preshaped articles
- B28B11/24—Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
- B28B11/243—Setting, e.g. drying, dehydrating or firing ceramic articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/14—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
- C04B35/573—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
-
- C04B35/803—
-
- C04B35/806—
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/48—Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5212—Organic
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
- C04B2235/524—Non-oxidic, e.g. borides, carbides, silicides or nitrides
- C04B2235/5248—Carbon, e.g. graphite
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
Abstract
一种基于3D打印技术的纤维增强陶瓷基复合材料成形方法。采用3D打印技术、纤维增强复合材料技术实现了陶瓷浆料的3D打印及成形。首先在打印开始前,配制好含催化剂、树脂、单体、交联剂的陶瓷浆料和一定浓度的引发剂,分别供给到主、副两个打印头中,并打开紫外光源。打印时,主、副打印头按截面数据运动,陶瓷浆料和增强纤维从主打印头挤出,同时,引发剂从副打印头喷出,覆盖到陶瓷浆料表面,陶瓷浆料在紫外光照射和引发剂的双重作用下凝固成形,由此完成打印,得到陶瓷坯体,再经过脱脂、烧结得到陶瓷零件。使用该方法可以得到具有良好韧性、高强度、高精度的陶瓷基复合材料零件,可实现具有复杂结构的纤维增强陶瓷基复合材料零件的快速制造。
Description
技术领域
本发明属于3D打印技术和陶瓷烧结技术领域,具体涉及一种基于3D打印技术的纤维增强陶瓷基复合材料成形方法及装置。
背景技术
3D打印技术是20世纪80年代后期发展起来的一项先进制造技术,可以直接根据产品设计数据,快速制造出新产品的样件、模具或模型,大大缩短产品加工周期,降低了研制的成本,对促进企业产品创新、提高产品竞争力有积极的推动作用。现代陶瓷由于其优越的光、电、热、磁、力学性能以及耐高温、抗腐蚀、耐辐射、高强度、高模量、高硬度、密度小、热膨胀系数小等特性而得到广泛应用。目前,陶瓷材料的直接成型已经成为快速成型技术的研究热点和重要发展方向之一。
现有制备纤维增强陶瓷基复合材料的方法有化学气相沉积法、先驱体转化法、熔融金属直接氧化法。但上述方法只能制成二维零件或是必须制造纤维预制体。纤维坯体的制备往往比较困难。目前较为先进的树脂基长纤维增强复合材料零件制造的方式多采用复合材料纤维铺放技术,即按零件结构所确定的铺层方向和铺层厚度要求,采用多自由度的铺放头将多组纤维预浸纱束或窄带自动铺放在模具表面。所以,采用纤维预制体进行纤维增强陶瓷复合材料的制造工艺存在纤维敷设困难、成形方法单一、不能精确成形,且需要预先处理完成的纤维预浸料以及模具成本极高的等问题,无法实现复杂结构陶瓷复合材料零件的制备。
在已有的技术中,连续纤维增强复合材料3D打印技术可以很好的弥补上述不足,该方法将增强纤维和加热熔融的热塑性树脂混合成的复合丝材打印成形,打印过程可以精确地控制增强纤维在复合材料零件中纤维的取向,能够实现具有特定机械、电和热性能的具有复杂结构复合材料零件的快速制造,且无需预先定制模具以及预先处理过的纤维预浸带,从而大大地减少了制造成本和生产周期。但目前该方法主要以普通热塑性树脂为原材料进行打印,未考虑采用陶瓷浆料进行打印从而直接制成陶瓷坯体零件的制造方法。
发明内容
本发明的目的在于克服上述不足,提供一种基于3D打印技术的纤维增强陶瓷基复合材料成形方法及装置,可以得到具有良好的韧性、高强度的纤维增强陶瓷零件,且不需要设计、制造模具,从而大大地减少了成本和制造时间。
为了达到上述目的,一种基于3D打印技术的纤维增强陶瓷基复合材料成形方法,包括以下步骤:
步骤一,在计算机上设计3D模型并转换成分层路径文件导入3D打印机;
步骤二,制备假塑性陶瓷浆料,并供给到浆料入口B;
步骤三,制备引发剂;
步骤四,打开紫外光光源;
步骤五,连续增强纤维持续供给到主打印头;同时,陶瓷浆料通过浆料入口B供给到主打印头;压缩气体从A入口通入,提供均匀压强;
步骤六,当进行零件3D打印工作时,程序控制二维运动平台,带动打印头在工作台上按照当前层模型的截面数据运动;
步骤七,主打印头喷嘴处的陶瓷浆料包裹住连续纤维并在压缩气体的压力作用下从喷嘴出口被挤出;
步骤八,引发剂从引发剂喷头口喷射出,以雾状形态喷洒到打印出的陶瓷浆料上,陶瓷浆料在紫外光照射和引发剂的双重作用下凝固,由此打印出当前截面;
步骤九,当完成模型当前一层的截面后,升降装置将带着工作台一起下降一个分层厚度;
步骤十,重复步骤五至步骤九,直至零件完成;
步骤十一,将打印完成的零件置于紫外光下照射2~3h,使其完全固化;
步骤十二,对固化后的零件进行脱脂和高温烧结,即完成基于3D打印技术的纤维增强陶瓷基复合材料的成形。
所述步骤二中,陶瓷浆料的制备方法如下:
第一步,将质量比为24:1:7:(40~60)的丙烯酰胺、N,N-亚甲基双丙烯酰胺、聚丙烯酸钠和光固化树脂混合后,加入树丁醇或乙二醇溶剂中,搅拌均匀,配制成浓度为40~60%的树脂基预混液;
第二步,按待打印的零件要求配制陶瓷粉料;
第三步,将四甲基乙二胺与去离子水混合搅拌均匀,配置成浓度为60~75%的催化剂;
第四步,将粉料加入到预混液中,并加入催化剂,充分搅拌、分散,制得粘度为1~5Pa.s的陶瓷浆料;
第五步,加入质量分数0~2%作为增稠剂的黄原胶,得到陶瓷浆料。
所述第二步中,陶瓷粉料采用2μm、5μm、40μm、100μm的陶瓷粉末根据零件性能所需,按不同比例混合而成。
所述第二步中,陶瓷粉末采用氧化铝、氧化硅或碳化硅粉末,并加入质量分数1~5%的烧结助剂。
所述烧结助剂采用氧化镁或氧化钇。
所述步骤三中,引发剂的制备方法如下,将过硫酸铵与去离子水混合搅拌均匀,配置成浓度为65~80%的引发剂;
所述步骤五中,连续增强纤维包括玻璃纤维、碳纤维、芳纶纤维、聚芳酰胺纤维和智能纤维中一种或多种复合在一起的纤维束。
所述步骤十二中,氧化铝和氧化硅陶瓷采用常压或热压烧结,碳化硅陶瓷采用反应烧结、渗碳处理或进行化学气相渗透处理。
一种基于3D打印技术的纤维增强陶瓷基复合材料成形的装置,包括置于工作台上的零件支撑,零件支撑上放置有打印样件,打印样件上方并排设置有引发剂喷头和紫外光发射头,引发剂喷头和紫外光发射头间设置有纤维/陶瓷浆料喷头和粘流态陶瓷浆料,连续增强纤维通过纤维/陶瓷浆料喷头和粘流态陶瓷浆料间供给打印样件。
所述紫外光发射头连接紫外光光源。
与现有技术相比,本发明以连续增强纤维和陶瓷浆料为原料,先打印出高固相含量树脂基陶瓷浆料,随即喷射引发剂并施加紫外光照使得浆料快速凝固成形的陶瓷成形方法,实现了纤维增强陶瓷基复合材料的3D打印成型,本发明在3D打印方式上加以创新,打印材料的塑形方法采用双组分固化,通过在打印过程中喷射引发剂并加以紫外光照射,树脂基陶瓷浆料得以快速固化成型,并且在打印时加入连续增强纤维,使得打印的陶瓷零件坯体有纤维增强的特性;在打印完成后通过进一步紫外光照射的后处理过程,陶瓷零件坯体形状能够良好保持;最后通过脱脂,高温烧结后制得的陶瓷零件具有良好韧性、高强度和高精度。除此之外,该方法适用于不同成分的陶瓷材料的3D打印,具有多样性,使用该方法容易得到具有定制化力学性能的陶瓷零件,可实现具有复杂结构的纤维增强陶瓷基复合材料零件的快速制造。
本发明的装置的连续增强纤维通过打印头内的通道向喷嘴处供应,均匀压强的压缩气体从打印头上方通入,陶瓷浆料包裹住连续纤维在压缩气体的推动从下方喷嘴中挤出,紫外光源在打印工作开始前开启,以保证陶瓷浆料中的树脂成分从喷头挤出后在光照下快速凝聚成型,本装置的引发剂喷头、紫外光发射头与陶瓷浆料打印头并排,并排方向与打印方向一致,引发剂喷头在左,紫外光发射头在右,陶瓷浆料从喷嘴挤出后能够立即被引发剂喷头喷射出的高浓度引发剂覆盖,同时,在右侧紫外光照射下,光明树脂固化。陶瓷浆料即在引发剂和紫外光作用下双组分固化,形成当前打印形状。
附图说明
图1为本发明所采用装置的示意图。
具体实施方式
下面结合附图和实施例对本发明做进一步说明。
参见图1,一种基于3D打印技术的纤维增强陶瓷基复合材料成形的装置,包括置于工作台上的零件支撑7,零件支撑7上放置有打印样件1,打印样件1上方并排设置有引发剂喷头2和紫外光发射头6,引发剂喷头2和紫外光发射头6间设置有纤维/陶瓷浆料喷头3和粘流态陶瓷浆料4,连续增强纤维5通过纤维/陶瓷浆料喷头3和粘流态陶瓷浆料4间供给打印样件1,紫外光发射头6连接紫外光光源9。
实施例1:
1)、在计算机上设计3D模型并转换成分层路径文件导入3D打印机;
2)、将质量比为24:1:7:40的丙烯酰胺、N,N-亚甲基双丙烯酰胺、聚丙烯酸钠和光固化树脂混合后,加入树丁醇或乙二醇溶剂中,搅拌均匀,配制成浓度为40%的树脂基预混液;
3)、按待打印的零件要求配制陶瓷粉料,陶瓷粉料采用2μm、5μm、40μm、100μm的陶瓷粉末根据零件性能所需,按不同比例混合而成,陶瓷粉末采用氧化铝粉末,并加入质量分数1%作为烧结助剂的氧化镁;
4)、将四甲基乙二胺与去离子水混合搅拌均匀,配置成浓度为60%的催化剂;
5)、将粉料加入到预混液中,并加入催化剂,充分搅拌、分散,制得粘度为1Pa.s的陶瓷浆料;
6)、得到陶瓷浆料,并供给到浆料入口B;
7)、将过硫酸铵与去离子水混合搅拌均匀,配置成浓度为65%的引发剂;
8)、打开紫外光光源;
9)、连续增强纤维持续供给到主打印头;同时,陶瓷浆料通过浆料入口B供给到主打印头;压缩气体从A入口通入,提供均匀压强;连续增强纤维为玻璃纤维;
10)、当进行零件3D打印工作时,程序控制二维运动平台,带动打印头在工作台上按照当前层模型的截面数据运动;
11)、主打印头喷嘴处的陶瓷浆料包裹住连续纤维并在压缩气体的压力作用下从喷嘴出口被挤出;
12)、引发剂从引发剂喷头口喷射出,以雾状形态喷洒到打印出的陶瓷浆料上,陶瓷浆料在紫外光照射和引发剂的双重作用下凝固,由此打印出当前截面;
13)、当完成模型当前一层的截面后,升降装置将带着工作台一起下降一个分层厚度;
14)、重复步骤五至步骤九,直至零件完成;
15)、将打印完成的零件置于紫外光下照射2~3h,使其完全固化;
16)、对固化后的零件进行脱脂,氧化铝硅陶瓷采用常压或热压烧结进行高温烧结,即完成基于3D打印技术的纤维增强陶瓷基复合材料的成形。
实施例2:
1)、在计算机上设计3D模型并转换成分层路径文件导入3D打印机;
2)、将质量比为24:1:7:60的丙烯酰胺、N,N-亚甲基双丙烯酰胺、聚丙烯酸钠和光固化树脂混合后,加入树丁醇或乙二醇溶剂中,搅拌均匀,配制成浓度为60%的树脂基预混液;
3)、按待打印的零件要求配制陶瓷粉料,陶瓷粉料采用2μm、5μm、40μm、100μm的陶瓷粉末根据零件性能所需,按不同比例混合而成,陶瓷粉末采用氧化硅粉末,并加入质量分数5%作为烧结助剂的氧化钇;
4)、将四甲基乙二胺与去离子水混合搅拌均匀,配置成浓度为75%的催化剂;
5)、将粉料加入到预混液中,并加入催化剂,充分搅拌、分散,制得粘度为5Pa.s的陶瓷浆料;
6)、加入质量分数2%作为增稠剂的黄原胶,得到陶瓷浆料,并供给到浆料入口B;
7)、将过硫酸铵与去离子水混合搅拌均匀,配置成浓度为80%的引发剂;
8)、打开紫外光光源;
9)、连续增强纤维持续供给到主打印头;同时,陶瓷浆料通过浆料入口B供给到主打印头;压缩气体从A入口通入,提供均匀压强;连续增强纤维包括碳纤维、芳纶纤维和聚芳酰胺纤维的多种复合在一起的纤维束;
10)、当进行零件3D打印工作时,程序控制二维运动平台,带动打印头在工作台上按照当前层模型的截面数据运动;
11)、主打印头喷嘴处的陶瓷浆料包裹住连续纤维并在压缩气体的压力作用下从喷嘴出口被挤出;
12)、引发剂从引发剂喷头口喷射出,以雾状形态喷洒到打印出的陶瓷浆料上,陶瓷浆料在紫外光照射和引发剂的双重作用下凝固,由此打印出当前截面;
13)、当完成模型当前一层的截面后,升降装置将带着工作台一起下降一个分层厚度;
14)、重复步骤五至步骤九,直至零件完成;
15)、将打印完成的零件置于紫外光下照射2~3h,使其完全固化;
16)、对固化后的零件进行脱脂,氧化硅陶瓷采用常压或热压烧结高温烧结,即完成基于3D打印技术的纤维增强陶瓷基复合材料的成形。
实施例3:
1)、在计算机上设计3D模型并转换成分层路径文件导入3D打印机;
2)、将质量比为24:1:7:50的丙烯酰胺、N,N-亚甲基双丙烯酰胺、聚丙烯酸钠和光固化树脂混合后,加入树丁醇或乙二醇溶剂中,搅拌均匀,配制成浓度为50%的树脂基预混液;
3)、按待打印的零件要求配制陶瓷粉料,陶瓷粉料采用2μm、5μm、40μm、100μm的陶瓷粉末根据零件性能所需,按不同比例混合而成,陶瓷粉末采用碳化硅粉末,并加入质量分数3%作为烧结助剂的氧化镁;
4)、将四甲基乙二胺与去离子水混合搅拌均匀,配置成浓度为67%的催化剂;
5)、将粉料加入到预混液中,并加入催化剂,充分搅拌、分散,制得粘度为3Pa.s的陶瓷浆料;
6)、加入质量分数1%作为增稠剂的黄原胶,得到陶瓷浆料,并供给到浆料入口B;
7)、将过硫酸铵与去离子水混合搅拌均匀,配置成浓度为67%的引发剂;
8)、打开紫外光光源;
9)、连续增强纤维持续供给到主打印头;同时,陶瓷浆料通过浆料入口B供给到主打印头;压缩气体从A入口通入,提供均匀压强;连续增强纤维采用智能纤维;
10)、当进行零件3D打印工作时,程序控制二维运动平台,带动打印头在工作台上按照当前层模型的截面数据运动;
11)、主打印头喷嘴处的陶瓷浆料包裹住连续纤维并在压缩气体的压力作用下从喷嘴出口被挤出;
12)、引发剂从引发剂喷头口喷射出,以雾状形态喷洒到打印出的陶瓷浆料上,陶瓷浆料在紫外光照射和引发剂的双重作用下凝固,由此打印出当前截面;
13)、当完成模型当前一层的截面后,升降装置将带着工作台一起下降一个分层厚度;
14)、重复步骤五至步骤九,直至零件完成;
15)、将打印完成的零件置于紫外光下照射2~3h,使其完全固化;
16)、对固化后的零件进行脱脂和高温烧结,碳化硅陶瓷采用反应烧结、渗碳处理或进行化学气相渗透处理,即完成基于3D打印技术的纤维增强陶瓷基复合材料的成形。
Claims (10)
1.一种基于3D打印技术的纤维增强陶瓷基复合材料成形方法,其特征在于,包括以下步骤:
步骤一,在计算机上设计3D模型并转换成分层路径文件导入3D打印机;
步骤二,制备假塑性陶瓷浆料,并供给到浆料入口B;
步骤三,制备引发剂;
步骤四,打开紫外光光源;
步骤五,连续增强纤维持续供给到主打印头;同时,陶瓷浆料通过浆料入口B供给到主打印头;压缩气体从A入口通入,提供均匀压强;
步骤六,当进行零件3D打印工作时,程序控制二维运动平台,带动打印头在工作台上按照当前层模型的截面数据运动;
步骤七,主打印头喷嘴处的陶瓷浆料包裹住连续纤维并在压缩气体的压力作用下从喷嘴出口被挤出;
步骤八,引发剂从引发剂喷头口喷射出,以雾状形态喷洒到打印出的陶瓷浆料上,陶瓷浆料在紫外光照射和引发剂的双重作用下凝固,由此打印出当前截面;
步骤九,当完成模型当前一层的截面后,升降装置将带着工作台一起下降一个分层厚度;
步骤十,重复步骤五至步骤九,直至零件完成;
步骤十一,将打印完成的零件置于紫外光下照射2~3h,使其完全固化;
步骤十二,对固化后的零件进行脱脂和高温烧结,即完成基于3D打印技术的纤维增强陶瓷基复合材料的成形。
2.根据权利要求1所述的一种基于3D打印技术的纤维增强陶瓷基复合材料成形方法,其特征在于,所述步骤二中,陶瓷浆料的制备方法如下:
第一步,将质量比为24:1:7:(40~60)的丙烯酰胺、N,N-亚甲基双丙烯酰胺、聚丙烯酸钠和光固化树脂混合后,加入树丁醇或乙二醇溶剂中,搅拌均匀,配制成浓度为40~60%的树脂基预混液;
第二步,按待打印的零件要求配制陶瓷粉料;
第三步,将四甲基乙二胺与去离子水混合搅拌均匀,配置成浓度为60~75%的催化剂;
第四步,将粉料加入到预混液中,并加入催化剂,充分搅拌、分散,制得粘度为1~5Pa.s的陶瓷浆料;
第五步,加入质量分数0~2%作为增稠剂的黄原胶,得到陶瓷浆料。
3.根据权利要求2所述的一种基于3D打印技术的纤维增强陶瓷基复合材料成形方法,其特征在于,所述第二步中,陶瓷粉料采用2μm、5μm、40μm、100μm的陶瓷粉末根据零件性能所需,按不同比例混合而成。
4.根据权利要求2所述的一种基于3D打印技术的纤维增强陶瓷基复合材料成形方法,其特征在于,所述第二步中,陶瓷粉末采用氧化铝、氧化硅或碳化硅粉末,并加入质量分数1~5%的烧结助剂。
5.根据权利要求4所述的一种基于3D打印技术的纤维增强陶瓷基复合材料成形方法,其特征在于,所述烧结助剂采用氧化镁或氧化钇。
6.根据权利要求1所述的一种基于3D打印技术的纤维增强陶瓷基复合材料成形方法,其特征在于,所述步骤三中,引发剂的制备方法如下,将过硫酸铵与去离子水混合搅拌均匀,配置成浓度为65~80%的引发剂。
7.根据权利要求1所述的一种基于3D打印技术的纤维增强陶瓷基复合材料成形方法,其特征在于,所述步骤五中,连续增强纤维包括玻璃纤维、碳纤维、芳纶纤维、聚芳酰胺纤维和智能纤维中一种或多种复合在一起的纤维束。
8.根据权利要求1所述的一种基于3D打印技术的纤维增强陶瓷基复合材料成形方法,其特征在于,所述步骤十二中,氧化铝和氧化硅陶瓷采用常压或热压烧结,碳化硅陶瓷采用反应烧结、渗碳处理或进行化学气相渗透处理。
9.一种基于3D打印技术的纤维增强陶瓷基复合材料成形的装置,其特征在于,包括置于工作台(8)上的零件支撑(7),零件支撑(7)上放置有打印样件(1),打印样件(1)上方并排设置有引发剂喷头(2)和紫外光发射头(6),引发剂喷头(2)和紫外光发射头(6)间设置有纤维/陶瓷浆料喷头(3)和假塑性陶瓷浆料(4),连续增强纤维(5)通过纤维/陶瓷浆料喷头(3)和粘流态陶瓷浆料(4)间供给打印样件(1)。
10.根据权利要求9所述的一种基于3D打印技术的纤维增强陶瓷基复合材料成形的装置,其特征在于,所述紫外光发射头(6)连接紫外光光源(9)。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710109163.7A CN106927847B (zh) | 2017-02-27 | 2017-02-27 | 一种基于3d打印技术的纤维增强陶瓷基复合材料成形方法及装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710109163.7A CN106927847B (zh) | 2017-02-27 | 2017-02-27 | 一种基于3d打印技术的纤维增强陶瓷基复合材料成形方法及装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106927847A true CN106927847A (zh) | 2017-07-07 |
CN106927847B CN106927847B (zh) | 2020-08-18 |
Family
ID=59424692
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710109163.7A Active CN106927847B (zh) | 2017-02-27 | 2017-02-27 | 一种基于3d打印技术的纤维增强陶瓷基复合材料成形方法及装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106927847B (zh) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107553686A (zh) * | 2017-08-11 | 2018-01-09 | 武汉理工大学 | 一种基于3d打印的纤维增强梯度多孔陶瓷的制造方法 |
CN107954735A (zh) * | 2017-10-31 | 2018-04-24 | 西安铂力特增材技术股份有限公司 | 一种连续纤维增强陶瓷基复合材料零件的成形方法 |
CN108033802A (zh) * | 2017-12-15 | 2018-05-15 | 天津大学 | 基于凝胶注模3d打印的纤维增强陶瓷异型件成型方法 |
CN108638290A (zh) * | 2018-05-07 | 2018-10-12 | 中国建筑第八工程局有限公司 | 夹心复合建筑3d打印材料、其制备方法及其制备装置 |
CN108748997A (zh) * | 2018-06-28 | 2018-11-06 | 南京理工大学 | 用于增材制造陶瓷复合材料的连续纤维固化挤出装置 |
CN109016493A (zh) * | 2018-08-22 | 2018-12-18 | 大连理工大学 | 一种压力调控的连续纤维复合材料fdm 3d打印方法 |
CN109293382A (zh) * | 2018-09-18 | 2019-02-01 | 西安交通大学 | 一种基于3d打印技术的核壳结构陶瓷复合材料成形方法 |
CN109396433A (zh) * | 2017-08-18 | 2019-03-01 | 三维陶瓷-新东股份公司 | 通过增材制造技术制造至少一个由至少一种陶瓷和/或金属材料制成的坯件的方法和机器 |
CN109396440A (zh) * | 2018-12-27 | 2019-03-01 | 吉林大学 | 一种陶瓷颗粒增强铝基复合材料的成型方法 |
CN109482886A (zh) * | 2019-01-07 | 2019-03-19 | 吉林大学 | 一种3d打印陶瓷与纤维复合增强铝基材料的制备方法 |
KR101967105B1 (ko) * | 2017-12-29 | 2019-04-08 | 씨씨3디 엘엘씨 | 경화제 사전 함침을 구현하는 적층 가공 시스템 |
CN109748573A (zh) * | 2019-01-20 | 2019-05-14 | 武汉因泰莱激光科技有限公司 | 激光增材制造设备及其长纤维增强陶瓷基复合材料零件的加工方法 |
CN110156483A (zh) * | 2019-06-11 | 2019-08-23 | 哈尔滨工业大学 | 一种使用挤出式3d打印技术制备连续纤维增强陶瓷的方法 |
CN110229012A (zh) * | 2019-06-27 | 2019-09-13 | 西安交通大学 | 一种连续纤维结合短碳纤维增韧陶瓷基复合材料成型方法 |
CN110809511A (zh) * | 2017-07-31 | 2020-02-18 | 惠普发展公司,有限责任合伙企业 | 具有包括金属纳米颗粒粘结剂的核的物体 |
CN111592372A (zh) * | 2020-07-06 | 2020-08-28 | 南京理工大学 | 一种结合纤维毡的陶瓷基复合材料激光选区烧结成型装置与方法 |
CN111777405A (zh) * | 2020-06-30 | 2020-10-16 | 江苏大学 | 一种用于陶瓷3d打印的浆料的制备方法及其应用 |
CN111958752A (zh) * | 2020-09-06 | 2020-11-20 | 吉林大学 | 同轴螺旋结构增强复合材料的3d打印系统及加工方法 |
CN112497740A (zh) * | 2020-10-27 | 2021-03-16 | 南京航空航天大学 | 一种光固化-fdm组合材料打印机喷头及其工作方法 |
CN113045297A (zh) * | 2021-04-08 | 2021-06-29 | 昆明理工大学 | 一种3d直写打印复合陶瓷浆料、制备方法及得到的陶瓷 |
CN113400437A (zh) * | 2021-07-15 | 2021-09-17 | 武汉理工大学 | 紫外光束同步固化辅助直写3d打印制备陶瓷材料的方法 |
CN113459242A (zh) * | 2021-09-01 | 2021-10-01 | 季华实验室 | 一种3d打印方法 |
CN114477967A (zh) * | 2022-01-12 | 2022-05-13 | 西安理工大学 | 基于微流道的面曝光打印定向片晶氧化铝增强陶瓷的方法 |
CN114536507A (zh) * | 2022-03-15 | 2022-05-27 | 南京工业大学 | 一种基于陶瓷材料的光固化喷射成型装置及打印方法 |
CN115073195A (zh) * | 2022-06-05 | 2022-09-20 | 西北工业大学 | 用于3d打印雷达天线罩的氮化硅晶须增强氮化物复合材料及制备和打印方法 |
CN115894041A (zh) * | 2022-10-14 | 2023-04-04 | 中国科学院上海硅酸盐研究所 | 一种粉末挤出3d打印成型反应烧结碳化硅陶瓷的制备方法 |
CN116174742A (zh) * | 2023-01-06 | 2023-05-30 | 四川大学 | 基于3d打印发射喷嘴微型离子液体推进器开发方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2618540A (en) * | 2022-05-09 | 2023-11-15 | Pulpex Ltd | A receptacle forming system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101838153A (zh) * | 2010-05-07 | 2010-09-22 | 厦门大学 | 莫来石纤维增强硅酸镁陶瓷基复合材料成型方法 |
WO2014110478A1 (en) * | 2013-01-14 | 2014-07-17 | Coi Ceramics, Inc. | Methods of forming ceramic matrix composite structures, apparatuses for forming ceramic matrix composite structures, and ceramic matrix composite structures |
CN105198449A (zh) * | 2015-09-16 | 2015-12-30 | 广东工业大学 | 一种光固化成型的高致密陶瓷的制备方法 |
-
2017
- 2017-02-27 CN CN201710109163.7A patent/CN106927847B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101838153A (zh) * | 2010-05-07 | 2010-09-22 | 厦门大学 | 莫来石纤维增强硅酸镁陶瓷基复合材料成型方法 |
WO2014110478A1 (en) * | 2013-01-14 | 2014-07-17 | Coi Ceramics, Inc. | Methods of forming ceramic matrix composite structures, apparatuses for forming ceramic matrix composite structures, and ceramic matrix composite structures |
CN105198449A (zh) * | 2015-09-16 | 2015-12-30 | 广东工业大学 | 一种光固化成型的高致密陶瓷的制备方法 |
Non-Patent Citations (1)
Title |
---|
鲁中良: "基于3D打印技术的预研涡轮叶片精铸蜡型快速制造方法", 《航空学报》 * |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110809511A (zh) * | 2017-07-31 | 2020-02-18 | 惠普发展公司,有限责任合伙企业 | 具有包括金属纳米颗粒粘结剂的核的物体 |
CN107553686A (zh) * | 2017-08-11 | 2018-01-09 | 武汉理工大学 | 一种基于3d打印的纤维增强梯度多孔陶瓷的制造方法 |
CN109396433A (zh) * | 2017-08-18 | 2019-03-01 | 三维陶瓷-新东股份公司 | 通过增材制造技术制造至少一个由至少一种陶瓷和/或金属材料制成的坯件的方法和机器 |
CN107954735A (zh) * | 2017-10-31 | 2018-04-24 | 西安铂力特增材技术股份有限公司 | 一种连续纤维增强陶瓷基复合材料零件的成形方法 |
CN108033802A (zh) * | 2017-12-15 | 2018-05-15 | 天津大学 | 基于凝胶注模3d打印的纤维增强陶瓷异型件成型方法 |
KR101967105B1 (ko) * | 2017-12-29 | 2019-04-08 | 씨씨3디 엘엘씨 | 경화제 사전 함침을 구현하는 적층 가공 시스템 |
CN109986777A (zh) * | 2017-12-29 | 2019-07-09 | Cc3D有限公司 | 实施硬化剂预浸渍的增材制造系统 |
CN108638290A (zh) * | 2018-05-07 | 2018-10-12 | 中国建筑第八工程局有限公司 | 夹心复合建筑3d打印材料、其制备方法及其制备装置 |
CN108748997A (zh) * | 2018-06-28 | 2018-11-06 | 南京理工大学 | 用于增材制造陶瓷复合材料的连续纤维固化挤出装置 |
CN109016493A (zh) * | 2018-08-22 | 2018-12-18 | 大连理工大学 | 一种压力调控的连续纤维复合材料fdm 3d打印方法 |
CN109293382A (zh) * | 2018-09-18 | 2019-02-01 | 西安交通大学 | 一种基于3d打印技术的核壳结构陶瓷复合材料成形方法 |
CN109396440A (zh) * | 2018-12-27 | 2019-03-01 | 吉林大学 | 一种陶瓷颗粒增强铝基复合材料的成型方法 |
CN109482886A (zh) * | 2019-01-07 | 2019-03-19 | 吉林大学 | 一种3d打印陶瓷与纤维复合增强铝基材料的制备方法 |
CN109748573A (zh) * | 2019-01-20 | 2019-05-14 | 武汉因泰莱激光科技有限公司 | 激光增材制造设备及其长纤维增强陶瓷基复合材料零件的加工方法 |
CN109748573B (zh) * | 2019-01-20 | 2022-02-15 | 武汉因泰莱激光科技有限公司 | 长纤维增强陶瓷基复合材料零件的加工方法 |
CN110156483A (zh) * | 2019-06-11 | 2019-08-23 | 哈尔滨工业大学 | 一种使用挤出式3d打印技术制备连续纤维增强陶瓷的方法 |
CN110156483B (zh) * | 2019-06-11 | 2022-07-12 | 哈尔滨工业大学 | 一种使用挤出式3d打印技术制备连续纤维增强陶瓷的方法 |
CN110229012A (zh) * | 2019-06-27 | 2019-09-13 | 西安交通大学 | 一种连续纤维结合短碳纤维增韧陶瓷基复合材料成型方法 |
CN111777405A (zh) * | 2020-06-30 | 2020-10-16 | 江苏大学 | 一种用于陶瓷3d打印的浆料的制备方法及其应用 |
CN111592372A (zh) * | 2020-07-06 | 2020-08-28 | 南京理工大学 | 一种结合纤维毡的陶瓷基复合材料激光选区烧结成型装置与方法 |
CN111958752A (zh) * | 2020-09-06 | 2020-11-20 | 吉林大学 | 同轴螺旋结构增强复合材料的3d打印系统及加工方法 |
CN112497740A (zh) * | 2020-10-27 | 2021-03-16 | 南京航空航天大学 | 一种光固化-fdm组合材料打印机喷头及其工作方法 |
CN113045297A (zh) * | 2021-04-08 | 2021-06-29 | 昆明理工大学 | 一种3d直写打印复合陶瓷浆料、制备方法及得到的陶瓷 |
CN113045297B (zh) * | 2021-04-08 | 2022-03-08 | 昆明理工大学 | 一种3d直写打印复合陶瓷浆料、制备方法及得到的陶瓷 |
CN113400437A (zh) * | 2021-07-15 | 2021-09-17 | 武汉理工大学 | 紫外光束同步固化辅助直写3d打印制备陶瓷材料的方法 |
CN113459242A (zh) * | 2021-09-01 | 2021-10-01 | 季华实验室 | 一种3d打印方法 |
CN114477967A (zh) * | 2022-01-12 | 2022-05-13 | 西安理工大学 | 基于微流道的面曝光打印定向片晶氧化铝增强陶瓷的方法 |
CN114536507A (zh) * | 2022-03-15 | 2022-05-27 | 南京工业大学 | 一种基于陶瓷材料的光固化喷射成型装置及打印方法 |
CN115073195A (zh) * | 2022-06-05 | 2022-09-20 | 西北工业大学 | 用于3d打印雷达天线罩的氮化硅晶须增强氮化物复合材料及制备和打印方法 |
CN115894041A (zh) * | 2022-10-14 | 2023-04-04 | 中国科学院上海硅酸盐研究所 | 一种粉末挤出3d打印成型反应烧结碳化硅陶瓷的制备方法 |
CN115894041B (zh) * | 2022-10-14 | 2023-10-13 | 中国科学院上海硅酸盐研究所 | 一种粉末挤出3d打印成型反应烧结碳化硅陶瓷的制备方法 |
CN116174742A (zh) * | 2023-01-06 | 2023-05-30 | 四川大学 | 基于3d打印发射喷嘴微型离子液体推进器开发方法 |
Also Published As
Publication number | Publication date |
---|---|
CN106927847B (zh) | 2020-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106927847A (zh) | 一种基于3d打印技术的纤维增强陶瓷基复合材料成形方法及装置 | |
CN106866164A (zh) | 一种基于纤维增强陶瓷先驱体3d打印技术的陶瓷复合材料成形方法 | |
WO2018157841A1 (zh) | 一种层间增强的连续纤维复合材料增材制造方法 | |
KR101801964B1 (ko) | 합성수지와 세라믹 분말을 이용한 3d 적층 프린터용 조성물 | |
US9283714B2 (en) | Multicolored fused deposition modelling print | |
CN108948279B (zh) | 一种光-热双固化树脂组合物及预浸布及3d打印方法 | |
US20140088751A1 (en) | Multicoloured fused deposition modelling print | |
CN108621415A (zh) | 用于多材料的3d打印装置和用于多材料的3d打印方法 | |
US20050252631A1 (en) | Ceramic article and method of manufacture therefor | |
CN110229012A (zh) | 一种连续纤维结合短碳纤维增韧陶瓷基复合材料成型方法 | |
CN109748573B (zh) | 长纤维增强陶瓷基复合材料零件的加工方法 | |
CN108248015A (zh) | 一种连续纤维增强复合材料三维打印成形方法 | |
JP2016501137A (ja) | 押出成形をベースとする3dプリンティング法のためのコーティングされたフィラメントの使用及び製造 | |
CN208162610U (zh) | 基于快速烧结的3d打印系统 | |
CN105399428B (zh) | 一种陶瓷料浆及陶瓷材料3d打印成型方法 | |
CN108161010A (zh) | 基于快速烧结的3d打印方法及系统 | |
CN106042408A (zh) | 一种用于3d打印的粉末材料及粉末3d打印成形方法 | |
CN107098715A (zh) | 一种基于双重固化体系粘接剂的陶瓷零件3d打印方法 | |
CN111873405B (zh) | 一种基于光固化技术的绝热装药一体化增材制造方法及打印装置和成形设备 | |
Mansfield et al. | A review on additive manufacturing of ceramics | |
CN105731769B (zh) | 用于打印玻璃体的3d打印机及其打印方法 | |
CN110240485A (zh) | 一种基于热固粘接的陶瓷增材制造方法及设备 | |
CN109761613A (zh) | 基于3d打印的凝胶注模短碳纤维增韧陶瓷复合材料成型方法 | |
CN108943323A (zh) | 一种陶瓷3d打印机 | |
CN108947494A (zh) | 一种陶瓷材料增材制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |