CN106841334A - 一种可实时在线监测多种重金属离子的检测系统及方法 - Google Patents

一种可实时在线监测多种重金属离子的检测系统及方法 Download PDF

Info

Publication number
CN106841334A
CN106841334A CN201710146650.0A CN201710146650A CN106841334A CN 106841334 A CN106841334 A CN 106841334A CN 201710146650 A CN201710146650 A CN 201710146650A CN 106841334 A CN106841334 A CN 106841334A
Authority
CN
China
Prior art keywords
heavy metal
metal ion
titer
electrode
electrolytic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710146650.0A
Other languages
English (en)
Other versions
CN106841334B (zh
Inventor
顾洪溪
杜娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoji University of Arts and Sciences
Original Assignee
Baoji University of Arts and Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baoji University of Arts and Sciences filed Critical Baoji University of Arts and Sciences
Priority to CN201710146650.0A priority Critical patent/CN106841334B/zh
Publication of CN106841334A publication Critical patent/CN106841334A/zh
Application granted granted Critical
Publication of CN106841334B publication Critical patent/CN106841334B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultra-violet radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Abstract

一种可实时在线监测多种重金属离子的检测系统及方法,采用流动进样方式,将不同浓度重金属离子标准液注入检测系统,通过差分脉冲伏安法,测得不同重金属离子的标准曲线;对实际水样进行在线实时检测:实际水样与载液混合后进入检测系统,通过差分脉冲伏安法,得到实际水样的检测曲线,对比标准曲线,测得实际水样中各种重金属种类与浓度。本发明基于差分脉冲伏安法的重金属传感器技术可以同时检测多种重金属离子,检测灵敏度和准确性高,且检测时间通常只有几分钟,可以满足一般的在线及快速响应要求。

Description

一种可实时在线监测多种重金属离子的检测系统及方法
技术领域
本发明涉及重金属检测技术领域,特别涉及一种可实时在线监测多种重金属离子的检测系统及方法。
背景技术
由于工业生产废水的长期排放,我国淡水资源污染严重,七大水系中(我国饮用水的主要来源)超过五分之一受重金属离子污染严重。重金属在人体内能和蛋白质及各种酶发生强烈的相互作用,使它们失去活性,也可能在人体的某些器官中富集,如果超过人体所能耐受的限度,会造成人体急性中毒、亚急性中毒、慢性中毒等,对人体会造成很大的危害。例如,铅能阻碍血细胞的形成,通过血液进入脑组织,导致人的智力下降;镉被人体吸收后,不仅会严重损害肝、肾、脾和胰等人体器官,而且还会引起骨质疏松、萎缩、变形等病变。日本发生的水俣病(汞污染)和骨痛病(镉污染)等公害病,都是由重金属污染引起的。目前城市水体中重金属污染检测方法大多采用现场取样-实验室分析的方法,主要包括AAS,ICP-AES,ICP-MS等。例如,我国GB7475-87规定水和污水中Pb、Cd的标准分析方法为火焰原子吸收和石墨炉原子吸收法,GB7468-87规定冷原子吸收法用于测定总汞。日本政府还规定了ICP-MS或MIP-MS为痕量、超痕量Pb、Cd的标准分析方法。此类方法虽然具有较高的精密度和较低的检出限,但是所使用的仪器体积庞大、极其笨重,不易在野外搬运;而且此类仪器的运行需要上千瓦的电源和大量的载气,这些苛刻的条件在野外也很难满足,所以上述分析测试方法只能用于实验室分析,无法实现水体污染程度的现场实时检测。目前,发展结构简易、低成本、性能稳定、可用于水源在线监测的设备成为一项紧迫的任务。
发明内容
针对上述问题,本发明的目的在于提供了提出了一种可实时在线监测多种重金属离子的检测系统及方法,可以实现对水体中多种重金属的同时、在线、快速、实时检测;该设备体积小,能耗低,可轻松安装于检测现场。
为实现上述目的,本发明采用如下的技术方案:
一种可实时在线监测多种重金属离子的检测方法,包括以下步骤:
(1)采用流动进样方式,将不同浓度重金属离子标准液注入检测系统,通过差分脉冲伏安法,测得不同重金属离子的标准曲线;
(2)对实际水样进行在线实时检测:实际水样与载液混合后进入检测系统,通过差分脉冲伏安法,得到实际水样的检测曲线,对比步骤(1)得到的标准曲线,测得实际水样中各种重金属种类与浓度。
本发明进一步的改进在于,重金属离子标准液为Cu2+标准液、Pb2+标准液、Hg2+标准液、Zn2+标准液或Cd2+标准液;并且Cu2+标准液中Cu2+的浓度范围为0.1mg/L~10mg/L,Pb2+标准液中Pb2+的浓度范围为1.0×10-3mg/L~1.0×10-1mg/L,Hg2+标准液中Hg2+的浓度范围为1.0×10-4mg/L~2.5×10-2mg/L、Zn2+标准液中Zn2+的浓度范围为0.10mg/L~2.0mg/L、Cd2+标准液中Cd2+的浓度范围为5.0×10-4mg/L~2.0×10-2mg/L。
本发明进一步的改进在于,载液为0.05~5mol/L的盐酸、硝酸或硫酸。
本发明进一步的改进在于,所述步骤(1)和步骤(2)中差分脉冲伏安法的测试条件为:富集电位为-0.8~-1.5V;富集时间为50~300s;扫描起止电位为-1.5V~1.0V;扫描速度为1~500mV/s;脉冲宽度为10~100ms;采样时间为10~500ms。
本发明进一步的改进在于,实际水样与载液的流速均为5~50mL/min;实际水样与载液混合前经过滤膜过滤。
一种可实时在线监测多种重金属离子的检测系统,包括能够进行紫外灯消毒的容器,容器的出口与主蠕动泵的入口相连通,主蠕动泵的出口与电解池的进样口相连通,电解池的进样口还与副蠕动泵相连,副蠕动泵入口还与通有载液的管道相连通,电解池还连接有电化学测试系统;其中,电解池由三电极体系构成,工作电极为玻碳电极、金电极、铂电极或钯电极,对电极为铂丝电极,参比电极为Ag/AgCl电极或饱和甘汞电极。
本发明进一步的改进在于,与容器的入口相连通的管道上设置有滤膜。
本发明进一步的改进在于,进样器为IFIS-D型流动注射进样器;电化学测试系统为USB插头式微型电化学分析仪。
本发明进一步的改进在于,电解池的中心位置设置有直径2cm~5cm石英片,且石英片封装于电解池中,三电极体系沿电解池侧壁等间距设置,且三电极体系位于同一水平面上,电解池的进样口与出样口位于同一水平面上,且位于三电极体系的下方;
电解池采用聚四氟乙烯制备而成,形状为圆柱体或长方体。
本发明进一步的改进在于,电解池形状为圆柱体时,直径为8~12cm,高度为3~6cm;电解池形状为长方体时,长与宽均为5~10cm,高度为3~6cm。
与现有技术相比,本发明的有益效果为:
本发明通过设置副蠕动泵和主蠕动泵,主蠕动泵的入口与能够进行紫外灯消毒的容器入口相连通,容器出口与电解池相连通,副蠕动泵入口还与通有载液的管道相连通,副蠕动泵出口与电解池相连。采用本发明的装置通过阳极溶出伏安法可同时检测多种重金属离子,检测灵敏度和准确性高,且检测时间通常只有几分钟,可以满足一般的在线及快速响应要求,并且体积小,易于携带,可实时对水样进行检测。相对于传统的ICP-MS、ICP-AES,具有易于批量生产,成本低,一致性好,同时具有分析样品少,响应时间快,信噪比高等优点。
本发明基于差分脉冲伏安法的重金属传感器技术可以同时检测多种重金属离子,检测灵敏度和准确性高,且检测时间通常只有几分钟,可以满足一般的在线及快速响应要求,因此是重金属现场快速检测技术的重要发展方向之一。此外,与传统的ICP-MS、ICP-AES相比,具有仪器体积小,价格低,操作简单,灵敏度高等优点,易于实现现场自动检测重金属,易于批量生产,成本低,一致性好,同时具有分析样品少,响应时间快,信噪比高等优点。
附图说明
图1为本发明的检测系统结构示意图;
图2为本发明检测过程示意图;
图3为电解池结构示意图;
图4为Cu2+的检测结果图;其中,(a)为Cu2+的溶出伏安曲线,(b)为Cu2+的标准曲线;
图5为Hg2+的检测结果,其中,(a)为Hg2+的溶出伏安曲线,(b)为Hg2+的标准曲线;
图6为Cd2+的检测结果,其中,(a)为Cd2+的溶出伏安曲线,(b)为Cd2+的标准曲线;
图7为Pb2+的标准曲线;
图8为Zn2+的标准曲线;
图9为多种重金属离子同时测试结果图。
图中,1为滤膜,2为容器,3为主蠕动泵,4为副蠕动泵,5为电解池,6为电化学测试系统,7为进样口,8为出样口,9为工作电极,10为对电极,11为参比电极。
具体实施方式
下面结合附图对本发明进行详细说明。
参见图1和图2,本发明包括能够进行紫外灯消毒的容器2,与容器2的入口相连通的管道上设置有滤膜1;容器2的出口与主蠕动泵3的入口相连通,主蠕动泵3的出口与电解池5的进样口相连通,电解池5的进样口还与副蠕动泵4相连,电解池5还连接有电化学测试系统6;
主蠕动泵3与副蠕动泵4构成进样器,本发明中的进样器为IFIS-D型流动注射进样器。
参见图3,本发明中电解池5带有进样口和出样口,由三电极体系构成,工作电极9为玻碳电极、金电极、铂电极或钯电极,对电极10为铂丝电极,参比电极11为Ag/AgCl电极或饱和甘汞电极。
电解池5的中心位置设置有直径2cm~5cm石英片,且石英片封装于电解池5中,三电极体系沿电解池5侧壁等间距设置,且三电极体系位于同一水平面上,电解池5的进样口与出样口位于同一水平面上,且位于三电极体系的下方。
电解池5采用聚四氟乙烯制备而成,形状为圆柱体或长方体。电解池5形状为圆柱体时,直径为8~12cm,高度为3~6cm。电解池5形状为长方体时,长与宽均为5~10cm,高度为3~6cm,其他同圆柱体电解池。
基于上述检测系统的可实时在线监测多种重金属离子的检测方法如下:
(1)购置Cu2+、Pb2+、Hg2+、Zn2+、Cd2+等重金属离子标准液(厂家为Sigma-Aldrich公司)以及相关载液;其中,购置的标准液浓度均为1000mg/L,采用质量浓度12%的硝酸进行配制,配制后Cu2+标准液中Cu2+的浓度范围为0.1mg/L~10mg/L,Pb2+标准液中Pb2+的浓度范围为1.0×10-3mg/L~1.0×10-1mg/L,Hg2+标准液中Hg2+的浓度范围为1.0×10-4mg/L~2.5×10-2mg/L、Zn2+标准液中Zn2+的浓度范围为0.10mg/L~2.0mg/L、Cd2+标准液中Cd2+的浓度范围为5.0×10-4mg/L~2.0×10-2mg/L,载液为盐酸、硝酸或硫酸,初始浓度分别为盐酸(质量浓度37%)、硝酸(质量浓度70%)或硫酸(质量浓度95.0-98.0%),按实验要求制成浓度范围为0.05~5mol/L的盐酸、硝酸或硫酸。
(2)连接实验装置,包括连接流动注射进样器、电化学测试系统及电解池(内含三电极工作系统);
(3)采用流动进样方式,将不同浓度重金属离子标准液注入检测系统,利用差分脉冲伏安法控制沉积电位、富集时间、扫描起止电位、脉冲周期、扫描速度、脉冲宽度、采样时间与脉冲振幅等实验条件,测试不同重金属离子的标准曲线;其中,测试条件为:富集电位为-0.8~-1.5V;富集时间为50~300s;扫描起止电位为-1.5V~1.0V;扫描速度为1~500mV/s;脉冲宽度为10~100ms;采样时间为10~500ms。
(4)对实际水样进行在线实时检测,实际水样经滤膜处理除去悬浮物和腐殖质后,与载液混合经流动进样仪注入电解池中,基于差分脉冲伏安法测试,对比标准曲线,可知实际水样实时的各种重金属种类与浓度;
(5)采用西安瑞迈分析仪器有限公司的IFIS-D型智能流动注射进样器用于实际样品及载液的混合,采用自制电解池及便携式电化学测试系统进行重金属离子种类与浓度标定及实际样品测试,可通过智能显示设备实时给出测试数据。
所述的电化学测试系统为USB插头式微型电化学分析仪,由长春应化所研发。
所述主蠕动泵与副蠕动泵的流速范围都为5~50mL/min。
下面通过具体实施例进行详细说明。
实施例1
(1)利用购置的重金属离子标准液配制相关重金属离子标准溶液,Cu2+标准液浓度范围为0.1mg/L,Pb2+标准液浓度范围为1.0×10-1mg/L,Hg2+标准液浓度范围为1.0×10-4mg/L、Zn2+标准液浓度范围为0.15mg/L、Cd2+标准液浓度范围为0.006mg/L;载液为0.1mol/LHNO3溶液;
(2)连接实验装置,包括连接流动注射进样器、电化学工作系统及电解池(以玻碳电极为工作电极,铂丝电极为对电极,Ag/AgCl电极为参比电极密封成一体);
(3)将重金属离子标准液经主蠕动泵,载液经副蠕动泵通过三通阀共混后进入电解池,控制主蠕动泵流速15mL/min,副蠕动泵的流速为15mL/min,在合适的差分脉冲伏安法实验参数条件下:富集电位:-0.8V;富集时间:50s;扫描起止电位:-1.5V;扫描速度:1mV/s;脉冲宽度:90ms;采样时间:10ms,测试不同浓度重金属离子的峰电位与峰电流,得到Cu2+、Pb2+、Hg2+、Zn2+、Cd2+重金属离子的标准曲线;
(4)对实际水样进行在线实时检测,实际水样经滤膜处理除去悬浮物和腐殖质后,与载液混合经流动进样仪注入电解池中,基于阳极溶出伏安法测试,对比标准曲线,可知实际水样中实时的各种重金属种类与浓度,测试结果见表1。
实施例2
(1)利用购置的重金属离子标准液配制相关重金属离子标准溶液,Cu2+标准液浓度范围为0.5mg/L,Pb2+标准液浓度范围为0.01mg/L,Hg2+标准液浓度范围为0.0006mg/L、Zn2+标准液浓度范围为0.10mg/L、Cd2+标准液浓度范围为0.0008mg/L;载液为0.05mol/L盐酸溶液;
(2)连接实验装置,包括连接流动注射进样器、电化学工作系统及电解池(以玻碳电极为工作电极,铂丝电极为对电极,Ag/AgCl电极为参比电极密封成一体);
(3)将重金属离子标准液经主蠕动泵,载液经副蠕动泵通过三通阀共混后进入电解池,控制主蠕动泵流速25mL/min,副蠕动泵的流速为25mL/min,,在合适的差分脉冲伏安法实验参数条件下:富集电位:-1V;富集时间:60s;扫描起止电位:-1.0V;扫描速度:10mV/s;脉冲宽度:70ms;采样时间:50ms,测试不同浓度重金属离子的峰电位与峰电流,得到Cu2+、Pb2+、Hg2+、Zn2+、Cd2+重金属离子的标准曲线;
(4)对实际水样进行在线实时检测,实际水样经滤膜处理除去悬浮物和腐殖质后,与载液混合经流动进样仪注入电解池中,基于阳极溶出伏安法测试,对比标准曲线,可知实际水样实时的各种重金属种类与浓度,测试结果见表1。
实施例3
(1)利用购置的重金属离子标准液配制相关重金属离子标准溶液,Cu2+标准液浓度范围为0.1mg/L,Pb2+标准液浓度范围为0.05mg/L,Hg2+标准液浓度范围为0.002mg/L、Zn2+标准液浓度范围为0.8mg/L、Cd2+标准液浓度范围为5.0×10-4mg/L;载液为5mol/L H2SO4溶液;
(2)连接实验装置,包括连接流动注射进样器、电化学工作系统及电解池(以玻碳电极为工作电极,铂丝电极为对电极,Ag/AgCl电极为参比电极密封成一体);
(3)将重金属离子标准液经主蠕动泵,载液经副蠕动泵通过三通阀共混后进入电解池,控制主蠕动泵流速45mL/min,副蠕动泵的流速为45mL/min,在合适的差分脉冲伏安法实验参数条件下:富集电位:-1.5V;富集时间:70s;扫描起止电位:1.0V;扫描速度:50mV/s;脉冲宽度:60ms;采样时间:500ms,测试不同浓度重金属离子的峰电位与峰电流,得到Cu2+、Pb2+、Hg2+、Zn2+、Cd2+重金属离子的标准曲线;
(4)对实际水样进行在线实时检测,实际水样经滤膜处理除去悬浮物和腐殖质后,与载液混合经流动进样仪注入电解池中,基于阳极溶出伏安法测试,对比标准曲线,可知实际水样实时的各种重金属种类与浓度,测试结果见表1。
实施例4
(1)利用购置的重金属离子标准液配制相关重金属离子标准溶液,Cu2+标准液浓度范围为3mg/L,Pb2+标准液浓度范围为1.0×10-3mg/Lmg/L,Hg2+标准液浓度范围为0.008mg/L、Zn2+标准液浓度范围为2.0mg/L、Cd2+标准液浓度范围为0.001mg/L;载液为3mol/L HNO3溶液;
(2)连接实验装置,包括连接流动注射进样器、电化学工作系统及电解池(以金电极为工作电极,铂丝电极为对电极,Ag/AgCl电极为参比电极密封成一体);
(3)将重金属离子标准液经主蠕动泵,载液经副蠕动泵通过三通阀共混后进入电解池,控制主蠕动泵流速35mL/min,副蠕动泵的流速为30mL/min,,在合适的差分脉冲伏安法实验参数条件下:富集电位:-1.2V;富集时间:100s;扫描起止电位:0.2V;扫描速度:200mV/s;脉冲宽度:10ms;采样时间:450ms,测试不同浓度重金属离子的峰电位与峰电流,得到Cu2+、Pb2+、Hg2+、Zn2+、Cd2+重金属离子的标准曲线;
(4)对实际水样进行在线实时检测,实际水样经滤膜处理除去悬浮物和腐殖质后,与载液混合经流动进样仪注入电解池中,基于阳极溶出伏安法测试,对比标准曲线,可知实际水样实时的各种重金属种类与浓度,测试结果见表1。
实施例5
(1)利用购置的重金属离子标准液配制相关重金属离子标准溶液,Cu2+标准液浓度范围为4mg/L,Pb2+标准液浓度范围为0.006mg/L,Hg2+标准液浓度范围为0.01mg/L、Zn2+标准液浓度范围为0.65mg/L、Cd2+标准液浓度范围为0.01mg/L;载液为2mol/L HNO3溶液;
(2)连接实验装置,包括连接流动注射进样器、电化学工作系统及电解池(以钯电极为工作电极,铂丝电极为对电极,Ag/AgCl电极为参比电极密封成一体);
(3)将重金属离子标准液经主蠕动泵,载液经副蠕动泵通过三通阀共混后进入电解池,控制主蠕动泵流速5mL/min,副蠕动泵的流速为5mL/min,在合适的差分脉冲伏安法实验参数条件下:富集电位:-0.8V;富集时间:150s;扫描起止电位:0.8V;扫描速度:100mV/s;脉冲宽度:30ms;采样时间:400ms,测试不同浓度重金属离子的峰电位与峰电流,得到Cu2+、Pb2+、Hg2+、Zn2+、Cd2+重金属离子的标准曲线;
(4)对实际水样进行在线实时检测,实际水样经滤膜处理除去悬浮物和腐殖质后,与载液混合经流动进样仪注入电解池中,基于阳极溶出伏安法测试,对比标准曲线,可知实际水样实时的各种重金属种类与浓度,测试结果见表1。
实施例6
(1)利用购置的重金属离子标准液配制相关重金属离子标准溶液,Cu2+标准液浓度范围为7mg/L,Pb2+标准液浓度范围为0.008mg/L,Hg2+标准液浓度范围为0.02mg/L、Zn2+标准液浓度范围为1.1mg/L、Cd2+标准液浓度范围为2.0×10-2mg/L;载液为1mol/L HNO3溶液;
(2)连接实验装置,包括连接流动注射进样器、电化学工作系统及电解池(以玻碳电极为工作电极,铂丝电极为对电极,饱和甘汞电极为参比电极密封成一体);
(3)将重金属离子标准液经主蠕动泵,载液经副蠕动泵通过三通阀共混后进入电解池,控制主蠕动泵流速10mL/min,副蠕动泵的流速为20mL/min,,在合适的差分脉冲伏安法实验参数条件下:富集电位:-1V;富集时间:200s;扫描起止电位:-0.8V;扫描速度:300mV/s;脉冲宽度:400ms;采样时间:300ms,测试不同浓度重金属离子的峰电位与峰电流,得到Cu2+、Pb2+、Hg2+、Zn2+、Cd2+等重金属离子的标准曲线;
(4)对实际水样进行在线实时检测,实际水样经经滤膜处理除去悬浮物和腐殖质后,与载液混合经流动进样仪注入电解池中,基于阳极溶出伏安法测试,对比标准曲线,可知实际水样实时的各种重金属种类与浓度,测试结果见表1。
实施例7
(1)利用购置的重金属离子标准液配制相关重金属离子标准溶液,Cu2+标准液浓度范围为8mg/L,Pb2+标准液浓度范围为0.07mg/L,Hg2+标准液浓度范围为2.5×10-2mg/L、Zn2+标准液浓度范围为1.5mg/L、Cd2+标准液浓度范围为0.0075mg/L;载液为0.07mol/L盐酸溶液;
(2)连接实验装置,包括连接流动注射进样器、电化学工作系统及电解池(以玻碳电极为工作电极,铂丝电极为对电极,饱和甘汞电极为参比电极密封成一体);
(3)将重金属离子标准液经主蠕动泵,载液经副蠕动泵通过三通阀共混后进入电解池,控制主蠕动泵流速10mL/min,副蠕动泵的流速为40mL/min,,在合适的差分脉冲伏安法实验参数条件下:富集电位:-1.5V;富集时间:250s;扫描起止电位:-0.1V;扫描速度:400mV/s;脉冲宽度:20ms;采样时间:200ms,测试不同浓度重金属离子的峰电位与峰电流,得到Cu2+、Pb2+、Hg2+、Zn2+、Cd2+重金属离子的标准曲线;
(4)对实际水样进行在线实时检测,实际水样经滤膜处理除去悬浮物和腐殖质后,与载液混合经流动进样仪注入电解池中,基于阳极溶出伏安法测试,对比标准曲线,可知实际水样实时的各种重金属种类与浓度,测试结果见表1。
实施例8
(1)利用购置的重金属离子标准液配制相关重金属离子标准溶液,Cu2+标准液浓度范围为10mg/L,Pb2+标准液浓度范围为0.035mg/L,Hg2+标准液浓度范围为0.0055mg/L、Zn2+标准液浓度范围为1.7mg/L、Cd2+标准液浓度范围为2.0×10-2mg/L;载液为0.5mol/L H2SO4溶液;
(2)连接实验装置,包括连接流动注射进样器、电化学工作系统及电解池(以玻碳电极为工作电极,铂丝电极为对电极,饱和甘汞电极为参比电极密封成一体);
(3)将重金属离子标准液经主蠕动泵,载液经副蠕动泵通过三通阀共混后进入电解池,控制主蠕动泵流速50mL/min,副蠕动泵的流速为50mL/min,,在合适的差分脉冲伏安法实验参数条件下:富集电位:-1V;富集时间:300s;扫描起止电位:0.5V;扫描速度:500mV/s;脉冲宽度:10ms;采样时间:100ms,测试不同浓度重金属离子的峰电位与峰电流,得到Cu2 +、Pb2+、Hg2+、Zn2+、Cd2+等重金属离子的标准曲线;
(4)对实际水样进行在线实时检测,实际水样经滤膜处理除去悬浮物和腐殖质后,与载液混合经流动进样仪注入电解池中,基于阳极溶出伏安法测试,对比标准曲线,可知实际水样实时的各种重金属种类与浓度,测试结果见表1。
图4-图8为本发明测得的Cu2+、Hg2+、Cd2+、Pb2+、Zn2+的标准曲线,通过将实际水样测得的结果与其标准曲线对比,测得实施例1的实际水样中,Cu2+浓度为2.00×10-2mg/L、Hg2+未测试到、Cd2+浓度为2.04×10-4mg/L、Pb2+浓度为1.32×10-4mg/L、Zn2+浓度为1.20×10- 2mg/L。
实施例9
向实施例5的实际水样中加入Cu2+浓度为5.00×10-1mg/L、Hg2+浓度为1.60×10- 2mg/L、Cd2+浓度为5.00×10-3mg/L、Pb2+浓度为8.00×10-3、Zn2+浓度为5.00×10-2mg/L的溶液,进行测试,测试条件同实施例5。
图9为向实施例5的实际样品中分别加入Cu2+浓度为5.00×10-1mg/L、Hg2+浓度为1.60×10-2mg/L、Cd2+浓度为5.00×10-3mg/L、Pb2+浓度为8.00×10-3、Zn2+浓度为5.00×10- 2mg/L的溶液,并对其进行测试。测量结果与实施例5的标准曲线对比,通过此方法测试出的重金属离子的浓度分别为Cu2+浓度为4.96×10-1mg/L、Hg2+浓度为1.55×10-2mg/L、Cd2+浓度为5.05×10-3mg/L、Pb2+浓度为8.05×10-3mg/L、Zn2+浓度为4.95×10-2mg/L,并与ICP-MS的测试结果进行对比(见表2),表明该方法具有良好的准确性。
表1实施例的实际水样测试结果
注:n表示测试次数。
表2实施例5与ICP-MS对比测试结果

Claims (10)

1.一种可实时在线监测多种重金属离子的检测方法,其特征在于,包括以下步骤:
(1)采用流动进样方式,将不同浓度重金属离子标准液注入检测系统,通过差分脉冲伏安法,测得不同重金属离子的标准曲线;
(2)对实际水样进行在线实时检测:实际水样与载液混合后进入检测系统,通过差分脉冲伏安法,得到实际水样的检测曲线,对比步骤(1)得到的标准曲线,测得实际水样中各种重金属种类与浓度。
2.根据权利要求1所述的一种可实时在线监测多种重金属离子的检测方法,其特征在于,重金属离子标准液为Cu2+标准液、Pb2+标准液、Hg2+标准液、Zn2+标准液或Cd2+标准液;并且Cu2+标准液中Cu2+的浓度范围为0.1mg/L~10mg/L,Pb2+标准液中Pb2+的浓度范围为1.0×10-3mg/L~1.0×10-1mg/L,Hg2+标准液中Hg2+的浓度范围为1.0×10-4mg/L~2.5×10-2mg/L、Zn2+标准液中Zn2+的浓度范围为0.10mg/L~2.0mg/L、Cd2+标准液中Cd2+的浓度范围为5.0×10-4mg/L~2.0×10-2mg/L。
3.根据权利要求1所述的一种可实时在线监测多种重金属离子的检测方法,其特征在于,载液为0.05~5mol/L的盐酸、硝酸或硫酸。
4.根据权利要求1所述的一种可实时在线监测多种重金属离子的检测方法,其特征在于,所述步骤(1)和步骤(2)中差分脉冲伏安法的测试条件为:富集电位为-0.8~-1.5V;富集时间为50~300s;扫描起止电位为-1.5V~1.0V;扫描速度为1~500mV/s;脉冲宽度为10~100ms;采样时间为10~500ms。
5.根据权利要求1所述的一种可实时在线监测多种重金属离子的检测方法,其特征在于,实际水样与载液的流速均为5~50mL/min;实际水样与载液混合前经过滤膜过滤。
6.一种实现权利要求1所述检测方法的可实时在线监测多种重金属离子的检测系统,其特征在于,包括能够进行紫外灯消毒的容器(2),容器(2)的出口与主蠕动泵(3)的入口相连通,主蠕动泵(3)的出口与电解池(5)的进样口相连通,电解池(5)的进样口还与副蠕动泵(4)相连,副蠕动泵入口(4)还与通有载液的管道相连通,电解池(5)还连接有电化学测试系统(6);其中,电解池(5)由三电极体系构成,工作电极为玻碳电极、金电极、铂电极或钯电极,对电极为铂丝电极,参比电极为Ag/AgCl电极或饱和甘汞电极。
7.根据权利要求6所述的可实时在线监测多种重金属离子的检测系统,其特征在于,与容器(2)的入口相连通的管道上设置有滤膜(1)。
8.根据权利要求6所述的可实时在线监测多种重金属离子的检测系统,其特征在于,进样器为IFIS-D型流动注射进样器;电化学测试系统(6)为USB插头式微型电化学分析仪。
9.根据权利要求6所述的可实时在线监测多种重金属离子的检测系统,其特征在于,电解池(5)的中心位置设置有直径2cm~5cm石英片,且石英片封装于电解池(5)中,三电极体系沿电解池(5)侧壁等间距设置,且三电极体系位于同一水平面上,电解池(5)的进样口与出样口位于同一水平面上,且位于三电极体系的下方;
电解池(5)采用聚四氟乙烯制备而成,形状为圆柱体或长方体。
10.根据权利要求9所述的可实时在线监测多种重金属离子的检测系统,其特征在于,电解池(5)形状为圆柱体时,直径为8~12cm,高度为3~6cm;电解池(5)形状为长方体时,长与宽均为5~10cm,高度为3~6cm。
CN201710146650.0A 2017-03-13 2017-03-13 一种可实时在线监测多种重金属离子的检测系统及方法 Active CN106841334B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710146650.0A CN106841334B (zh) 2017-03-13 2017-03-13 一种可实时在线监测多种重金属离子的检测系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710146650.0A CN106841334B (zh) 2017-03-13 2017-03-13 一种可实时在线监测多种重金属离子的检测系统及方法

Publications (2)

Publication Number Publication Date
CN106841334A true CN106841334A (zh) 2017-06-13
CN106841334B CN106841334B (zh) 2023-05-05

Family

ID=59143425

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710146650.0A Active CN106841334B (zh) 2017-03-13 2017-03-13 一种可实时在线监测多种重金属离子的检测系统及方法

Country Status (1)

Country Link
CN (1) CN106841334B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107356651A (zh) * 2017-08-28 2017-11-17 广州商辉怡业计算机科技有限公司 多参数水质分析方法及系统
CN107884465A (zh) * 2017-12-08 2018-04-06 国家海洋局第二海洋研究所 一种用于赤潮早期预警的在线监测系统及方法
CN107941890A (zh) * 2017-12-21 2018-04-20 南昌大学 一种牛奶中氯离子的自动在线监测方法
CN110308193A (zh) * 2019-07-05 2019-10-08 广东华准检测技术有限公司 一种用于水中重金属离子的吸附剂性能测试方法及装置
CN111024794A (zh) * 2019-12-31 2020-04-17 常州市深水城北污水处理有限公司 一种水中硝酸盐氮连续监测器及其操作方法
CN111505096A (zh) * 2020-04-27 2020-08-07 华虹半导体(无锡)有限公司 金属离子监控系统
CN113237939A (zh) * 2021-05-10 2021-08-10 深圳市朗石科学仪器有限公司 地表水中的多种重金属的共镀汞膜测量方法
CN113466010A (zh) * 2021-07-09 2021-10-01 利晟(杭州)科技有限公司 一种基于电化学传感器的水污染检测系统
CN114354702A (zh) * 2021-12-16 2022-04-15 上海大学 一种高纯铟电解液中铟离子浓度的在线监测系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120103823A1 (en) * 2010-10-08 2012-05-03 Dweik Badawi M Method for detecting individual oxidant species and halide anions in a sample using differential pulse non-stripping voltammetry
CN202590037U (zh) * 2012-05-08 2012-12-12 李洪俊 大容量急救洗胃器
CN103076381A (zh) * 2012-12-31 2013-05-01 苏州汶颢芯片科技有限公司 一种基于阳极溶出伏安法为机理的水体重金属离子在线自动监测系统
CN105891294A (zh) * 2016-06-23 2016-08-24 中国科学院长春应用化学研究所 一种应用电化学分析法检测重金属离子的方法
CN206684096U (zh) * 2017-03-13 2017-11-28 宝鸡文理学院 一种可实时在线监测多种重金属离子的检测系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120103823A1 (en) * 2010-10-08 2012-05-03 Dweik Badawi M Method for detecting individual oxidant species and halide anions in a sample using differential pulse non-stripping voltammetry
CN202590037U (zh) * 2012-05-08 2012-12-12 李洪俊 大容量急救洗胃器
CN103076381A (zh) * 2012-12-31 2013-05-01 苏州汶颢芯片科技有限公司 一种基于阳极溶出伏安法为机理的水体重金属离子在线自动监测系统
CN105891294A (zh) * 2016-06-23 2016-08-24 中国科学院长春应用化学研究所 一种应用电化学分析法检测重金属离子的方法
CN206684096U (zh) * 2017-03-13 2017-11-28 宝鸡文理学院 一种可实时在线监测多种重金属离子的检测系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵会欣;万浩;蔡巍;哈达;王平;: "用于水污染重金属检测的微电极阵列传感器芯片" *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107356651A (zh) * 2017-08-28 2017-11-17 广州商辉怡业计算机科技有限公司 多参数水质分析方法及系统
CN107884465A (zh) * 2017-12-08 2018-04-06 国家海洋局第二海洋研究所 一种用于赤潮早期预警的在线监测系统及方法
CN107884465B (zh) * 2017-12-08 2023-09-22 自然资源部第二海洋研究所 一种用于赤潮早期预警的在线监测系统及方法
CN107941890A (zh) * 2017-12-21 2018-04-20 南昌大学 一种牛奶中氯离子的自动在线监测方法
CN110308193A (zh) * 2019-07-05 2019-10-08 广东华准检测技术有限公司 一种用于水中重金属离子的吸附剂性能测试方法及装置
CN110308193B (zh) * 2019-07-05 2021-07-06 广东华准检测技术有限公司 一种用于水中重金属离子的吸附剂性能测试方法及装置
CN111024794A (zh) * 2019-12-31 2020-04-17 常州市深水城北污水处理有限公司 一种水中硝酸盐氮连续监测器及其操作方法
CN111505096A (zh) * 2020-04-27 2020-08-07 华虹半导体(无锡)有限公司 金属离子监控系统
CN113237939A (zh) * 2021-05-10 2021-08-10 深圳市朗石科学仪器有限公司 地表水中的多种重金属的共镀汞膜测量方法
CN113466010A (zh) * 2021-07-09 2021-10-01 利晟(杭州)科技有限公司 一种基于电化学传感器的水污染检测系统
CN114354702A (zh) * 2021-12-16 2022-04-15 上海大学 一种高纯铟电解液中铟离子浓度的在线监测系统及方法

Also Published As

Publication number Publication date
CN106841334B (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
CN106841334A (zh) 一种可实时在线监测多种重金属离子的检测系统及方法
US20210208033A1 (en) Diffusive gradients in thin films (dgt) test device for lake water and test method using same
CN102798657B (zh) 一种海水中重金属铜、锌、铅、镉的现场快速检测方法
CN105891294B (zh) 一种应用电化学分析法检测重金属离子的方法
CN206684096U (zh) 一种可实时在线监测多种重金属离子的检测系统
CN103278551A (zh) 一种基于活性炭两电极体系的重金属电化学传感器及其检测方法
CN105067691B (zh) 同步检测汞、铜、铅、镉离子含量的电化学传感器的制备方法
CN105277393B (zh) 多参数地表径流采样及测量装置
CN106290532A (zh) 一种面向物联网的智能化水质痕量重金属在线监测与预警系统
CN101221145B (zh) 一种基于流动注射进样的水中化学需氧量测量装置和方法
CN103076381A (zh) 一种基于阳极溶出伏安法为机理的水体重金属离子在线自动监测系统
CN108344792B (zh) 一种水体中总砷快速检测方法
CN101750442B (zh) 单分散性双金属Au/Pt纳米颗粒修饰的检测水中汞的电极及其应用方法
CN104792833A (zh) 一种快速检测水中重金属离子铅和镉的方法
Liu et al. Highly efficient detection of Cd (Ⅱ) ions in water by graphitic carbon nitride and tin dioxide nanoparticles modified glassy carbon electrode
CN208224234U (zh) 一种水质污染源在线监控装置
CN102565173A (zh) 一种双信号阳极溶出伏安法检测痕量三价砷的方法
Wen-Jing et al. Electrochemical sensing system for determination of heavy metals in seawater
CN211122511U (zh) 一种测定水中痕量氰化物的装置
CN107255694A (zh) 一种基于高效液相色谱的水体水溶性有机物提供电子能力测定方法
CN104267076A (zh) 水中微量铅的检测方法
CN107402250A (zh) 一种多参数水质重金属自动在线检测仪及检测方法
CN205333567U (zh) 一种采用电解法自动监测液体多参数的系统
CN202562883U (zh) 一种电化学传感器
CN110687061A (zh) 一种基于光谱仪的甲醛溶液检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant