CN106867494B - 增溶原油能力强的组合表面活性剂及低成本制备方法 - Google Patents

增溶原油能力强的组合表面活性剂及低成本制备方法 Download PDF

Info

Publication number
CN106867494B
CN106867494B CN201510922556.0A CN201510922556A CN106867494B CN 106867494 B CN106867494 B CN 106867494B CN 201510922556 A CN201510922556 A CN 201510922556A CN 106867494 B CN106867494 B CN 106867494B
Authority
CN
China
Prior art keywords
surfactant
oil
crude oil
formula
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510922556.0A
Other languages
English (en)
Other versions
CN106867494A (zh
Inventor
沈之芹
李应成
王辉辉
李斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Original Assignee
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Shanghai Research Institute of Petrochemical Technology filed Critical China Petroleum and Chemical Corp
Priority to CN201510922556.0A priority Critical patent/CN106867494B/zh
Publication of CN106867494A publication Critical patent/CN106867494A/zh
Application granted granted Critical
Publication of CN106867494B publication Critical patent/CN106867494B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/584Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific surfactants

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

本发明涉及一种增溶原油能力强的组合表面活性剂及低成本制备方法,主要解决现有技术中作为驱油剂体系主要组成的表面活性剂存在对原油增溶能力差、界面活性低、由于纯化导致的制备成本高的问题。本发明通过采用包括式(1)所示的阳离子表面活性剂、式(2)所示的烷基酚或芳香醇或芳香胺聚醚羧酸盐阴离子表面活性剂、短碳链醇和盐形成的增溶原油能力强的组合表面活性剂;R1为C4~C32的烷基,R2、R3为选自(CH2)dOH或(CH2)eCH3或取代苄基中的一种,R4为(CH2)dOH、(CH2)eCH3或CH2(CH2)fCH2中的一种的技术方案,较好地解决了该问题,可用于油田的三次采油生产中。
Figure DDA0000876549580000011

Description

增溶原油能力强的组合表面活性剂及低成本制备方法
技术领域
本发明涉及一种增溶原油能力强的组合表面活性剂及低成本制备方法。
背景技术
表面活性剂作为化学驱的一个重要组成,根据其化学组成及分子结构不同,可以分为离子型与非离子型两大类。目前三次采油研究中所用表面活性剂的种类以阴离子型最多,其次是非离子型和两性离子型,应用最少的是阳离子型。美孚石油公司的专利US3927716、US4018281、US4216097相继报道了采用碱水驱油、表面活性剂或碱水驱油及使用两性离子表面活性剂驱油的结果,采用的两性离子表面活性剂为不同链长的羧酸或磺酸盐型甜菜碱表面活性剂,在总矿化62000~160000mg/L,钙镁离子1500~18000mg/L的模拟盐水中,对德克萨斯南部原油的界面张力达10-1~10-4mN/m。使用阳离子表面活性剂的亦有报道,如中国专利CN 1528853、CN 1817431、CN 1066137等相继报道了双酰胺型阳离子型、含氟阳离子型及含吡啶基阳离子双子表面活性剂,但由于阳离子具有吸附损耗大、成本高等缺点,限制了其在油田现场的使用。
不同类型表面活性剂相互复配后往往可以克服单一表面活性剂的缺点,发挥各组分的优点,从而赋予复合表面活性剂更加优越的性能。中国专利CN1458219A公开了一种三次采油应用的表面活性剂/聚合物二元超低界面张力复合驱配方,其中使用的表面活性剂是石油磺酸盐或以石油磺酸盐为主剂加稀释剂和其它表面活性剂复配的复合表面活性剂,其组份的重量百分比为石油磺酸盐50~100%,烷基磺酸盐0~50%,羧酸盐0~50%,烷基芳基磺酸盐0~35%,低碳醇0~20%,该表面活性剂体系过于复杂。美国德克萨斯大学的专利US8211837报道了采用简单廉价的线性醇在高温下催化二聚反应得到支链化的长碳醇,与环氧丙烷、环氧乙烷聚合后进行硫酸酯化反应,相对于昂贵的磺酸盐型表面活性剂,低成本合成了大亲水基聚醚硫酸盐表面活性剂,由于大亲水基团的存在,从而使得该硫酸盐表面活性剂在碱性条件下高温稳定性能优良,0.3%的支链醇聚醚硫酸盐(C32-7PO-6EO硫酸盐)与0.3%的内烯烃磺酸盐(C20~24IOS)盐水溶液在85℃与相同量的原油混合,其增溶参数为14。美孚石油公司的专利US4370243报道了采用油溶性的醇、磺酸甜菜碱及季铵盐组成的驱油体系,该体系既可起到表面活性剂的作用,也可起到流度控制剂的作用,其中季铵盐为亲油基碳链长为16~20的阳离子表面活性剂,采用2%的十八烷基二羟乙基丙基磺酸盐甜菜碱与1.0%的正己醇作为驱油剂,注入1.9PV后,原油即可100%驱出,但表面活性剂的吸附损耗较大达到6mg/g,在此基础上加入价格相对低廉的2.0%四乙基溴化铵作为牺牲剂以降低表面活性剂的吸附量。国外研究使用的表面活性剂由于使用量大、成本高,作为驱油剂在实际应用中受到了一定的限制。阴阳离子复配表面活性剂亦是学者们热衷研究的课题。由于两者接近等比例混合时其水溶液容易形成沉淀,从而导致阴阳离子表面活性剂混合体系在应用中收到限制,如北京大学化学与分子工程学院赵国玺等(见《日用化学工业》1997年第2期,1~3)研究认为阴阳离子表面活性剂混合体系普遍具有浊点现象,显示非离子表面活性剂的特点,阎云等(见《物理化学学报》2002年第9期,830~834)研究了规则溶液理论应用于bola型两亲分子[(Me)3N+(CH2)6OC6H4O(CH2)6N+(Me)3]2Br-与异电性传统表面活性剂十二烷基硫酸钠(SDS)的相互作用,bola分子与SDS混合体系中的协同作用主要是由亲水基之间的静电相互作用产生的,而bola分子结构中疏水部分对相互作用没有显著影响,中国石化胜利油田分公司曹绪龙(见《物理化学学报》2014年第7期,1297~1302)研究了阴阳离子表面活性剂混合体系对原油的乳化及增黏行为,对油水体积比、浓度、温度、pH值、离子强度对乳化增黏的影响进行了系统的研究,得到了具有最佳增黏效果的配方体系,与原油黏度相比,实现了80倍左右的黏度上升。
国内外研究结果表明,阴阳离子复配表面活性剂具有极高的表界面活性,因而具有非常广阔的应用前景。但由于阳离子季铵盐表面活性剂价格较高,高纯度的阴离子羧酸盐表面活性剂往往需经过复杂的提纯步骤才能得到,从而大大增加了复配表面活性剂的制备成本。采用烷基酚或芳香醇或芳香胺聚醚与卤代羧酸酯在过量碱金属氢氧化物或碱金属醇盐催化下生成聚醚羧酸酯,无需分离直接进行皂化反应得到聚醚羧酸盐,加入所需量的阳离子水或低碳醇水溶混合,体系中的低碳醇作为助剂可以在油水两相分配,改善油相和水相的性质,有利于油水界面张力的而降低和微乳液的形成,生成的无机盐对界面性能有促进作用亦无需去除,可能过量的碱金属氢氧化物还可以中和原油中的酸性物质形成皂进一步提高表面活性剂对原油的增溶能力,提高复合表面活性剂的洗油效率。本发明所述的正是这种在油藏条件下结构稳定的阳离子与阴离子表面活性剂形成的增溶原油能力强的组合表面活性剂及其低成本制备方法。
发明内容
本发明所要解决的技术问题之一是现有技术中作为驱油剂体系主要组成的表面活性剂存在对原油增溶能力差、界面活性低的问题,提供一种新的增溶原油能力强的组合表面活性剂。以此组合表面活性剂的水溶液,在0.04~4wt%的浓度范围内能很好乳化原油,增溶参数为2~25,油水界面张力可达10-3~10-4mN/m,从而有效提高了原油驱油效率,具有很好的提高采收率应用前景。
本发明所要解决的技术问题之二是提供一种上述技术问题之一所述增溶原油能力强的组合表面活性剂的低成本制备方法。
本发明所要解决的技术问题之三是提供一种解决上述技术问题之一所述增溶原油能力强的组合表面活性剂的应用。
为了解决上述技术问题之一,本发明采用的技术方案如下:一种增溶原油能力强的组合表面活性剂,以摩尔份数计包括以下组分:
(1)0.01~1摩尔的阳离子表面活性剂;
(2)1摩尔的阴离子表面活性剂;
其中,(1)组分的分子通式为:
Figure BDA0000876549560000031
式(I)中,R1为C4~C32的烷基,R2、R3独立选自(CH2)dOH或(CH2)eCH3中的一种;a=1、b=0,R4选自(CH2)dOH、(CH2)eCH3中的一种,d=2~4中的任一整数,e=0~5中的任一整数;或a=1、b=1,R4选自CH2(CH2)fCH2,f=0~5中的任一整数;Yk-为负电荷数为k的阴离子;
(2)组分的分子通式为:
R5X[(CH2CH2O)m1(CH3CHCH2O)n(CH2CH2O)m2R6COOM]j, 式(II);
式(II)中:R5为由C4~C20直链或支链的饱和及不饱和烃基或枯基取代的苯环或萘环,或R5X为松香酸根,m1、m2为丙氧基团PO的加合数,m1=0~50、m2=0~50,n为乙氧基团EO的加合数,n=0~100,R6为C1~C5的亚烷基或羟基取代亚烷基,M选自氢、碱金属或者由式NR7(R8)(R9)(R10)所示基团中的至少一种,R7、R8、R9、R10为独立选自H、(CH2)dOH或(CH2)eCH3中的一种,d=2~4、e=0~5中的任一整数;X为杂原子,j为羧酸根的个数,j=1或2。
上述技术方案中,所述X优选为氧原子或氮原子。
上述技术方案中,所述X优选为氧原子,优选j=1。
上述技术方案中,所述X优选为氮原子,优选j=2,所述(2)组分的结构式如式(III)所示:
Figure BDA0000876549560000041
式(III)中,R11为C4~C20直链或支链的饱和及不饱和烃基或枯基取代的苯环或萘环,或R11X为松香胺根;r1、r2、r3或r4独立选自0~50,但r1和r2、r3和r4不能同时为0;s1和s2独立选自0~100,但s1和s2不能同时为0;R12和R′12独立选自C1~C5的亚烷基或羟基取代亚烷基中的至少一种;Z和Z′独立选自COOM或氢中的任意一种。
上述技术方案中,优选d=2,e=0~1,f=1、2或4,m1=0~10,m2=0~10,n=0~20,且m1+m2与n不同时为零。
上述技术方案中,R1优选为C8~C24的烷基,R2、R3优选为甲基、乙基、羟乙基或苄基中的一种。
上述技术方案中,R5和R11优选为C8~C24烷基取代的苯环或萘环。
上述技术方案中,R6优选为C1~C3的亚烷基。
上述技术方案中,X优选为O。
上述技术方案中,优选d=2,e=0~1,f=1、2或4。
上述技术方案中,优选m1=0~10,m2=0~10,n=0~20,且m1+m2与n不同时为零;r1+r2=0~10,r3+r4=0~10,s1+s2=0~20,且r1+r2+r3+r4与s1+s2不同时为零。
上述技术方案中,所述增溶原油能力强的组合表面活性剂,以摩尔份数计,优选还包括以下组分:
(3)1~20摩尔的短碳链醇;
(4)1~10摩尔的盐;
其中,短碳链醇选自C1~C8的脂肪醇;盐选自金属卤化物、羟基取代的羧酸盐中至少一种。
上述技术方案中,优选短碳链醇为C1~C5的脂肪醇。
上述技术方案中,金属卤化物优选为碱金属卤化物,进一步优选为氯化钠、氯化钾、溴化钠、溴化钾中的一种;羟基取代的羧酸盐优选为羟基乙酸钠、羟基乙酸钾中的一种。
上述技术方案中,所述阳离子表面活性剂与阴离子表面活性剂的摩尔比优选为(0.05~0.95)∶1;阴离子表面活性剂与短碳链醇与盐的摩尔比优选为1∶(2~15):(1~5)。
上述技术方案中,式(1)表示的阳离子表面活性剂的核心在于结构中的阳离子部分,Yk-没有特别限制,只要能够使与式(1)中的阳离子部分构成电中性体系的阴离子均适用本发明。简单阴离子的例子例如,Yk-可以是k=1的无机阴离子(例如氯离子、溴离子或氢氧根离子、磷酸二氢根等)、k=1的有机阴离子(例如醋酸根等一元羧酸根),可以是k=2的无机阴离子(例如硫酸根、磷酸氢二根等)、k=2的有机阴离子(例如酒石酸根、邻苯二甲酸根、马来酸根);还可以是k>2的多价无机或有机阴离子,例如磷酸根、柠檬酸根。除了上述简单阴离子以外,还包括多聚阴离子(例如三聚磷酸根、多聚磷酸根等)、聚合阴离子(例如聚丙烯酸根)等。但至少从制备方法简便程度考虑,Yk-优选氯离子、溴离子氢氧根或乙酸根离子。
在Yk-为氯离子、溴离子或氢氧根离子且a=1、b=0的情形下,式(1)表示的表面活性剂可以从市售渠道获得也可以通过本领域常规技术合成得到;在Yk-氯离子、溴离子或氢氧根离子之外的阳离子表面活性剂,可以通过本领域常规技术合成得到,例如至少也可以通过Yk-为氢氧根离子的阳离子表面活性剂经过相应的酸中和至所需程度得到式(1)所式的阳离子表面活性剂;Yk-为氢氧根离子的阳离子表面活性剂,例如可以通过Yk-氯离子、溴离子的阳离子表面活性剂与氧化银反应得到,再例如还可以通过Yk-氯离子、溴离子的阳离子表面活性剂用强碱性氢氧型阴离子交换树脂处理得到。
本发明增溶原油能力强的组合表面活性剂,还可以包括本领域常用的驱油组分,例如驱油用聚合物,驱油用泡沫剂,驱油用矿物质(例如氯化钠、氯化钾)、碱性物质(例如氢氧化钠、碳酸钠、碳酸氢钠、二乙醇胺和三乙醇胺等小分子有机胺),有机小分子助剂包括短链脂肪醇、低碳链酮、DMSO等。
本发明增溶原油能力强的组合表面活性剂关键有效成分是(1)和(2),本领域技术人员知道,为了便于运输和贮存或现场使用等方面考虑,可以采用各种供应形式,例如不含水的固态形式,或者含水的膏状形式,或者水溶液形式;水溶液形式包括用水配成浓缩液的形式,直接配成现场驱油所需浓度的溶液形式,例如以重量计关键有效成分含量为0.005~0.6wt%的溶液是现场驱油较为适宜的形式;其中,对水没有特殊要求,可以是去离子水,还可以是含无机矿物质的水,而含无机矿物质的水可以是自来水、油田地层水或油田注入水。
为解决上述技术问题之二,本发明所采用的技术方案如下:上述技术问题之一所述的增溶原油能力强的组合表面活性剂的低成本制备方法,包括以下步骤:
(a)阳离子表面活性剂的制备:
当a=1,b=0时,阳离子表面活性剂为单链季铵盐,可通过市售得到;当a=1,b=1时,阳离子表面活性剂为双链季铵盐,其制备过程为:将脂肪胺与Y01CH2(CH2)fCH2Y02按所需摩尔比在短碳链醇水溶液中混合,升温至回流反应2~100小时,得到所需的阳离子表面活性剂水溶液或短碳链醇水溶液;其中,短碳链醇水溶液的浓度为0~100wt%,短碳链醇选自C1~C5的脂肪醇,Y01、Y02选自氯、溴或碘,f=0~2;
(b)阴离子表面活性剂的制备:
①在碱性催化剂存在下,烷基酚或芳香醇或芳香胺依次与所需量环氧乙烷、环氧丙烷、环氧乙烷反应得到烷基酚或芳香醇或芳香胺聚醚;
②将步骤(b)①得到的产物与Y03R6COOR01以及碱金属氢氧化物或碱金属醇盐以摩尔比1:(1~5):(1~10)混合,搅拌下于反应温度50~120℃反应3~15小时,无需分离,继续加入水进行皂化反应,回流1~10小时后,加入步骤(a)得到的阳离子表面活性剂水溶液或短碳链醇水溶液,升温至40~100℃搅拌1~5小时,得到所需的组合表面活性剂;其中,Y03选自氯、溴或碘,R6选自C1~C5的亚烷基或羟基取代亚烷基中的至少一种,R01选自C1~C8的烷基。
所述制备方法反应方程式如下:
Figure BDA0000876549560000061
R5X[(CH2CH2O)m1(CH3CH2O)n(CH2CH2O)m2R6COOM]j
上述技术方案中,步骤(b)①所述的反应温度优选为120~160℃,压力优选为0.30~0.60MPa表压,碱性催化剂优选为氢氧化钾或无水碳酸钾中的至少一种;步骤(b)②所述碱金属氢氧化物优选为氢氧化钾或氢氧化钠中的至少一种,烷基酚或芳香醇或芳香胺聚醚与Y03R6COOR01以及碱金属氢氧化物或碱金属醇盐的摩尔比优选为1:(1~3):(2~6),Y03优选自氯或溴中的一种,R6优选自C1~C3的亚烷基,R01优选为C1~C4的烷基,j优选为1。
只要进行了步骤(b)的反应,本领域技术人员不需要付出创造性劳动就能够分离、纯化得到所述复合表面活性剂的各种产品形式。
例如,为了得到式(2)所示阴离子表面活性剂当M为由式NR7(R8)(R9)(R10)所示基团时的产品,可进一步进行包括步骤(c)的反应:
(c)在步骤(b)得到的反应混合物中加入酸调节水相的pH=1~3,用与所需的式NR7(R8)(R9)(R10)所示基团相应的碱中和即可。
上述技术方案中所述所需的式NR7(R8)(R9)(R10)所示基团相应的碱,例如与NR7(R8)(R9)(R10)所述基团相应的碱选自氨、乙醇胺、二乙醇胺、三乙醇胺、三乙胺等。
Y03R01Z01的例子有但不限于氯乙酸酯(例如氯乙酸乙酯)、溴乙酸酯(例如溴乙酸乙酯)等。
为了解决上述技术问题之三,本发明采取的技术方案如下:一种上述技术方案中任一所述的增溶原油能力强的组合表面活性剂在油田驱油中的应用。
上述技术方案中,所述增溶原油能力强的组合表面活性剂可以根据现有技术加以应用,可以单独使用,也可以与油田常用助剂复配使用;作为优选方案:所述应用优选高温高盐油藏的地层盐水的总矿化度20000~35000mg/L,其中Ca2+为500~1500mg/L、Mg2+为100~500mg/L、HCO3 -为5~40mg/L;原油黏度为5~15mPa.s;地层温度为75~90℃。
本发明制备的阴离子与阳离子表面活性剂形成的阴阳体系组合表面活性剂,由于阴离子与阳离子表面活性剂复配后,即可呈现出表面活性的增加、临界胶束浓度的下降、增溶效应等优点。这是因为阴离子表面活性剂中的亲水头基呈负电性与阳离子表面活性剂中铵离子正电荷存在强烈的静电作用,促进了两种带不同电荷表面活性剂离子间的缔合,且二者的疏水基碳氢链间还有一定的疏水作用,促使不同表面活性剂分子采取更加紧密的排列方式,因而在溶液中很容易形成胶束,产生比单一表面活性剂更高的表面活性和低的临界胶束浓度,同时阴离子表面活性剂中的非离子聚醚基团的引入既可增加阴阳体系表面活性剂的亲水性,同时因为位阻效应减弱了复配剂之间的强烈相互作用以避免表面活性剂的液晶化、沉淀等现象的发生。因此,该表面活性剂具有优异的乳化原油的能力和界面活性,可解决油田现场使用过程中表面活性剂对原油增溶能力差而无法达到很好的洗油效率,同时超高的界面活性可以保证低浓度表面活性剂仍可保持超低的油水界面张力,从而能够提高驱油效率。另外,本发明采用的组合表面活性剂的低成本制备方法,由于高纯度阴离子和阳离子表面活性剂价格较高,特别是得到高含量阴非离子羧酸盐表面活性剂往往需经过萃取、柱层析等复杂的提纯步骤才能得到,从而大大增加了复配表面活性剂的制备成本。采用烷基酚或芳香醇或芳香胺与卤代羧酸酯在过量碱金属氢氧化物或碱金属醇盐催化下生成聚醚羧酸酯,无需分离直接进行皂化反应得到聚醚羧酸盐,加入所需量的阳离子水或低碳醇水溶混合,体系中的低碳醇可与表面活性剂在界面形成复合膜,同时低碳醇还可分配至油相和水相改善两相性质,从而有利于降低界面张力和形成微乳液,增加驱油体系对原油的增溶能力,生成的无机盐对界面性能亦有促进作用无需去除,可能过量的碱金属氢氧化物还可以中和原油中的酸性物质形成皂进一步提高表面活性剂对原油的增溶能力,提高复合表面活性剂的洗油效率,实现了表面活性剂的绿色生产。
本发明中涉及到组合表面活性剂含量或者浓度的场合,均指含有上述技术方案中分子通式(1)和分子通式(2)组份的总含量或总浓度。
采用本发明制备的组合表面活性剂,以质量百分比计,用量为0.005~0.3wt%的范围内,可用于地层温度为75~90℃、矿化度为20000~35000毫克/升、Mg2++Ca2+为600~2000毫克/升、HCO3-为5~40mg/L的胜利油田现场水和原油,测定了该表面活性剂水溶液与原油之间的动态界面张力值,可达10-2~10-4mN/m的低界面张力,静态吸附量为2mg/g左右,4wt%的表面活性剂能很好乳化原油,增溶参数最大值为21.9,取得了较好的技术效果。
附图说明
图1a、图1b为S-01~S-07在不同盐含量模拟水中对胜利油田原油增溶参数图。
图2为S-01~S-07最佳盐含量图。
图3为90℃时,0.15%的S-01~S07的9#模拟盐水溶液经不同老化时间后对胜利油田原油的油水界面张力图。
下面通过实施例对本发明作进一步阐述。
具体实施方式
【实施例1】
(a)双子阳离子季铵盐表面活性剂(10-6-10,2Cl-)的制备
C10H21(C2H5)2N+(CH2)6N+(C2H5)2C10H21.2Cl-
将癸基二乙基叔胺213.0克(1摩尔)与77.5克(0.5摩尔)1,6-二氯己烷、异丙醇600克混合于配有机械搅拌、温度计和回流冷凝管的2000毫升的四口烧瓶内,加热至回流反应60小时,停止回流。蒸除异丙醇,取样以四苯硼钠标准溶液滴定,双子阳离子表面活性剂(10-6-10,2Cl-)的含量为96.5%,其余样品不处理,备用。
(b)阴离子及复配表面活性剂S-01的制备
Figure BDA0000876549560000091
(1)向装有搅拌装置的2L压力反应器中加入克276克(1摩尔)十二烷基苄醇、4.6克氢氧化钾,加热至80~90℃时,开启真空系统,在高真空下脱水1小时,然后用氮气置换3~4次,将体系反应温度调至140℃缓缓通入90.2克(2.05摩尔)环氧乙烷,再于150℃缓缓通入585.8克(10.1摩尔)环氧丙烷,控制压力≤0.60MPa,待环氧丙烷反应结束后再将温度调至140℃缓缓通入90.2克(2.05摩尔)环氧乙烷,控制压力≤0.40MPa。反应结束后,降温至90℃,真空除去低沸物,冷却后中和、脱水,得十二烷基苄醇聚氧乙烯(2)聚氧丙烯(10)聚氧乙烯(2)醚994.8克,收率96.4%。
(2)于配有机械搅拌、温度计和回流冷凝管的5000毫升的反应瓶内,搅拌下加入步骤(b)(1)合成的十二烷基苄醇聚氧乙烯(2)聚氧丙烯(10)聚氧乙烯(2)醚516.0克(0.5摩尔)和48.0克(1.2摩尔)氢氧化钠,缓慢滴入108.6克(0.6摩尔)溴乙酸正丙酯,控制反应温度90℃反应4小时,冷却后加入700克水及100克95%乙醇,继续加热至回流反应3小时。冷却至40℃,加入含55.2克(0.095摩尔)步骤(a)制备的双子阳离子季铵盐表面活性剂(10-6-10,2Cl-)的异丙醇混合物,继续于45℃搅拌3小时,得到所需的组合表面活性剂S-01,以质量百分比计,阴阳表面活性剂37.04%,溴化钠3.16%,羟乙酸钠0.59%,混合醇(乙醇+正丙醇+异丙醇)14.89%,水44.32%。
【实施例2】
(a)阳离子表面活性剂为十二烷基三甲基溴化铵,市售商品,含量为30%,溶剂为水。
(b)阴离子及复配表面活性剂S-02的制备
阴离子表面活性剂同【实施例1】(b)制备。将十二烷基苄醇聚氧乙烯(2)聚氧丙烯(10)聚氧乙烯(2)醚乙酸钠反应液冷却至40℃,加入含175.6克(0.4摩尔)的十二烷基三甲基溴化铵的水溶液,继续于45℃搅拌3小时,得到所需的组合表面活性剂S-02,以质量百分比计,阴阳表面活性剂35.14%,溴化钠2.16%,羟乙酸钠0.51%,混合醇(乙醇+正丙醇+异丙醇)7.06%,水55.13%。
【实施例3】
(a)阳离子表面活性剂为十二烷基二甲基苄基氯化铵,市售商品,含量45%,溶剂为水。
(b)阴离子及复合表面活性剂S-03的制备
Figure BDA0000876549560000101
(1)向装有搅拌装置的压力反应器中加入262克(1摩尔)十二烷基苯酚、4克氢氧化钾和2.6克无水碳酸钾,加热至反应温度80~90℃时,开启真空系统,在高真空下脱水1小时,然后用氮气置换3~4次,将体系反应温度调至150℃缓缓通入701.8克(12.1摩尔)环氧丙烷,控制压力≤0.50MPa,待环氧丙烷反应结束后,降温,于130℃缓缓通入88.0克(2.0摩尔)环氧乙烷,控制压力≤0.60MPa。反应结束后,同【实施例1】后处理,得十二烷基苯酚聚氧丙烯(12)聚氧乙烯(2)醚1015.7克,收率97.1%。
(2)于配有机械搅拌、温度计和回流冷凝管的5000毫升的反应瓶内,搅拌下加入步骤(b)(1)合成的十二烷基苯酚聚氧丙烯(12)聚氧乙烯(2)醚523克(0.5摩尔)和60.0克(1.5摩尔)氢氧化钠,缓慢滴入79.6克(0.65摩尔)氯乙酸乙酯,控制反应温度90℃反应4小时,冷却后加入600克水及200克95%乙醇,继续加热至回流反应5小时。冷却至40℃,加入85.0克(0.40摩尔)十二烷基二甲基苄基氯化铵,继续于40℃搅拌4小时,得到所需的组合表面活性剂S-03,以质量百分比计,阴阳表面活性剂39.78%,氯化钠1.79%,羟乙酸钠0.95%,氢氧化钠0.49%,乙醇13.35%,水43.64%。
【实施例4】
(a)双子阳离子季铵盐表面活性剂(18-4-18,2Br-)的制备
C18H37(CH2CH2OH)2N+(CH2)4N+(CH2CH2OH)2C18H37.2Br-
将十八烷基二羟乙基叔胺357克(1摩尔)与108克(0.5摩尔)1,4-二溴丁烷、30wt%乙醇水溶液1220克混合于配有机械搅拌、温度计和回流冷凝管的5000毫升的四口烧瓶内,加热至回流反应7小时,停止回流。取10克反应液蒸除乙醇,以四苯硼钠标准溶液滴定双子阳离子表面活性剂(18-4-18,2Br-)的含量为98.9%,其余样品不处理,备用。
(b)阴离子及复配表面活性剂S-04的制备
阴离子表面活性剂同【实施例3】(b)制备。将十二烷基苯酚聚氧丙烯(12)聚氧乙烯(2)醚乙酸钠反应液冷却至40℃,加入128.9克(0.225摩尔)步骤(a)制备的双子阳离子季铵盐表面活性剂(18-4-18,2Br-),继续于45℃搅拌3小时,得到所需的组合表面活性剂S-04,以质量百分比计,阴阳表面活性剂38.26%,溴化钠1.68%,羟乙酸钠1.03%,混合醇(乙醇+正丙醇)15.35%,氢氧化钠0.47%,水43.21%。
【实施例5】
(a)同【实施例4】(a)。
(b)阴离子及复合表面活性剂S-05的制备
Figure BDA0000876549560000111
(1)向装有搅拌装置的2L压力反应器中加入克303克(1摩尔)松香酸、5.1克氢氧化钾,加热至80~90℃时,开启真空系统,在高真空下脱水1小时,然后用氮气置换3~4次,将体系反应温度调至145℃缓缓通入356.4克(8.1摩尔)环氧乙烷,控制压力≤0.60MPa反应结束后,降温至90℃,真空除去低沸物,冷却后中和、脱水,得松香酸聚氧乙烯(8)醚酯626.8克,收率95.7%。
(2)于配有机械搅拌、温度计和回流冷凝管的2000毫升的反应瓶内,搅拌下加入步骤(b)(1)合成的松香酸聚氧乙烯(8)醚酯327.5克(0.5摩尔)和60.0克(1.5摩尔)氢氧化钠,缓慢滴入135.8克(0.75摩尔)溴乙酸正丙酯,控制反应温度95℃反应5小时,冷却后加入500克水及100克95%乙醇,继续加热至回流反应3小时。冷却至40℃,加入128.9克(0.225摩尔)步骤(a)制备的双子阳离子季铵盐表面活性剂(18-4-18,2Br-),继续于45℃搅拌3小时,得到所需的组合表面活性剂S-05,以质量百分比计,阴阳表面活性剂40.45%,溴化钠4.06%,羟乙酸钠1.89%,混合醇(乙醇+正丙醇)11.46%,水42.14%。
【实施例6】
(a)阳离子表面活性剂为十八烷基三甲基溴化铵(OTAB,罗地亚公司,含量98.5%)。
(b)阴离子及复合表面活性剂S-06的制备
Figure BDA0000876549560000121
(1)向装有搅拌装置的压力反应器中加入220克(1摩尔)壬基苯酚、3克氢氧化钾和1.5克无水碳酸钾,加热至反应温度80~90℃时,开启真空系统,在高真空下脱水1小时,然后用氮气置换3~4次,将体系反应温度调至150℃缓缓通入353.8克(6.1摩尔)环氧丙烷,控制压力≤0.50MPa,待环氧丙烷反应结束后,降温,于130℃缓缓通入224.4克(5.1摩尔)环氧乙烷,控制压力≤0.60MPa。反应结束后,同【实施例1】后处理,得壬基苯酚聚氧丙烯(6)聚氧乙烯(5)醚773.8克,收率98.2%。
(2)于配有机械搅拌、温度计和回流冷凝管的5000毫升的反应瓶内,搅拌下加入步骤(b)(1)合成的壬基苯酚聚氧丙烯(6)聚氧乙烯(5)醚394.0克(0.5摩尔)和128.8克(2.3摩尔)氢氧化钾,缓慢滴入150.5克(1.0摩尔)氯乙酸正丁酯,控制反应温度110℃反应5小时,冷却后加入400克水及50克95%乙醇,继续加热至回流反应3小时。冷却至40℃,加入188.2克(0.48摩尔)十八烷基三甲基溴化铵,继续于45℃搅拌3小时,得到所需的组合表面活性剂S-06,以质量百分比计,阴阳表面活性剂50.23%,氯化钾3.13%,羟乙酸钾4.69%,氢氧化钾1.51%,混合醇(乙醇+正丁醇)9.03%,水31.41%。
【实施例7】
(a)阳离子表面活性剂为十八烷基三甲基溴化铵(OTAB,罗地亚公司,含量98.5%)。
(b)阴离子及复合表面活性剂S-07的制备
Figure BDA0000876549560000122
(1)向装有搅拌装置的2L压力反应器中加入330克2,4-二枯基苯酚(1摩尔)、3.8克氢氧化钾,加热至80~90℃时,开启真空系统,在高真空下脱水1小时,然后用氮气置换3~4次,将体系反应温度调至140℃缓缓通入356.4克(8.1摩尔)环氧乙烷,控制压力≤0.60MPa反应结束后,降温至90℃,真空除去低沸物,冷却后中和、脱水,得2,4-二枯基苯酚聚氧乙烯(8)醚643.1克,收率94.3%。
(2)于配有机械搅拌、温度计和回流冷凝管的2000毫升的反应瓶内,搅拌下加入步骤(b)(1)合成的2,4-二枯基苯酚聚氧乙烯(8)醚341.0克(0.5摩尔)和87.0克(1.5摩尔)氢氧化钾,缓慢滴入102.4克(0.75摩尔)氯乙酸异丙酯,控制反应温度100℃反应3小时,冷却后加入300克水及300克95%乙醇,继续加热至回流反应3小时。冷却至40℃,加入45.9克(0.25摩尔)十八烷基三甲基溴化铵,继续于40℃搅拌5小时,得到所需的组合表面活性剂S-07,以质量百分比计,阴阳表面活性剂38.78%,氯化钾3.55%,羟乙酸钠2.98%,混合醇(乙醇+异丙醇)26.43%,水28.26%。
【实施例8】
配制不同盐含量的模拟水,组成见表1所示。
相态实验用原油来至胜利油田,经脱水后使用,原油黏度为35mPa.s。
相态实验可以很好反映出表面活性剂对原油的增溶能力,得到表面活性剂对原油的增溶参数和表面活性剂的最佳盐含量。实验过程为:首先配4.0wt%组合表面活性剂不同盐含量的水溶液,取2.5mL加入一端封口的5mL移液管中,再加入2.5mL脱水原油(油水体积比=1:1),上端分封口后,记录起始的油水体积,充分混合后,放入不锈钢密封容器中置于90℃烘箱恒温静置,直到各相体积不变为至,记录各相体积,计算表面活性剂对原油的增溶参数,增溶参数最大时的盐度为表面活性剂的最佳盐含量。结果见图1、图2所示。
【实施例9】
将表面活性剂S-01以1#~9#模拟水溶解,测定表面活性剂溶液对原油的油水界面张力,结果见表2所示。油水界面张力测定用原油同【实施例8】,油水界面张力(IFT)由美国德克萨斯大学生产的TX500型旋转滴界面张力仪测定。
将0.15wt%的S-01~S-07的9#模拟盐水溶液装入20毫升安碚瓶中,密封后放入90℃的烘箱内,测定不同老化时间后表面活性剂模拟盐水对与原油的油水界面张力,发现老化后油水界面张力仍可保持10-3~10-4mN/m的超低值,见图3所示。
【实施例10】
静态吸附试验主要是探索表面活性剂在地层岩心上的吸附损耗量,以探索实施例合成的表面活性剂在提高原油采收率现场应用的可能性。实验过程为:表面活性剂的9#模拟盐水溶液3g与1g含黏土的石英砂混合后,于90℃震荡24h,冷却后离心分离,取上层清液,采用高效液相色谱(HPLC)分析仪测定表面活性剂阴离子和阳离子的浓度,计算表面活性剂的吸附量,单位mg/g,结果见表3所示。其中,含黏土的石英砂组成为:10wt%高岭土+90wt%100~200目石英砂。
【比较例1】
分别配制0.15%【实施例1】合成的双子阳离子表面活性剂(10-6-10,2Cl-)(S-08)、十二烷基苄醇聚氧乙烯(2)聚氧丙烯(10)聚氧乙烯(2)醚乙酸钠阴离子表面活性剂(S-09)、十二烷基三甲基溴化铵(S-10)、十二烷基二甲基苄基氯化铵(S-11)和【实施例3】合成的十二烷基苯酚聚氧丙烯(12)聚氧乙烯(2)醚乙酸钠(S-12)的9#模拟水溶液,同【实施例9】和【实施例10】测定油水界面张力和吸附量,结果见表4所示。
【比较例2】
同【实施例1】,不同之处在于,与环氧丙烷和环氧乙烷不是先后分步进行反应的,而是混合后一步进行反应,即在110~150℃缓缓通入585.8克(10.1摩尔)环氧丙烷和180.4克(4.1摩尔)环氧乙烷混合物,控制压力≤0.60MPa,其余相同,得到S-13,同【实施例9】和【实施例10】测定油水界面张力和吸附量,结果见表4所示。
【比较例3】
同【实施例3】,不同之处在于,与环氧丙烷和环氧乙烷不是先后分步进行反应的,而是将混合后一步进行反应,即在110~150℃缓缓通入701.8克(12.1摩尔)环氧丙烷和88.0克(2.0摩尔)环氧乙烷混合物,控制压力≤0.60MPa,其余相同,得到S-14,同【实施例9】和【实施例10】测定油水界面张力和吸附量,结果见表4所示。
【比较例4】
【实施例1】合成的十二烷基苄醇聚氧乙烯(2)聚氧丙烯(10)聚氧乙烯(2)醚乙酸钠阴离子表面活性剂(S-09)同【实施例8】进行相态实验,结果见表5所示。
【比较例5】
同【实施例1】,不同之处在于,(a)步骤中反应结束时,减压蒸除异丙醇,得到阳离子表面活性剂产品;(b)步骤中皂化反应结束后,减压蒸除反应产生的乙醇和正丙醇,以20wt%盐酸调节pH=1-2,分去水相,有机相以30%氢氧化钠调节至pH=12-13。将阳离子和阴离子按同【实施例1】比例混合,得到所需的组合表面活性剂S-15,同【实施例8】进行相态实验,结果见表5所示。
表1
Figure BDA0000876549560000161
表2
模拟水 浓度wt% IFT(mN/m) 模拟水 浓度wt% IFT(mN/m)
1<sup>#</sup> 0.15 0.0046 1<sup>#</sup> 0.025 0.0239
2<sup>#</sup> 0.15 0.0027 2<sup>#</sup> 0.025 0.0069
3<sup>#</sup> 0.15 0.00067 3<sup>#</sup> 0.025 0.00092
4<sup>#</sup> 0.15 0.00088 4<sup>#</sup> 0.025 0.0024
5<sup>#</sup> 0.15 0.0019 5<sup>#</sup> 0.025 0.0068
6<sup>#</sup> 0.15 0.0056 6<sup>#</sup> 0.025 0.0089
7<sup>#</sup> 0.15 0.0103 7<sup>#</sup> 0.025 0.0878
8<sup>#</sup> 0.15 0.0895 8<sup>#</sup> 0.025 0.2983
9<sup>#</sup> 0.15 0.00045 9<sup>#</sup> 0.025 0.00077
表3
表面活性剂 吸附量mg/g
S-01 1.39
S-02 1.53
S-03 1.98
S-04 2.02
S-05 1.91
S-06 1.56
S-07 1.77
表4
表面活性剂 浓度wt% 模拟水 IFT(mN/m) 吸附量(mg/g)
S-01 0.15 9<sup>#</sup> 0.00045 1.39
S-02 0.15 9<sup>#</sup> 0.00089 1.53
S-03 0.15 9<sup>#</sup> 0.00076 1.98
S-08 0.15 9<sup>#</sup> 1.3345 4.67
S-09 0.15 9<sup>#</sup> 0.03551 0.88
S-10 0.15 9<sup>#</sup> 2.3422 3.38
S-11 0.15 9<sup>#</sup> 0.9556 4.34
S-12 0.15 9<sup>#</sup> 0.0121 1.08
S-13 0.15 9<sup>#</sup> 0.0056 1.47
S-14 0.15 9<sup>#</sup> 0.0043 1.68
表5
Figure BDA0000876549560000201

Claims (9)

1.一种增溶原油能力强的组合表面活性剂,以摩尔份数计包括以下组分:
(1)0.01~1摩尔的阳离子表面活性剂;
(2)1摩尔的阴离子表面活性剂;
(3)1~20摩尔的短碳链醇;
(4)1~10摩尔的盐;
其中,(1)组分的分子通式为:
Figure FDA0002576209980000011
式(I)中,R1为C4~C32的烷基,R2、R3独立选自(CH2)dOH或(CH2)eCH3中的一种;a=1、b=1,R4选自CH2(CH2)fCH2,f=0~5中的任一整数;Yk-为负电荷数为k的阴离子;
(2)组分的分子通式为:
R5X[(CH2CH2O)m1(CH3CHCH2O)n(CH2CH2O)m2R6COOM]j,式(II);
式(II)中,R5为由C4~C20直链或支链的饱和及不饱和烃基取代的苯环或萘环,或R5X为松香酸根;m1、m2为丙氧基团PO的加合数,m1大于0至50、m2大于0至50;n为乙氧基团EO的加合数,n大于0至100;R6为C1~C5的亚烷基或羟基取代亚烷基,M选自氢、碱金属或者由式NR7(R8)(R9)(R10)所示基团中的至少一种,R7、R8、R9、R10为独立选自H、(CH2)dOH或(CH2)eCH3中的一种,d=2~4、e=0~5中的任一整数;X为杂原子,j为羧酸根的个数,j=1或2;
短碳链醇选自C1~C8的脂肪醇;盐选自金属卤化物、羟基取代的羧酸盐中至少一种。
2.根据权利要求1所述的增溶原油能力强的组合表面活性剂,其特征在于所述X为氧原子,j=1。
3.根据权利要求1所述的增溶原油能力强的组合表面活性剂,其特征在于所述X为氮原子,j=2,所述(2)组分的结构式如式(III)所示:
Figure FDA0002576209980000012
式(III)中,R11为C4~C20直链或支链的饱和及不饱和烃基取代的苯环或萘环,或R11X为松香胺根;r1、r2、r3或r4独立选自大于0至50;s1和s2独立选自大于0至100;R12和R′12独立选自C1~C5的亚烷基或羟基取代亚烷基中的至少一种;Z和Z′独立选自COOM或氢中的任意一种。
4.根据权利要求1所述的增溶原油能力强的组合表面活性剂,其特征在于所述R1为C8~C24的烷基,R2、R3为甲基、乙基、羟乙基或苄基中的一种;d=2,e=0~1,f=0~2;Y-为Cl-、Br-、I-、CH3OSO3 -或CH3COO-中的至少一种;R5为C8~C24烷基取代的苯环或萘环或枯基取代的苯环;m1大于0至10,m2大于0至10,n大于0至20。
5.根据权利要求3所述的增溶原油能力强的组合表面活性剂,其特征在于所述R11为C8~C24烷基取代的苯环或萘环或枯基取代的苯环;r1+r2大于0至10,r3+r4大于0至10,s1+s2大于0至20。
6.根据权利要求1所述的增溶原油能力强的组合表面活性剂,其特征在于所述阳离子表面活性剂与阴离子表面活性剂的摩尔比(0.05~0.95)∶1,阴离子表面活性剂与短碳链醇与盐的摩尔比1∶(2~15):(1~5)。
7.权利要求1~6任一所述的增溶原油能力强的组合表面活性剂的制备方法,包括以下步骤:
(a)阳离子表面活性剂的制备:
当a=1,b=0时,阳离子表面活性剂为单链季铵盐,可通过市售得到;当a=1,b=1时,阳离子表面活性剂为双链季铵盐,其制备过程为:将脂肪胺与Y01CH2(CH2)fCH2Y02按所需摩尔比在短碳链醇水溶液中混合,升温至回流反应2~100小时,得到所需的阳离子表面活性剂水溶液或短碳链醇水溶液;其中,短碳链醇水溶液的浓度为0~100wt%且大于0小于100%,短碳链醇选自C1~C5的脂肪醇,Y01、Y02选自氯、溴或碘,f=0~2;
(b)阴离子表面活性剂的制备:
①在碱性催化剂存在下,烷基酚或芳香醇或芳香胺依次与所需量环氧乙烷、环氧丙烷、环氧乙烷反应得到烷基酚或芳香醇或芳香胺聚醚;
②将步骤(b)①得到的产物与Y03R6COOR01以及碱金属氢氧化物或碱金属醇盐以摩尔比1:(1~5):(1~10)混合,搅拌下于反应温度50~120℃反应3~15小时,继续加入水进行皂化反应,回流1~10小时后,加入步骤(a)得到的阳离子表面活性剂水溶液或短碳链醇水溶液,升温至40~100℃搅拌1~5小时,得到所需的组合表面活性剂;其中,Y03选自氯、溴或碘,R6选自C1~C5的亚烷基或羟基取代亚烷基中的至少一种,R01选自C1~C8的烷基。
8.根据权利要求7所述的增溶原油能力强的组合表面活性剂的低成本制备方法,其特征是步骤(b)①中所述的反应温度为120~160℃,压力为0.30~0.60MPa表压,碱性催化剂为氢氧化钾或无水碳酸钾中的至少一种;②中所述碱金属氢氧化物为氢氧化钾或氢氧化钠中的至少一种,烷基酚或芳香醇或芳香胺聚醚与Y03R6COOR01以及碱金属氢氧化物或碱金属醇盐的摩尔比为1:(1~3):(2~6),Y03选自氯或溴中的一种,R6选自C1~C3的亚烷基,R01为C1~C4的烷基。
9.权利要求1~6任一所述的增溶原油能力强的组合表面活性剂在油田驱油中的应用。
CN201510922556.0A 2015-12-14 2015-12-14 增溶原油能力强的组合表面活性剂及低成本制备方法 Active CN106867494B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510922556.0A CN106867494B (zh) 2015-12-14 2015-12-14 增溶原油能力强的组合表面活性剂及低成本制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510922556.0A CN106867494B (zh) 2015-12-14 2015-12-14 增溶原油能力强的组合表面活性剂及低成本制备方法

Publications (2)

Publication Number Publication Date
CN106867494A CN106867494A (zh) 2017-06-20
CN106867494B true CN106867494B (zh) 2020-10-16

Family

ID=59178239

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510922556.0A Active CN106867494B (zh) 2015-12-14 2015-12-14 增溶原油能力强的组合表面活性剂及低成本制备方法

Country Status (1)

Country Link
CN (1) CN106867494B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11639461B2 (en) * 2016-02-19 2023-05-02 Schlumberger Technology Corporation Reversible oil-based mud
CN109423269B (zh) * 2017-08-23 2020-12-22 中国石油化工股份有限公司 一种抗钙型纳米乳液驱油剂
CN109679628A (zh) * 2017-10-19 2019-04-26 中国石油化工股份有限公司 化学驱油用非烷基酚类表面活性剂组合物及其制备方法
CN108179007A (zh) * 2017-12-08 2018-06-19 成都劳恩普斯科技有限公司 一种水基钻井液用双子型页岩抑制剂水剂、粉剂及其制备方法,以及抑制剂
CN108997994B (zh) * 2018-09-05 2021-01-05 石家庄长宏能源科技有限公司 一种油田防窜驱油用泡沫剂及其制备方法
CN109504549B (zh) * 2018-09-26 2021-03-16 武汉奥克特种化学有限公司 一种环保型低泡耐碱增溶剂的制备及其应用
CN112226226B (zh) * 2019-07-15 2023-07-04 中国石油化工股份有限公司 苯胺化合物与聚醚表面活性剂组合物及聚-表驱油剂
CN112694880B (zh) * 2019-10-22 2023-05-02 中国石油化工股份有限公司 含苯胺化合物的驱油用表面活性剂组合物及其制备方法和应用
CN112694878B (zh) * 2019-10-22 2022-09-06 中国石油化工股份有限公司 含酯基聚醚阳离子表面活性剂组合物及其制备和应用
CN112708409B (zh) * 2019-10-25 2022-09-06 中国石油化工股份有限公司 含酰胺基聚醚阳离子表面活性剂的组合物及其制备和应用
CN115873579B (zh) * 2021-09-29 2024-05-03 中国石油化工股份有限公司 一种稠油降黏洗油剂及其制备方法与应用

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102329608A (zh) * 2011-07-25 2012-01-25 天津科技大学 一种用于改善岩芯润湿性能的微乳剂
CN103421480A (zh) * 2012-05-16 2013-12-04 中国石油化工股份有限公司 驱油用表面活性剂组合物及其制备方法
CN103540304A (zh) * 2012-07-12 2014-01-29 中国石油化工股份有限公司 强化采油用表面活性剂组合物及其制备方法
CN103666430A (zh) * 2012-09-05 2014-03-26 中国石油化工股份有限公司 用于强化采油的表面活性剂组合物及其制备方法
CN103740345A (zh) * 2012-10-17 2014-04-23 中国石油化工股份有限公司 泡沫封窜组合物及其制备方法和用途
CN103740354A (zh) * 2012-10-17 2014-04-23 中国石油化工股份有限公司 用于三次采油的表面活性剂组合物及其制备方法
CN103773346A (zh) * 2012-10-25 2014-05-07 中国石油化工股份有限公司 高效驱油用表面活性剂组合物及其制备方法
CN103897172A (zh) * 2012-12-27 2014-07-02 中国石油化工股份有限公司 酚醚磺酸盐油基乳化剂及制备方法
CN103965854A (zh) * 2013-02-05 2014-08-06 中国石油化工股份有限公司 可用于低渗透油藏的阴阳体系表面活性剂及制备方法
CN103965856A (zh) * 2013-02-05 2014-08-06 中国石油化工股份有限公司 用于驱油的聚表二元体系及驱油方法
CN103967463A (zh) * 2013-02-05 2014-08-06 中国石油化工股份有限公司 强化驱油方法
CN104232044A (zh) * 2013-06-17 2014-12-24 中国石油化工股份有限公司 用于三次采油的表面活性剂组合物、制备方法及应用
CN104232045A (zh) * 2013-06-17 2014-12-24 中国石油化工股份有限公司 复合型表面活性剂组合物、制备方法及应用
CN104277814A (zh) * 2013-07-09 2015-01-14 中国石油化工股份有限公司 驱油用表面活性剂组合物、制备方法及应用

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102329608A (zh) * 2011-07-25 2012-01-25 天津科技大学 一种用于改善岩芯润湿性能的微乳剂
CN103421480A (zh) * 2012-05-16 2013-12-04 中国石油化工股份有限公司 驱油用表面活性剂组合物及其制备方法
CN103540304A (zh) * 2012-07-12 2014-01-29 中国石油化工股份有限公司 强化采油用表面活性剂组合物及其制备方法
CN103666430A (zh) * 2012-09-05 2014-03-26 中国石油化工股份有限公司 用于强化采油的表面活性剂组合物及其制备方法
CN103740345A (zh) * 2012-10-17 2014-04-23 中国石油化工股份有限公司 泡沫封窜组合物及其制备方法和用途
CN103740354A (zh) * 2012-10-17 2014-04-23 中国石油化工股份有限公司 用于三次采油的表面活性剂组合物及其制备方法
CN103773346A (zh) * 2012-10-25 2014-05-07 中国石油化工股份有限公司 高效驱油用表面活性剂组合物及其制备方法
CN103897172A (zh) * 2012-12-27 2014-07-02 中国石油化工股份有限公司 酚醚磺酸盐油基乳化剂及制备方法
CN103965854A (zh) * 2013-02-05 2014-08-06 中国石油化工股份有限公司 可用于低渗透油藏的阴阳体系表面活性剂及制备方法
CN103965856A (zh) * 2013-02-05 2014-08-06 中国石油化工股份有限公司 用于驱油的聚表二元体系及驱油方法
CN103967463A (zh) * 2013-02-05 2014-08-06 中国石油化工股份有限公司 强化驱油方法
CN104232044A (zh) * 2013-06-17 2014-12-24 中国石油化工股份有限公司 用于三次采油的表面活性剂组合物、制备方法及应用
CN104232045A (zh) * 2013-06-17 2014-12-24 中国石油化工股份有限公司 复合型表面活性剂组合物、制备方法及应用
CN104277814A (zh) * 2013-07-09 2015-01-14 中国石油化工股份有限公司 驱油用表面活性剂组合物、制备方法及应用

Also Published As

Publication number Publication date
CN106867494A (zh) 2017-06-20

Similar Documents

Publication Publication Date Title
CN106867494B (zh) 增溶原油能力强的组合表面活性剂及低成本制备方法
CN106867495B (zh) 复合型表面活性剂及其低成本制备方法
CN106590587B (zh) 含聚醚羧酸盐表面活性剂组合物及其制备方法和用途
CN106590590B (zh) 含聚醚羧酸盐表面活性剂的驱油组合物及制备方法
CN108314999B (zh) 高效提高原油采收率的方法
CN108315001B (zh) 高效驱油剂、制备方法和应用
CN110791273B (zh) 一种气井泡排剂组合物、制备方法及其应用
CN106590586B (zh) 用于三次采油的驱油剂
CN105368426B (zh) 双亲水头基阴离子表面活性剂及其制备方法
CN112225667B (zh) 复合表面活性剂组合物及驱油剂及其制备方法和应用
CN102516064A (zh) 一种非离子-阴离子复合型表面活性剂的制备方法及其应用
CN104231257B (zh) 一种芳基烷基醇聚氧丙烯聚氧乙烯嵌段共聚物及其制备方法和应用
CN112708409B (zh) 含酰胺基聚醚阳离子表面活性剂的组合物及其制备和应用
CN112226226B (zh) 苯胺化合物与聚醚表面活性剂组合物及聚-表驱油剂
CN112226224A (zh) 提高原油采收率的方法
CN108314997B (zh) 大幅度提高原油采收率的流体、制备方法及应用
CN111394084B (zh) 一种驱油剂及其制备和应用
CN102936491B (zh) 一种弱碱型表面活性复配剂及其中表面活性剂的制备方法
CN112694880B (zh) 含苯胺化合物的驱油用表面活性剂组合物及其制备方法和应用
CN106590569B (zh) 提高采收率的强化采油方法
CN108316901B (zh) 高效强化采油的方法
CN113930226B (zh) 含聚醚季铵盐的表面活性剂组合物及其制备和提高油气产量的方法
CN112708411A (zh) 驱油用两性离子表面活性剂与聚醚胺表面活性剂组合物及制备方法和应用
CN106590598B (zh) 驱油组合物及其制备方法
CN111088012A (zh) 提高原油采收率的复合表面活性剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant