CN106810800B - 一种抗菌性聚乙烯醇/纳米晶纤维素-氧化石墨烯pva/cnc-go复合膜的制备方法 - Google Patents

一种抗菌性聚乙烯醇/纳米晶纤维素-氧化石墨烯pva/cnc-go复合膜的制备方法 Download PDF

Info

Publication number
CN106810800B
CN106810800B CN201710082883.9A CN201710082883A CN106810800B CN 106810800 B CN106810800 B CN 106810800B CN 201710082883 A CN201710082883 A CN 201710082883A CN 106810800 B CN106810800 B CN 106810800B
Authority
CN
China
Prior art keywords
cnc
pva
composite membrane
composite
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710082883.9A
Other languages
English (en)
Other versions
CN106810800A (zh
Inventor
白绘宇
梁真真
李章康
王玮
张胜文
石刚
刘晓亚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201710082883.9A priority Critical patent/CN106810800B/zh
Publication of CN106810800A publication Critical patent/CN106810800A/zh
Application granted granted Critical
Publication of CN106810800B publication Critical patent/CN106810800B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/02Cellulose; Modified cellulose
    • C08J2401/04Oxycellulose; Hydrocellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明涉及一种抗菌性聚乙烯醇/纤维素‑氧化石墨烯PVA/CNC‑GO复合膜的制备方法,包括:将CNC和GO分散在去离子水中,超声分散均匀,得到CNC和GO的复合分散液CNC‑GO;将PVA在90℃下搅拌溶于去离子水中,加入CNC和GO复合分散液,搅拌均匀后在玻璃模具中浇铸成膜;将PVA/CNC‑GO复合膜浸入AgNO3的乙醇/水溶液中50℃下搅拌反应24h,制备出具有抗菌活性的PVA/CNC‑GO复合膜。本发明的PVA复合膜综合了氧化石墨烯、纳米晶纤维素、聚乙烯醇和纳米银四者的优异性能,具有耐水性好、热稳定性好、拉伸强度高、抗菌活性高等优点。

Description

一种抗菌性聚乙烯醇/纳米晶纤维素-氧化石墨烯PVA/CNC-GO 复合膜的制备方法
技术领域
本发明涉及一种抗菌性聚乙烯醇/纤维素-氧化石墨PVA/CNC-GO复合膜的制备方法,特别是加入CNC、GO、Ag得到耐水抗菌性复合材料,属于高分子复合材料领域。
背景技术
随着生活水平的不断提高,人们对生产生活环境也提出了更高的要求,使用更环保、更安全、更健康的抗菌制品活性包装膜,全面杜绝人与人、人与物、物与物之间的细菌交叉感染,已成为世界健康发展的主流。
水溶性聚乙烯醇(PVA)是由聚醋酸乙烯水解得到,结构式为-CH2CH(OH)n-是一种带羟基的高分子聚合物。PVA分子主链为碳链,每一个重复单元上均含有一个羟基,由于羟基尺寸小,极性强,容易形成氢键,其化学性质稳定,具有足够的热稳定性、高度的亲水性和水溶性;同时它还具有良好的成膜性和粘接力,有卓越的耐油脂和耐溶剂性能以及良好的物理化学稳定性,是一种理想型的包装材料。
由于PVA亲水性较高,在环境湿度较大的情况下,羟基易和水分子形成氢键,导致PVA聚集态结构发生变化,使其阻隔性、强度急剧下降,限制了其在很多领域的应用,特别是日用包装材料领域。所以,需要对PVA进行耐水性改性,减小湿度对PVA阻隔性能和强度的影响。PVA耐水改性机理是通过化学或物理方法使PVA分子链上的羟基全部或部分封闭,以降低其亲水性,从而达到提高耐水性的目的。目前提高耐水性的方法主要有防水涂层法、共混法和交联法等。其中,纳米粒子共混改性PVA的方法具有操作简单,易于产业化等独特优势。
纳米晶纤维素(Cellulose Nanocrystals,CNC),或者叫做纤维素微晶,它的直径为几到几十纳米,长度几十到几百纳米。从可再生资源中提取出来的CNC,它具有优异的机械性能(高的强度和模量),大的比表面积,环境友好和低成本等优点。纳米晶纤维素表面含有大量的活性羟基,能够和PVA链上的羟基发生强的相互作用,减少PVA链上的活性羟基,提高PVA膜的强度和耐水性。
氧化石墨烯是由共价键连接的碳原子组成的二维片层堆叠而成,在基面和边缘带有各种亲水性酸性氧化官能团,如轻基、环氧基等,具有比表面积大、离子交换能力强等特点,这些特点赋予了其良好的复合能力。这些含氧官能团使氧化石墨烯能够和极小分子、纳米粒子或聚合物相互作用形成氧化石墨烯插层复合材料或氧化石墨烯剥离复合材料。
纳米银具有很强的杀菌效果,而且表面积较大以及超强的活性,被广泛应用于对革兰阴性菌和革兰阳性菌的杀灭。许多抗菌剂的性能会随着粒径的降低而提高。因此,将银抗菌剂做成纳米级(粒径在1-100nm),其比表面积极大,可以有效地吸附微生物,表现出极高的超微粒子效应和表面效应,具有极高的杀菌活性,纳米银抗菌剂的抗菌性远远超于传统的银杀菌剂。
发明内容
本发明的目的是在PVA中加入CNC和GO两种纳米粒子,天然纳米粒子CNC,可以降低PVA基复合材料的成本,提高GO在PVA中的分散性,增强PVA基复合材料的耐水性;GO独特的二维片状结构,较大的比表面积,能够提高PVA膜的水阻隔性能,降低PVA复合材料的水敏感性能;另外,CNC-GO复合纳米粒子的加入能够为Ag纳米粒子的形成提供一个有效的负载空间,控制Ag的长久高效释放。
本发明的目的是通过下述技术方案实现:一种抗菌性聚乙烯醇/纤维素-氧化石墨烯PVA/CNC-GO复合膜的制备方法,包含下述步骤:
(1)CNC和GO复合分散液CNC-GO的制备:将CNC和GO水分散液按CNC和GO质量比为1∶2、1∶1、2∶1混合,常温搅拌10min,并用去离子水调节CNC-GO复合液浓度为0.005g/mL,后在100W超声波清洗机中,超声分散30min,得到不同质量比的CNC-GO复合分散液;
(2)PVA/CNC-GO复合膜的制备:将2g PVA在90℃下搅拌溶于25mL去离子水中,得到均匀的PVA水溶液;将上述步骤(1)中得到的CNC-GO复合分散液加入到PVA水溶液中,控制CNC-GO复合纳米粒子是PVA质量的1%~5%,在50℃~60℃下搅拌20min得到PVA/CNC-GO复合液;将PVA/CNC-GO混合液静置消泡后倒入玻璃模具中,常温静置12~24h,后40℃下干燥3~5h得到PVA/CNC-GO复合膜;
(3)抗菌性PVA/CNC-GO复合膜的制备:将一定质量的AgNO3溶于乙醇/水V乙醇/V=9/1混合液中,得到Ag+浓度为0~0.07mol/L的AgNO3/乙醇/水混合液;将上述步骤(2)中所得到的PVA/CNC-GO复合膜剪成6cm×6cm的矩形样条,浸入到20mL的AgNO3/乙醇/水混合液中,50℃下搅拌反应24h,后经过分别水、乙醇洗涤,常温干燥得到抗菌性PVA/CNC-GO复合膜。
步骤(1)中所述CNC和GO质量比为1∶2、1∶1、2∶1。
步骤(2)中所述CNC-GO复合纳米粒子为PVA质量的1%~5%。
步骤(3)中所述AgNO3/乙醇/水混合液中乙醇和水的体积比为9∶1。
步骤(3)中所述AgNO3溶于乙醇/水混合液中的浓度范围为0.005~0.07mol/L。
步骤(3)中所述搅拌条件为50℃下搅拌24h。
与现有的技术相比,本发明具有如下优点和有益效果:PVA分子链含有大量羟基(-OH),使其具有良好的水溶性,可以和CNC、GO通过氢键交联,紧密连接,形成稳定的网络结构,提高PVA的耐水性、水阻隔性能、强度等;采用绿色环保、无有机溶剂、温和的方法将Ag纳米粒子直接引入到PVA/CNC-GO复合膜中,赋予PVA复合材料优异的抗菌活性,使其在可生物降解活性包装材料领域的应用成为可能。
附图说明:
图1为实施例1和对比例1中所制备PVA复合膜断面的SEM图。
图2为实施例1和对比例1中所制备PVA复合膜的抑菌圈图。
具体实施方式
为了更好地解释本发明,下面结合具体实施例对本发明进一步详细解释,但本发明的实施方式不限于此。
实施例1
(1)CNC和GO复合分散液CNC-GO的制备:将CNC和GO水分散液按CNC和GO质量比按1∶2混合,常温搅拌10min,并用去离子水调节CNC-GO复合液浓度为0.005g/mL,后在100W超声波清洗机中,超声分散30min,得到CNC和GO质量比为1∶2的复合分散液记为(CNC∶GO-1∶2);
(2)PVA/CNC-GO复合膜的制备:将2g PVA在90℃下搅拌溶于25mL去离子水中,得到均匀的PVA水溶液;将12mL上述步骤(1)中得到的PVA/(CNC∶GO-1∶2)复合分散液加入到PVA水溶液中,在50℃下搅拌20min得到PVA/3%(CNC∶GO-1∶2)混合液;将PVA/3%(CNC∶GO-1∶2)混合液静置消泡后倒入玻璃模具中,常温静置20h,后在40℃下干燥4h得到PVA/3%(CNC∶GO-1∶2)复合膜;
(3)抗菌性PVA/3%(CNC∶GO-1∶2)复合膜的制备:将0.102g AgNO3溶于20mL乙醇/水V乙醇/V=9/1混合液中,得到Ag+浓度为0.03mol/L的AgNO3/乙醇/水混合液;将上述步骤(2)中PVA/3%(CNC∶GO-1∶2)复合膜剪成6cm×6cm的矩形样条,浸入到制备好的AgNO3/乙醇/水混合液中,50℃下搅拌反应24h,后分别经过水、乙醇各洗涤3次,常温干燥得到PVA/3%(CNC∶GO-1∶2)/Ag复合膜。
对比例1
(1)CNC和GO复合分散液CNC-GO的制备:将CNC和GO水分散液按CNC和GO质量比按1∶2混合,常温搅拌10min,并用去离子水调节CNC-GO复合液浓度为0.005g/mL,后在100W超声波清洗机中,超声分散30min,得到CNC和GO质量比为1∶2的复合分散液记为(CNC∶GO-1∶2);
(2)PVA/CNC-GO复合液的制备:将2g PVA在90℃下搅拌溶于25mL去离子水中,得到分散均匀的PVA水溶液;将12mL上述步骤(1)中得到的(CNC∶GO-1∶2)复合分散液加入到PVA水溶液中,在50℃下搅拌20min得到PVA/3%(C∶G-1∶2)混合液;
(3)PVA/CNC-GO复合膜的制备:将上述步骤(2)中PVA/3%(CNC∶GO-1∶2)混合液静置消泡后倒入玻璃模具中,常温静置20h,后在40℃下干燥4h得到PVA/3%(CNC∶GO-1∶2)复合膜;将制备的PVA/CNC-GO复合膜剪成6cm×6cm的矩形样条,浸入到20mL的乙醇/水V乙醇/V=9/1混合液中,50℃下搅拌24h,后分别经过水、乙醇各洗涤3次,常温干燥得到PVA/3%(CNC∶GO-1∶2)复合膜。
将上述实施例1中制备的PVA/3%(CNC∶GO-1∶2)/Ag复合膜和对比例1中制备的PVA/3%(CNC∶GO-1∶2)复合膜,在液氮中脆断,喷金后在不同放大倍数下,用扫描电子显微镜进行断面观察,如图1所示。从图1可以看出,PVA/3%(CNC∶GO-1∶2)复合膜中没有Ag纳米粒子的分布,并且断面比较粗糙,没有明显的粒子团聚现象,表明(CNC∶GO-1∶2)复合纳米粒子在PVA基体中分散均匀,且复合纳米粒子和PVA间存在强的相互作用;PVA/3%(CNC∶GO-1∶2)/Ag复合膜断面上均匀分布有Ag纳米粒子,且Ag纳米粒子的粒径较小。
将上述实施例1中制备的PVA/3%(CNC∶GO-1∶2)/Ag复合膜和对比例1中制备的PVA/3%(CNC∶GO-1∶2)复合膜,裁剪成直径为6mm的圆片,后采用抑菌圈法对其进行抗菌性能测试,如图2所示。从图2可以发现,PVA/3%(CNC∶GO-1∶2)复合膜周围没有抑菌带出现,表明PVA/3%(CNC∶GO-1∶2)复合膜没有抗菌活性;PVA/3%(CNC∶GO-1∶2)/Ag复合膜周围出现了明显的抑菌带,这表明Ag纳米粒子成功引入到PVA/3%(CNC∶GO-1∶2)复合膜中,且所制备的PVA/3%(CNC∶GO-1∶2)/Ag复合膜具有优异的抑菌活性。

Claims (2)

1.一种抗菌性聚乙烯醇/纳米晶纤维素-氧化石墨烯PVA/CNC-GO复合膜的制备方法:
(1)CNC和GO复合分散液CNC-GO的制备:将CNC和GO水分散液按CNC和GO质量比为1:2、1:1、2:1混合,常温搅拌10min,并用去离子水调节CNC-GO复合分散液浓度为0.005g/mL,后在100W超声波清洗机中,超声分散30min,得到不同质量比的CNC-GO复合分散液;
(2)PVA/CNC-GO复合膜的制备:将2g PVA在90℃下搅拌溶于25ml去离子水中,得到均匀的PVA水溶液;将上述步骤(1)中得到的CNC-GO复合分散液加入到PVA水溶液中,控制CNC-GO复合分散液是PVA质量比的1%~3%,
在50℃~60℃下搅拌20min得到PVA/CNC-GO混合液;将PVA/CNC-GO混合液静置消泡后倒入玻璃模具中,常温静置12~24h,后40℃下干燥3~5h得到PVA/CNC-GO复合膜;
(3)抗菌性PVA/CNC-GO复合膜的制备:将一定质量AgNO3溶于乙醇/水混合液V乙醇/V=9/1中,到Ag+浓度为0.005~0.07mol/L的AgNO3/乙醇/水混合液;将上述步骤(2)中所得到的PVA/CNC-GO复合膜剪成6cm×6cm的矩形样条,浸入到20mL的AgNO3/乙醇/水混合液中,50℃下搅拌反应24h,后分别经水、乙醇洗涤,常温干燥得到抗菌性PVA/CNC-GO复合膜。
2.根据权利要求1所述一种抗菌性聚乙烯醇/纳米晶纤维素-氧化石墨烯
PVA/CNC-GO复合膜的制备方法,其特征在于步骤(2)中所述CNC-GO复合分散液为PVA质量的3%。
CN201710082883.9A 2017-02-16 2017-02-16 一种抗菌性聚乙烯醇/纳米晶纤维素-氧化石墨烯pva/cnc-go复合膜的制备方法 Active CN106810800B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710082883.9A CN106810800B (zh) 2017-02-16 2017-02-16 一种抗菌性聚乙烯醇/纳米晶纤维素-氧化石墨烯pva/cnc-go复合膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710082883.9A CN106810800B (zh) 2017-02-16 2017-02-16 一种抗菌性聚乙烯醇/纳米晶纤维素-氧化石墨烯pva/cnc-go复合膜的制备方法

Publications (2)

Publication Number Publication Date
CN106810800A CN106810800A (zh) 2017-06-09
CN106810800B true CN106810800B (zh) 2019-04-09

Family

ID=59113174

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710082883.9A Active CN106810800B (zh) 2017-02-16 2017-02-16 一种抗菌性聚乙烯醇/纳米晶纤维素-氧化石墨烯pva/cnc-go复合膜的制备方法

Country Status (1)

Country Link
CN (1) CN106810800B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107417983A (zh) * 2017-06-12 2017-12-01 广西大学 一种纤维素纳米纤维/氧化石墨烯增强淀粉膜及其制备方法
CN107141878B (zh) * 2017-06-14 2020-11-10 安徽集友纸业包装有限公司 抗菌油墨及烟用接装纸的制备方法
CN107446153B (zh) * 2017-09-05 2020-06-19 江南大学 一种季铵盐化聚乙烯醇-纤维素-氧化石墨烯复合膜的制备方法
CN107586426A (zh) * 2017-10-21 2018-01-16 马小良 一种稳定分散型二硫化钼‑聚乙烯醇复合材料的制备方法
CN109754951B (zh) * 2019-02-19 2020-07-24 浙江理工大学 一种纤维素-石墨烯复合透明导电膜及其制备方法
CN110606962B (zh) * 2019-09-16 2021-11-02 东华大学 一种二维限域自组织制备纳米纤维素液晶微网格膜的方法
CN110615920A (zh) * 2019-10-21 2019-12-27 青岛科技大学 一种可降解生物质基抑菌膜及其制备方法
CN113072727A (zh) * 2021-05-10 2021-07-06 陕西科技大学 AgNWs纳米粒子-胆甾相液晶复合薄膜的制备方法
CN113637232B (zh) * 2021-09-11 2022-04-15 深圳环能石墨烯科技有限公司 氧化石墨烯/纳米铜复合抗菌剂、抗菌母粒及其制备方法

Also Published As

Publication number Publication date
CN106810800A (zh) 2017-06-09

Similar Documents

Publication Publication Date Title
CN106810800B (zh) 一种抗菌性聚乙烯醇/纳米晶纤维素-氧化石墨烯pva/cnc-go复合膜的制备方法
CN108589266B (zh) 纳米金属颗粒/金属有机框架复合抗菌纤维素纤维的制备方法
CN101731272B (zh) 一种抗菌纳米银溶胶的制备方法
CN101633045B (zh) 一种纳米银溶胶及其制备方法与它们的用途
CN102489716B (zh) 木质素磺酸盐纳米银溶胶的制备方法
CN107951902B (zh) 一种石墨烯抗菌组合物及使用该组合物的卫生材料
CN111118601B (zh) 一种二氧化碳还原制乙烯的催化剂、电极及方法
CN107446153B (zh) 一种季铵盐化聚乙烯醇-纤维素-氧化石墨烯复合膜的制备方法
CN101077528A (zh) 超微细纳米贵重金属溶液的制造方法
AU2020103516A4 (en) Antistatic, antibacterial, and multifunctional polymer composite material, and preparation method thereof
CN106757785B (zh) 一种载银壳聚糖/聚乙烯醇微米带的制备方法
CN103480284A (zh) 一种耐污染聚酰胺复合膜及其制备方法
CN103361885A (zh) 一种抗菌丝素纤维膜的制备方法
CN109880470A (zh) 一种水性丙烯酸酯延时抗菌涂料的制备方法
CN112056310B (zh) 一种dfns负载碳量子点/二硫化钼量子点及其制备方法和应用
CN110946133A (zh) 一种以木质素为包裹基质的纳米抗光解控释农药及其制备方法
CN105638731B (zh) 一种海泡石抗菌粉的制备方法
CN103225175B (zh) 制备含纳米银和氨基酸聚乙烯醇纳米纤维膜的方法
CN1784974A (zh) 复合光触媒抗菌剂
CN101116446A (zh) 一种抗菌防霉剂的制备方法
CN110639516A (zh) 石墨烯负载多金属纳米线气凝胶复合材料及其制备方法
CN114015120A (zh) 一种基于黑磷烯的塑料改性用抗菌剂及其制备方法
CN113261566B (zh) 一种碱式次氯酸镁负载金属有机框架抑菌剂的制备方法
CN112876972B (zh) 一种MoS2/ZIF-8改性的水性聚氨酯复合乳液及制备方法和应用
CN111995799B (zh) 一种纳米银/纤维素复合抗菌材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant