CN106824215A - 一种Ni基硫化态非负载型催化剂的制备方法 - Google Patents

一种Ni基硫化态非负载型催化剂的制备方法 Download PDF

Info

Publication number
CN106824215A
CN106824215A CN201710068997.8A CN201710068997A CN106824215A CN 106824215 A CN106824215 A CN 106824215A CN 201710068997 A CN201710068997 A CN 201710068997A CN 106824215 A CN106824215 A CN 106824215A
Authority
CN
China
Prior art keywords
catalyst
solution
preparation
bases
sulphided state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710068997.8A
Other languages
English (en)
Inventor
于隽晨
施岩
么志伟
王晓蔷
韩建新
马涛
李艳武
蔡耀荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning Shihua University
Original Assignee
Liaoning Shihua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning Shihua University filed Critical Liaoning Shihua University
Priority to CN201710068997.8A priority Critical patent/CN106824215A/zh
Publication of CN106824215A publication Critical patent/CN106824215A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J23/8885Tungsten containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种以Ni为助催化组分的、具有超高HDS活性的非负载型催化剂的制备方法。该方法以VIB族金属为活性组分原料,采用水热合成法得到一种颗粒精细程度较高的Ni基过渡金属复合氧化物,经硫化还原得到活性相形貌良好、孔隙结构发达的非负载型催化剂。本发明最突出的特征是在催化剂制备过程中采用了适宜的初始金属摩尔浓度并选择了合适的沉淀剂,有效提高了活性组分间的复合程度,所制备的Ni基非负载型催化剂孔隙结构发达,活性相形貌良好,可提供丰富的加氢脱硫活性位。正因如此,本发明制备的非负载型催化剂具有相比于传统负载型催化剂更高的HDS活性。同时,本发明工艺流程简便,易于操作,适合批量化工业生产。

Description

一种Ni基硫化态非负载型催化剂的制备方法
技术领域
本发明属于临氢催化中的加氢脱硫领域,尤其涉及一种Ni基非负载型硫化态催化剂的制备方法。
背景技术
随着石油工业的深入发展,当下世界对各类油品的需求仍有增无减,然而所开采出的原油劣质化程度却逐渐提高。原油中硫、氮、碱金属含量不断增加,在严苛的环保法规下,生产清洁、环境友好的石油产品难度不断增大。然而伴随雾霾天气的频发,人们的环保意识逐渐增强,劣质油品品质的清洁化升级势在必行。我国于2015年7月1日在部分城市率先执行国Ⅴ排放标准,即要求车用柴油硫含量不大于10 μg/g。该标准在全国范围内的实施已为大势所趋,故开发一种具有超高脱硫活性的深度脱硫催化剂具有重要意义。
加氢脱硫是实现柴油深度脱硫的有效手段,相应的催化剂在劣质柴油的改质方面已有几十年的使用历史。目前工业中应用的加氢催化剂仍以负载型催化剂居多,该类催化剂通常以γ-Al2O3或分子筛等载体担载活性组分。活性组分以浸渍的手段完成负载, 通过焙烧成型制得活性组分分散性好,催化活性温和的加氢脱硫催化剂。对该类催化剂的改性往往从载体入手,美国专利US 4188281中介绍了一种以沸石-Al2O3复合载体担载过渡金属活性组分的方法,制得的加氢精制催化剂催化活性大幅提高。中国发明专利CN 1769376A公开了一种酸性有机物改性载体的方法,降低了活性组分与载体间的相互作用,有效提高了催化剂的反应活性。同时也有一些其他方法,如中国发明专利CN 104707629A中以四硫代钼酸盐,可溶性镍盐、钴盐为原料,通过浸渍吸附—沉淀—高温还原的三步法制得了硫化程度较高的负载型催化剂,整个过程不使用模板剂及碱液,有效提高了硫原子利用率和催化剂的反应活性。
然而在这些方法中,载体与活性组分间的相互作用无法根本消除,这使活性组分与载体间仍存在一定程度的相互作用,影响催化剂的加氢深度,使其逐渐难以满足当下劣质柴油加氢深度的需求。故与此同时,一些新型深度加氢催化剂的制备技术逐渐应运而生。美国专利US 6299760B1中公开了一种三元金属硫化态催化剂的制备方法,该方法的创新之处在于在催化剂合成过程中不使用载体,避免了活性组分与载体间的相互作用,所得催化剂具有微晶结构,HDS活性是常规负载型催化剂的2倍。中国发明专利CN 105413723A中同样介绍了一种非负载型催化剂的制备方法,该方法以可溶性Ni盐、W盐为活性金属原料,以尿素为沉淀剂,并在制备过程中添加一定量的表面活性剂,制得了单位体积金属含量较高的Ni基非负载型催化剂。以生物油为评价原料,结果显示其催化活性是传统负载型催化剂的几十倍。中国发明专利CN 103111304A中介绍了一种Ni-W双金属非负载型催化剂的制备方法,在该方法中镍和钨的摩尔比为0.1-2.0,制备条件温和。催化剂的比表面积并不大,约为50-70 m2/g,但仍然具有十分良好的催化活性和稳定性。
这些方法所制备的催化剂均具有较高的加氢催化活性,其特点是在催化剂制备过程中不使用任何载体,得到了活性组分密集、加氢活性更高的非负载型催化剂。在目前对非负载型催化剂的研究中,一些因素还少有提及。非负载型催化剂活性组分间的复合程度受初始金属摩尔浓度和沉淀剂影响较大,故选择适宜的上述条件对开发一种孔隙结构发达、活性相形貌良好的非负载型催化剂十分重要。
发明内容
本发明的目的在于进一步优化现有技术中非负载型催化剂的孔隙结构以及活性相形貌,有效提高其加氢反应活性,该催化剂可广泛应用于劣质柴油的加氢精制,本发明的目的是通过以下技术方案实现的:
一种Ni基硫化态非负载型催化剂的制备方法,包括以下步骤:
(1)称取0.02-0.1mol的Mo、W铵盐,溶于300 ml去离子水配成溶液A,并以沉淀剂调节溶液A至适当的pH值;
(2)称取0.05-0.2mol的水溶性镍盐为助催化组分原料,溶于20 ml去离子水配成溶液B;
(3)将溶液B缓慢加入溶液A至完全混合,可见有沉淀生成,待溶液B滴加完成后在一定温度下搅拌含有沉淀的悬浮液,使活性组分间初步复合;
(4)1-6 h后,将混合液倒入2 L水热反应釜,在电热鼓风干燥箱中静置反应;
(5)静置反应结束后倒出悬浮液,经抽滤、洗涤、干燥步骤得催化剂前驱体; (6)焙烧催化剂前驱体,得Ni-Mo-W三元金属氧化态催化剂,对其进行压片、过筛,选20-40目颗粒装填至固定床微型反应器,经预硫化得硫化态催化剂。
其中,步骤(1)所述的Mo、W铵盐分别为七钼酸铵、偏钨酸铵。
其中,步骤(2)所述的水溶性镍盐为六水合硝酸镍。
其中,步骤(3)溶液A、B混合后,Ni、Mo、W三种金属总的初始摩尔浓度为0.25 mol/L-0.75 mol/L。
其中,在前驱体制备阶段,所选用的沉淀剂可以是氨水、碳酸钠、碳酸氢钠以及氢氧化钠中的一种,经沉淀剂调定后溶液A的pH值为8-11。
其中,对步骤(5)所得催化剂前驱体进行焙烧处理,焙烧温度为300-500℃,焙烧时间为2-8 h,焙烧结束后得到相应的氧化态催化剂;对氧化态催化剂进行器内硫化还原,还原压力为2-4 MPa,温度为200-400 ℃,空速为1-4 h-1,氢油体积比为200-700:1,还原时间为4-24 h,还原过程结束后得到相应的硫化态催化剂。
与现有的非负载型催化剂制备技术相比,比本发明具有以下优点:
(1) 本发明显著的技术特征是以优选的初始金属摩尔浓度和沉淀剂制备了三元金属非负载型催化剂,制备的Ni基非负载型催化剂的比表面积为85-120 m2/g,孔容为0.14-0.17 cm3/g,平均孔径为5.5-6.4 nm,所制备非负载型催化剂的孔隙结构较为发达、活性相形貌良好,具有优异的深度HDS反应活性。
(2)本发明操作简单,制备条件温和,适于批量生产并并工业化应用。
附图说明
图1为本发明实施例2所制备催化剂的TEM电镜图。
具体实施方式
下面结合实施例对本发明做进一步详细说明,但本发明的保护范围不受实施例所限。
实施例1
称取六水合硝酸镍11.632 g,七钼酸铵5.071 g,偏钨酸铵3.531 g。将七钼酸铵、偏钨酸铵倒入500 ml容量的三口瓶中,以300 ml的去离子水在50 ℃下将其完全溶解,得到溶液A。以氨水为沉淀剂调节溶液A的pH=9,水浴加热溶液A温度至90 ℃。将六水合硝酸镍倒入烧杯以20 ml去离子水溶解,得到溶液B。在同温下将溶液B缓慢滴入溶液A中,可见有沉淀逐渐生成。待滴加完毕后,悬浮液的初始金属摩尔浓度为0.25 mol/L。在90 ℃的水热条件下使活性组分间初步复合,1 h后将悬浮液倒入2 L水热反应釜。设置电热鼓风干燥箱的温度为150 ℃,将反应釜静置于其中反应5 h。反应结束后自然冷却水热釜,之后将悬浮液倒出,抽滤、洗涤,得前驱体滤饼。将滤饼置于红外干燥箱中,在110℃下干燥12 h,制得催化剂前驱体。对前驱体进行焙烧,焙烧温度400℃,焙烧时间4 h,得氧化态催化剂。对焙烧后催化剂进行压片、过筛,在4 MPa、360 ℃、2 h-1、G/L=500的条件下对催化剂进行器内硫化还原,所得催化剂比表面积为104 m2/g,孔容0.16 cm3/g,平均孔径6.2 nm。
实施例2
称取六水合硝酸镍23.264 g,七钼酸铵10.142 g,偏钨酸铵7.062 g。将七钼酸铵、偏钨酸铵倒入500 ml容量的三口瓶中,以300 ml的去离子水在50 ℃下将其完全溶解,得到溶液A。以氨水为沉淀剂调节溶液A的pH=9,水浴加热溶液A温度至90 ℃。将六水合硝酸镍倒入烧杯以20 ml去离子水溶解,得到溶液B。在同温下将溶液B缓慢滴入溶液A中,可见有沉淀逐渐生成。待滴加完毕后,悬浮液的初始金属摩尔浓度为0.5 mol/L。在90 ℃的水热条件下使活性组分间初步复合,1 h后将悬浮液倒入2 L水热反应釜。设置电热鼓风干燥箱的温度为150℃,将反应釜静置于其中反应5 h。反应结束后自然冷却水热釜,之后将悬浮液倒出,抽滤、洗涤,得前驱体滤饼。将滤饼置于红外干燥箱中,在110 ℃下干燥12 h,制得催化剂前驱体。对前驱体进行焙烧,焙烧温度400 ℃,焙烧时间4 h,得氧化态催化剂。对焙烧后催化剂进行压片、过筛,在4 MPa、360 ℃、2 h-1、G/L=500的条件下对催化剂进行器内硫化还原,所得催化剂比表面积为114 m2/g,孔容0.17 cm3/g,平均孔径6.4 nm。
图1为本实施例所制备催化剂的TEM电镜图,由该图可以看出,本发明所制备催化剂有良好的活性相微观形貌。
实施例3
称取六水合硝酸镍34.896 g,七钼酸铵15.213 g,偏钨酸铵10.593 g。将七钼酸铵、偏钨酸铵倒入500 ml容量的三口瓶中,以300 ml的去离子水在50 ℃下将其完全溶解,得到溶液A。以氨水为沉淀剂调节溶液A的pH=9,水浴加热溶液A温度至90 ℃。将六水合硝酸镍倒入烧杯以20 ml去离子水溶解,得到溶液B。在同温下将溶液B缓慢滴入溶液A中,可见有沉淀逐渐生成。待滴加完毕后,悬浮液的初始金属摩尔浓度为0.75 mol/L。在90 ℃的水热条件下使活性组分间初步复合,1 h后将悬浮液倒入2 L水热反应釜。设置电热鼓风干燥箱的温度为150 ℃,将反应釜静置于其中反应5 h。反应结束后自然冷却水热釜,之后将悬浮液倒出,抽滤、洗涤,得前驱体滤饼。将滤饼置于红外干燥箱中,在110 ℃下干燥12 h,制得催化剂前驱体。对前驱体进行焙烧,焙烧温度400 ℃,焙烧时间4 h,得氧化态催化剂。对焙烧后催化剂进行压片、过筛,在4 MPa、360 ℃、2 h-1、G/L=500的条件下对催化剂进行器内硫化还原,所得催化剂比表面积为98 m2/g,孔容0.14 cm3/g,平均孔径6.0 nm。
实施例4
本实例说明对比催化剂的制备方法,在对比催化剂的制备中选用碳酸氢钠为沉淀剂。
称取六水合硝酸镍23.264 g,七钼酸铵10.142 g,偏钨酸铵7.062 g。将七钼酸铵、偏钨酸铵倒入500 ml容量的三口瓶中,以300 ml的去离子水在50 ℃下将其完全溶解,得到溶液A。以碳酸氢钠为沉淀剂调节溶液A的pH=9,水浴加热溶液A温度至90 ℃。将六水合硝酸镍倒入烧杯以20 ml去离子水溶解,得到溶液B。在同温下将溶液B缓慢滴入溶液A中,可见有沉淀逐渐生成。待滴加完毕后,悬浮液的初始金属摩尔浓度为0.5 mol/L。在90 ℃的水热条件下使活性组分间初步复合,1 h后将悬浮液倒入2 L水热反应釜。设置电热鼓风干燥箱的温度为150 ℃,将反应釜静置于其中反应5 h。反应结束后自然冷却水热釜,之后将悬浮液倒出,抽滤、洗涤,得前驱体滤饼。将滤饼置于红外干燥箱中,在110 ℃下干燥12 h,制得催化剂前驱体。对前驱体进行焙烧,焙烧温度400 ℃,焙烧时间4 h,得氧化态催化剂。对焙烧后催化剂进行压片、过筛,在4 MPa、360 ℃、2 h-1、G/L=500的条件下对催化剂进行器内硫化还原,所得催化剂比表面积为101 m2/g,孔容0.15 cm3/g,平均孔径6.2 nm。
实施例5
本实例说明对比催化剂的制备方法,在对比催化剂的制备中选用氢氧化钠为沉淀剂。
称取六水合硝酸镍23.264 g,七钼酸铵10.142 g,偏钨酸铵7.062 g。将七钼酸铵、偏钨酸铵倒入500 ml容量的三口瓶中,以300 ml的去离子水在50℃下将其完全溶解,得到溶液A。以氢氧化钠为沉淀剂调节溶液A的pH=9,水浴加热溶液A温度至90℃。将六水合硝酸镍倒入烧杯以20 ml去离子水溶解,得到溶液B。在同温下将溶液B缓慢滴入溶液A中,可见有沉淀逐渐生成。待滴加完毕后,悬浮液的初始金属摩尔浓度为0.5 mol/L。在90℃的水热条件下使活性组分间初步复合,1 h后将悬浮液倒入2 L水热反应釜。设置电热鼓风干燥箱的温度为150℃,将反应釜静置于其中反应5 h。反应结束后自然冷却水热釜,之后将悬浮液倒出,抽滤、洗涤,得前驱体滤饼。将滤饼置于红外干燥箱中,在110℃下干燥12 h,制得催化剂前驱体。对前驱体进行焙烧,焙烧温度400℃,焙烧时间4 h,得氧化态催化剂。对焙烧后催化剂进行压片、过筛,在4 MPa、360℃、2 h-1、G/L=500的条件下对催化剂进行器内硫化还原,所得催化剂比表面积为91 m2/g,孔容0.14 cm3/g,平均孔径5.6 nm。
本发明所述催化剂的评价方法为:
催化剂的活性评价在20 ml高压微型加氢反应装置上进行。评价原料为大连西太催化裂化柴油,原料采用齿轮泵泵入,产物经冷高分和低压分离器气液分离后,液体产物接入采集罐。在预硫化过程结束后,降低温度至280℃,泵入评价原料。反应稳定6h后接样,样品每3h采集一次。采用ANTEK公司的ANTEK9000型硫氮分析仪测定原料及产物中硫化物含量,采用PerkinElmer公司的Clarus500型气相色谱仪与硫发光检测器(SCD)联用分析油品硫化物形态。几种催化剂的活性评价结果如表1所示。
表1 本发明催化剂活性评价结果
催化剂 F1 F2 F3 F4 F5
HDS% 98.0 98.6 97.5 96.9 95.4
F1-F5分别为本发明按实施例1-5所制备催化剂的编号,HDS%为催化剂的加氢脱硫率。
以上所述实施方式仅为本发明诸多实施方式中的几种,但本发明的保护范围并不局限于此。本发明的保护范围以权利要求书的保护范围为准,任何本技术领域技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都涵盖在本发明的保护范围之内。

Claims (6)

1.一种Ni基硫化态非负载型催化剂的制备方法,其特征在于包括以下步骤:
(1)称取0.02-0.1mol的Mo、W铵盐,溶于300 ml去离子水配成溶液A,并以沉淀剂调节溶液A至适当的pH值;
(2)称取0.05-0.2mol的水溶性镍盐为助催化组分原料,溶于20 ml去离子水配成溶液B;
(3)将溶液B缓慢加入溶液A至完全混合,可见有沉淀生成,待溶液B滴加完成后在一定温度下搅拌含有沉淀的悬浮液,使活性组分间初步复合;
(4)1-6 h后,将混合液倒入2 L水热反应釜,在电热鼓风干燥箱中静置反应;
(5)静置反应结束后倒出悬浮液,经抽滤、洗涤、干燥步骤得催化剂前驱体; (6)焙烧催化剂前驱体,得Ni-Mo-W三元金属氧化态催化剂,对其进行压片、过筛,选20-40目颗粒装填至固定床微型反应器,经预硫化得硫化态催化剂。
2.根据权利要求1所述的一种Ni基硫化态非负载型催化剂的制备方法,其特征在于,步骤(1)所述的Mo、W铵盐分别为七钼酸铵、偏钨酸铵。
3.根据权利要求1所述的一种Ni基硫化态非负载型催化剂的制备方法,其特征在于,步骤(2)所述的水溶性镍盐为六水合硝酸镍。
4.根据权利要求1所述的一种Ni基硫化态非负载型催化剂的制备方法,其特征在于,步骤(3)溶液A、B混合后,Ni、Mo、W三种金属总的初始摩尔浓度为0.25 mol/L-0.75 mol/L。
5.根据权利要求1所述的一种Ni基硫化态非负载型催化剂的制备方法,其特征在于,在前驱体制备阶段,所选用的沉淀剂可以是氨水、碳酸钠、碳酸氢钠以及氢氧化钠中的一种,经沉淀剂调定后溶液A的pH值为8-11。
6.根据权利要求1所述的一种Ni基硫化态非负载型催化剂的制备方法,其特征在于,对步骤(5)所得催化剂前驱体进行焙烧处理,焙烧温度为300-500℃,焙烧时间为2-8 h,焙烧结束后得到相应的氧化态催化剂;对氧化态催化剂进行器内硫化还原,还原压力为2-4MPa,温度为200-400 ℃,空速为1-4 h-1,氢油体积比为200-700:1,还原时间为4-24 h,还原过程结束后得到相应的硫化态催化剂。
CN201710068997.8A 2017-02-08 2017-02-08 一种Ni基硫化态非负载型催化剂的制备方法 Pending CN106824215A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710068997.8A CN106824215A (zh) 2017-02-08 2017-02-08 一种Ni基硫化态非负载型催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710068997.8A CN106824215A (zh) 2017-02-08 2017-02-08 一种Ni基硫化态非负载型催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN106824215A true CN106824215A (zh) 2017-06-13

Family

ID=59122885

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710068997.8A Pending CN106824215A (zh) 2017-02-08 2017-02-08 一种Ni基硫化态非负载型催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN106824215A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110038583A (zh) * 2018-01-16 2019-07-23 中国石油化工股份有限公司 一种加氢精制催化剂的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6156695A (en) * 1997-07-15 2000-12-05 Exxon Research And Engineering Company Nickel molybdotungstate hydrotreating catalysts
CN101306374A (zh) * 2007-05-16 2008-11-19 中国石油化工股份有限公司 一种加氢催化剂组合物、制备及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6156695A (en) * 1997-07-15 2000-12-05 Exxon Research And Engineering Company Nickel molybdotungstate hydrotreating catalysts
CN101306374A (zh) * 2007-05-16 2008-11-19 中国石油化工股份有限公司 一种加氢催化剂组合物、制备及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
任丽丽: ""共沉淀法制备非负载型Ni-Mo-W催化剂及性能研究"", 《中国优秀硕士学位论文全文数据库(工程科技Ⅰ辑)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110038583A (zh) * 2018-01-16 2019-07-23 中国石油化工股份有限公司 一种加氢精制催化剂的制备方法
CN110038583B (zh) * 2018-01-16 2021-11-09 中国石油化工股份有限公司 一种加氢精制催化剂的制备方法

Similar Documents

Publication Publication Date Title
CN100589878C (zh) 一种加氢催化剂的制备方法
CN101722007B (zh) 一种加氢催化剂组合物的制备方法
CN100448532C (zh) 一种催化剂组合物及其制备方法
CN101157056A (zh) 含镍或钴的加氢催化剂载体、加氢催化剂及其制备方法
WO2015007230A1 (zh) 一种铁基加氢催化剂及其应用
CN102580758B (zh) NiO-MoO3/TiO2催化剂及其制备方法
CN103801310A (zh) 一种加氢精制催化剂制备方法
CN103801346B (zh) 一种制备加氢处理催化剂的方法
CN103801312B (zh) 一种加氢处理催化剂的制备方法
CN102039140A (zh) 一种重油加氢处理催化剂及其制备方法和应用
CN101468309B (zh) 一种非负载型加氢催化剂的制备方法
CN106824215A (zh) 一种Ni基硫化态非负载型催化剂的制备方法
CN102423712B (zh) 一种高活性劣质柴油加氢精制催化剂的制备方法
CN106179388B (zh) 一种加氢处理催化剂的制备方法
CN103801333B (zh) 一种载硫型加氢催化剂的制备方法
CN1951558A (zh) 催化剂组合物的制备方法
CN101089134B (zh) 一种航煤馏分加氢改质方法
CN103769126B (zh) 一种加氢处理催化剂的制备方法
CN101255356A (zh) 一种非负载型催化剂及其制备方法
CN102211029A (zh) 一种柴油加氢脱硫硫化物催化剂的制备方法
CN106179383B (zh) 加氢处理催化剂的制备方法
CN106944089A (zh) 一种高hds活性硫化态非负载型催化剂的制备方法
CN107670661B (zh) 用于工业萘加氢脱硫生产十氢萘的催化剂及其制法和应用
CN102836726A (zh) 一种加氢催化剂组合物的制备方法及应用
RU2626401C1 (ru) Способ гидроочистки сырья гидрокрекинга

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170613

WD01 Invention patent application deemed withdrawn after publication