CN106847667B - 一种表面改性的氮化物半导体及其制备方法 - Google Patents

一种表面改性的氮化物半导体及其制备方法 Download PDF

Info

Publication number
CN106847667B
CN106847667B CN201611229170.2A CN201611229170A CN106847667B CN 106847667 B CN106847667 B CN 106847667B CN 201611229170 A CN201611229170 A CN 201611229170A CN 106847667 B CN106847667 B CN 106847667B
Authority
CN
China
Prior art keywords
nitride semiconductor
graphene
dimensional
modified
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611229170.2A
Other languages
English (en)
Other versions
CN106847667A (zh
Inventor
曹冰
李宗尧
赵恩
杨松
刘伊
吴竹慧
王钦华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Third Generation Semiconductor Research Institute Co Ltd
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201611229170.2A priority Critical patent/CN106847667B/zh
Publication of CN106847667A publication Critical patent/CN106847667A/zh
Application granted granted Critical
Publication of CN106847667B publication Critical patent/CN106847667B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明公开了一种表面改性的氮化物半导体及其制备方法。采用射频等离子体增强化学气相沉积方法直接在氮化物半导体表面生长二维或三维垂直结构石墨烯,能够连续调制氮化物半导体表面的疏水性,使氮化物半导体对水的接触角从原来的60°提高到140°,实现亲疏水的可控转换。本发明对氮化物半导体表面改性的方法简单、可控性强,不仅不影响氮化物半导体材料自身的优异性能,还为其附加了表面自清洁能力,在生物电子领域有应用潜力。能够实现连续、可控地改善氮化物半导体表面疏水性。

Description

一种表面改性的氮化物半导体及其制备方法
技术领域
本发明涉及一种氮化物半导体的表面改性技术,特别涉及一种利用射频等离子体增强化学气相沉积方法,以石墨烯对氮化物半导体进行表面改性,属于半导体材料技术领域。
背景技术
氮化物半导体是一种具有代表性的第三代宽禁带半导体材料,其发光效率高、导热性能好、强度高、硬度高、抗腐蚀,并且具备生物相容性,在照明、通信和生物等领域有重要的应用。特别是随着近年来氮化物半导体在生物电子器件方面的发展,越来越需要提供适合工业化规模应用的能调节氮化物半导体表面疏水性、提供具有自清洁能力的表面技术。
目前,改变氮化物半导体表面疏水性的方法有表面激光构型、表面化学刻蚀、表面化学修饰等。在本发明做出之前,中国发明专利(CN 101219770B)“半导体材料微纳多尺度功能表面激光造型方法”提出了利用飞秒激光器在氮化镓、硅、二氧化钛等多种半导体材料表面造型,以改善材料疏水性的方法,主要利用了高能量的飞秒激光在材料表面刻蚀出微结构;文献(I.Dzie Rcielewski, et al. On the hydrophobicity of modified Ga-polar GaN surfaces Appl. Phys. Lett. 2013, 102, 043704)提出了先用腐蚀剂刻蚀氮化镓表面,然后再在表面镀金或者利用氯硅烷处理表面以提高氮化镓疏水性的方法;以上两种方法都会对氮化物半导体表面造成损伤,影响材料性能。中国发明专利(CN105039975A)“一种不锈钢基底仿生超疏水石墨烯薄膜的制备方法”提出了在不锈钢上电镀镍并利用镍渗碳析碳形成的石墨烯膜来实现不锈钢的疏水。该方法需要在衬底上先电镀金属层,利用金属催化作用形成石墨烯,工艺步骤相对繁琐。
发明内容
本发明针对现有技术存在的不足,提供一种表面疏水性可控的表面改性的氮化物半导体及其制备方法。
为实现上述发明目的,本发明所采用的技术方案提供一种表面改性的氮化物半导体的制备方法,采用射频等离子体增强化学气相沉积方法(r-PECVD),在氮化物半导体表面直接生长石墨烯,包括如下步骤:
1、将氮化物半导体衬底置于距等离子体发生器中心20~60cm位置处,以5~20℃/min的升温速率升温至600~800℃;
2、以氢气为等离子体工作气体对衬底表面处理1~20min;
3、以甲烷为反应气体,等离子体电源的功率为50~100W,沉积温度为600~800℃的条件下,在氮化物半导体表面直接生长二维或三维垂直结构石墨烯,沉积时间为30~400min;
4、以2~4℃/min的降温速率降温至室温,得到一种表面改性的氮化物半导体。
所述的氮化物半导体衬底材料包括氮化镓、氮化铝、氮化铟及其三元或四元合金。
在本发明技术方案中,当沉积温度为600~700℃, 等离子体电源的功率为50~80W条件下,在氮化物半导体表面生长得到二维石墨烯;在沉积温度为大于700~800℃, 等离子体电源的功率为50~100W条件下,在氮化物半导体表面生长得到三维垂直结构石墨烯。
本发明技术方案还包括按上述制备方法得到的一种表面改性的氮化物半导体,它对水的接触角为60~140°。
本发明提供了一种利用石墨烯改善氮化物半导体表面疏水性的方法。石墨烯是碳的一种同素异形体,具有弱疏水性。本发明以甲烷为碳源,利用r-PECVD在氮化镓等半导体衬底上直接生长具有不同形貌特征的二维或三维垂直结构石墨烯。生长的二维石墨烯具有粗糙结构,对水的接触角从60°增加到110°;生长的三维垂直结构石墨烯,垂直衬底方向的石墨烯具有微米或纳米级间隙,在衬底表面构筑了特殊的微纳结构,都使得衬底表面能不同程度降低,从而提高了疏水性,对水的接触角达到140°。本发明制备的表面改性氮化物半导体,其疏水性能连续可控地调制,实现接触角从60°到140°的连续改变,甚至可以达到超疏水状态。
本发明有如下优点:
1、利用射频等离子体增强化学气相沉积的方法,在氮化镓等半导体衬底上生长具有不同形貌的二维或三维垂直结构石墨烯;通过生长不同结构的石墨烯,能连续可控调制氮化镓等衬底表面的疏水性能。
2、与现有技术相比,本发明提供的氮化物半导体表面疏水性调控技术,具有成本低、操作简单、可规模化生产等特点。
附图说明
图1为本发明实施例提供的经表面改性后具有疏水性的氮化镓半导体的结构示意图;
图2为本发明实施例1提供的采用r-PECVD在氮化镓衬底上生长的二维石墨烯的原子力显微镜形貌图;
图3为本发明实施例2提供的采用r-PECVD在氮化镓衬底上生长的三维垂直结构石墨烯的原子力显微镜形貌图;
图4为本发明实施例2提供的石墨烯表面改性氮化镓与氮化镓的接触角测试对比结果图。
具体实施方式
下面结合附图和具体实施例对本发明技术方案作进一步阐述。
实施例1
本实施例以氮化镓为衬底,利用r-PECVD的方法在其上生长二维石墨烯,增强其疏水性。
将氮化镓等半导体衬底分别经过丙酮、酒精和去离子水超声清洗,用高纯氮气吹干,放入生长腔室中。先将腔室抽真空,然后以15℃/min的速率升温到650℃。退火阶段,在氢气和氩气混合气氛下退火30min。然后在等离子体电源的功率为70W条件,用氢气等离子体处理2min。
生长阶段,在射频等离子体电源的功率为70W的条件下,通入甲烷气体,保持沉积温度恒定650℃,维持反应60min。降温阶段,以2℃/min的降温速率降温到室温。最终在氮化镓衬底表面获得具有特殊粗糙结构的二维石墨烯。
参见附图1,它是本实施例提供的经表面改性后具有疏水性的氮化镓半导体的结构示意图。
本实施例所得到的二维石墨烯形貌如图2所示。
本实施例对氮化镓表面疏水性的调制结果为:接触角从60°增大到90°。
实施例2
以氮化镓为衬底,利用射频等离子体增强化学气相沉积的方法在其上生长三维垂直结构石墨烯,增强其疏水性。
首先将氮化镓等半导体衬底分别经过丙酮、酒精和去离子水超声清洗。然后用高纯氮气吹干,放入生长腔室中。先将腔室抽真空,然后以15℃/min的速率升温到800℃。退火阶段,在氢气和氩气混合气氛下退火30min。然后在等离子体电源的功率为90W条件,用氢气等离子体处理5min。生长阶段,在射频等离子体电源的功率为90W的条件下,通入甲烷气体,保持设定的沉积温度不变,持续生长80min。降温阶段,以2~4℃/min的降温速率降到室温。最终在氮化镓衬底表面获得具有微纳结构的三维垂直结构石墨烯。
该实施例所得到的三维垂直结构石墨烯形貌如图3所示。
参见附图4,它是本实施例提供的石墨烯表面改性氮化镓与未经改性处理的氮化镓的接触角测试对比结果图。图4表明:(a)表面没有石墨烯的氮化镓表现为亲水性;(b)表面生长三维垂直结构石墨烯的氮化镓表现为疏水性。对实施例提供的氮化镓表面疏水性的调制结果为:接触角从60°增大到140°。
本发明实施例1和2得到了两种具有不同形貌特征的石墨烯。一种是二维石墨烯,直接在氮化镓表面生长的二维石墨烯具有明显的粗糙结构形貌特征,可调控氮化镓对水的接触角从60~110°;
Figure DEST_PATH_IMAGE002
另外一种是三维垂直结构石墨烯,直接生长的三维垂直结构石墨烯在氮化镓表面构筑了特殊的微纳结构,使其疏水性增强,可调控其对水的接触角从60~140°,甚至实现氮化镓表面超疏水。由此可见,按本发明技术方案,可实现对氮化物半导体的表面疏水性进行连续调制,以满足氮化物半导体材料在生物电子器件等领域的应用需要。

Claims (4)

1.一种表面改性的氮化物半导体的制备方法,其特征在于采用射频等离子体增强化学气相沉积方法,在氮化物半导体表面直接生长石墨烯,包括如下步骤:
(1)将氮化物半导体衬底置于距等离子体发生器中心20~60cm位置处,以5~20℃/min的升温速率升温至600~800℃;所述的氮化物半导体衬底材料选自氮化镓、氮化铝、氮化铟及其三元或四元合金;
(2)以氢气为等离子体工作气体对衬底表面处理1~20min;
(3)以甲烷为反应气体,等离子体电源的功率为50~100W,沉积温度为600~800℃的条件下,在氮化物半导体表面直接生长二维或三维垂直结构石墨烯,沉积时间为30~400min;
(4)以2~4℃/min的降温速率降温至室温,得到一种表面改性的氮化物半导体。
2.根据权利要求1所述的一种表面改性的氮化物半导体的制备方法,其特征在于:在沉积温度为600~700℃, 等离子体电源的功率为50~80W条件下,在氮化物半导体表面生长得到二维石墨烯。
3.根据权利要求1所述的一 种表面改性的氮化物半导体的制备方法,其特征在于:在沉积温度为大于700~800℃, 等离子体电源的功率为50~100W条件下,在氮化物半导体表面生长得到三维垂直结构石墨烯。
4.按权利要求1制备方法得到的一种表面改性的氮化物半导体,它对水的接触角为60~140°。
CN201611229170.2A 2016-12-27 2016-12-27 一种表面改性的氮化物半导体及其制备方法 Active CN106847667B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611229170.2A CN106847667B (zh) 2016-12-27 2016-12-27 一种表面改性的氮化物半导体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611229170.2A CN106847667B (zh) 2016-12-27 2016-12-27 一种表面改性的氮化物半导体及其制备方法

Publications (2)

Publication Number Publication Date
CN106847667A CN106847667A (zh) 2017-06-13
CN106847667B true CN106847667B (zh) 2020-02-11

Family

ID=59113390

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611229170.2A Active CN106847667B (zh) 2016-12-27 2016-12-27 一种表面改性的氮化物半导体及其制备方法

Country Status (1)

Country Link
CN (1) CN106847667B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108203301A (zh) * 2018-01-09 2018-06-26 浙江工业大学 一种氮化铝粉末的表面疏水改性方法
CN108486544B (zh) * 2018-02-08 2020-06-05 佛山市顺德区中山大学研究院 一种具有自清洁超疏液特性的石墨烯氧化锌微纳分级功能材料的制备方法及其应用
CN113461439A (zh) * 2020-03-30 2021-10-01 北京石墨烯研究院 一种石墨烯-陶瓷复合材料及其制备方法和应用
CN112872597B (zh) * 2021-01-21 2022-03-22 北京理工大学 一种飞秒激光直写与电镀法相结合制备超疏水表面的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1990899A (zh) * 2005-12-30 2007-07-04 财团法人工业技术研究院 疏水结构及其制法
JP2015050330A (ja) * 2013-09-02 2015-03-16 シャープ株式会社 窒化物半導体用シリコン基板、窒化物半導体エピタキシャル基板、及び、窒化物半導体エピタキシャル基板の製造方法
CN105063571A (zh) * 2015-08-26 2015-11-18 吉林大学 一种不锈钢基底上三维石墨烯的制备方法
KR20150146264A (ko) * 2014-06-23 2015-12-31 한국과학기술원 그래핀-구리 복합 박막의 제조 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101462903B1 (ko) * 2012-07-12 2014-11-20 성균관대학교산학협력단 그래핀의 패턴 형성 방법
CN104709897A (zh) * 2013-12-17 2015-06-17 青岛胜利锅炉有限公司 一种rf-pecvd制备石墨烯的工艺
CN105296958B (zh) * 2015-11-10 2018-10-02 中国科学院重庆绿色智能技术研究院 一种三维非催化性基底负载石墨烯薄膜结构及其在低温环境下的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1990899A (zh) * 2005-12-30 2007-07-04 财团法人工业技术研究院 疏水结构及其制法
JP2015050330A (ja) * 2013-09-02 2015-03-16 シャープ株式会社 窒化物半導体用シリコン基板、窒化物半導体エピタキシャル基板、及び、窒化物半導体エピタキシャル基板の製造方法
KR20150146264A (ko) * 2014-06-23 2015-12-31 한국과학기술원 그래핀-구리 복합 박막의 제조 방법
CN105063571A (zh) * 2015-08-26 2015-11-18 吉林大学 一种不锈钢基底上三维石墨烯的制备方法

Also Published As

Publication number Publication date
CN106847667A (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
CN106847667B (zh) 一种表面改性的氮化物半导体及其制备方法
CN109809372B (zh) 一种基于空间限域策略制备单层二硒化钨纳米带的方法
CN105668555B (zh) 一种制备三维石墨烯的方法
CN108083339B (zh) 一种制备单层二维过渡金属硫化物材料的方法
CN108689432B (zh) 一种在无氧化层的硅基底上生长二硫化铼纳米片的方法
CN104377114B (zh) 一种锗量子点的生长方法、锗量子点复合材料及其应用
CN105810562B (zh) 基于二硫化钼和磁控溅射氮化铝的氮化镓生长方法
CN108658065B (zh) 一种石墨烯掺杂制备和修复方法
WO2020168819A1 (zh) 一种高效消除化学气相沉积法石墨烯褶皱的方法
CN111620325A (zh) 一种制备石墨烯纳米带阵列的方法
CN108950683B (zh) 一种高迁移率氮掺杂大单晶石墨烯薄膜及其制备方法
CN111188021A (zh) 一种石墨烯生长基底的预处理方法
Zeng et al. Graphene-assisted growth of high-quality AlN by metalorganic chemical vapor deposition
CN104851781B (zh) 一种n型低偏角碳化硅外延片的制备方法
CN110817852A (zh) 基于水处理辅助机制的石墨烯制备方法
US20080187685A1 (en) Method of preparing vertically-aligned carbon nanotube under atmospheric and cold-wall heating treatments and making the same
CN107298437A (zh) 一种pvd法低温制备石墨烯的方法
CN110886019A (zh) 一种基于碱金属溶液催化的二硫化钼制备方法
CN112746263B (zh) 一种常压化学气相沉积制备少层石墨烯膜的方法
CN105621388A (zh) 单壁碳纳米管水平阵列及其制备方法与应用
CN110453280B (zh) 一种高质量晶圆级石墨烯单晶的制备方法
CN114975078A (zh) 一种不同层数WS2-WSe2横向异质结及其制备和应用
CN113418904B (zh) 一种表面增强拉曼散射基底及其制备方法和应用
CN114804082B (zh) 一种台阶调控的石墨烯蓝宝石晶圆及其制备方法
CN111620340A (zh) 一种原位生长TiC纳米管的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210121

Address after: Room 405, building 20, nano City, 99 Jinjihu Avenue, Suzhou Industrial Park, Jiangsu Province, 215000

Patentee after: Jiangsu third generation semiconductor Research Institute Co.,Ltd.

Address before: 215123 No. 199 benevolence Road, Suzhou Industrial Park, Jiangsu, Suzhou

Patentee before: Suzhou University

TR01 Transfer of patent right