CN106796995B - 利用含镓的p型氧化物半导体的有机发光二极管及其制造方法 - Google Patents

利用含镓的p型氧化物半导体的有机发光二极管及其制造方法 Download PDF

Info

Publication number
CN106796995B
CN106796995B CN201580048537.8A CN201580048537A CN106796995B CN 106796995 B CN106796995 B CN 106796995B CN 201580048537 A CN201580048537 A CN 201580048537A CN 106796995 B CN106796995 B CN 106796995B
Authority
CN
China
Prior art keywords
chemical formula
light emitting
emitting diode
organic light
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580048537.8A
Other languages
English (en)
Other versions
CN106796995A (zh
Inventor
张震
金订基
克里斯托夫·文森特·艾维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industry Academic Cooperation Foundation of Kyung Hee University
Original Assignee
Industry Academic Cooperation Foundation of Kyung Hee University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industry Academic Cooperation Foundation of Kyung Hee University filed Critical Industry Academic Cooperation Foundation of Kyung Hee University
Publication of CN106796995A publication Critical patent/CN106796995A/zh
Application granted granted Critical
Publication of CN106796995B publication Critical patent/CN106796995B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/78Benzo [b] furans; Hydrogenated benzo [b] furans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F13/00Compounds containing elements of Groups 7 or 17 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/033Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/36Inkjet printing inks based on non-aqueous solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开利用含镓的P型氧化物半导体的有机发光二极管及其制造方法。本发明的有机发光二极管包括阳极、空穴注入层、空穴输送层、发光层、电子输送层及阴极,其特征在于所述空穴注入层为含Ga的P型氧化物半导体。本发明能够实现高效率,能够实现低温及低费用制造。

Description

利用含镓的P型氧化物半导体的有机发光二极管及其制造 方法
技术领域
本发明涉及利用含镓的P型氧化物半导体的有机发光二极管及其制造方法。
背景技术
目前在为制造高效率的有机发光二极管而正在进行开发。
其中空穴的移动是非常重要的部分。典型的空穴注入层为聚(3,4-乙撑二氧噻吩)聚苯乙烯磺酸钠(Poly(3,4-ethylenedioxythiophene)poly(st yrenesulfonate);PEDOT:PSS)层,但在空穴的注入与移动及有机发光二极管的效率方面具有局限性。
并且,将PEDOT:PSS作为空穴注入层的情况下需要退火(annealin g)时间,因此具有工序时间加长的问题。
另外,在研究用氧化物半导体替代空穴注入层。其原因在于氧化物半导体移动度高且透明,因此能够容易实现透明显示器,而且被评价为能够解决现有技术局限性的技术。
另外,由于在常温具有非晶质(amorphous)或多晶质(polycrystalli ne)结构,因此不需要另外进行用于形成晶粒(grain)的热处理过程,适用有机发光二极管时具有良好的特性。
氧化物半导体因氧空位(oxygen-vacancies)与锌填隙(zinc interstiti als)而主要被视为n型,缺点是难以p型掺杂。
如上,由于目前已知的氧化物半导体大部分显现n型(n-type)特性,因此制得具有p型(p-type)特性的透明氧化物半导体的情况下,在用作有机发光二极管的空穴注入层方面具有诸多好处,因此目前需要进行研究,通过调节掺杂条件或开发新物质等找到p型透明氧化物半导体材料。
发明内容
技术问题
为解决上述技术问题,本发明提供一种利用含镓的P型氧化物半导体的有机发光二极管及其制造方法。
本领域技术人员可通过下述实施例导出本发明的其他目的。
技术方案
为解决上述技术问题,本发明的一个实施例提供一种有机发光二极管,包括阳极、空穴注入层、空穴输送层、发光层、电子输送层及阴极,其特征在于所述空穴注入层为含Ga的P型氧化物半导体。
所述P型氧化物半导体包括向CuS及SnO掺入的所述Ga。
所述Ga的范围可以是整个组成的10至70百分比(原子百分比)。
所述P型氧化物半导体用选自下述化学式1、化学式2及化学式3的一种以上表示,
[化学式1]
CuS1-xGax-SnO
[化学式2]
CuSGaxSn1-xO
[化学式3]
CuSGaxSnO,
所述化学式1、化学式2或化学式3中0<x<1。
所述空穴注入层可以经过了在预设温度进行热处理,或者经过了UV处理。
所述空穴注入层的热处理温度的范围可以是150至250℃。
根据本发明的另一方面,提供一种有机发光二极管,包括阳极、空穴注入·输送层、发光层、电子输送层及阴极,其特征在于所述空穴注入·输送层是含Ga的P型氧化物半导体。
根据本发明的又一方面,提供一种有机发光二极管制造方法,其特征在于,包括:通过真空沉积工序在基板上形成阳极的步骤;通过溶液工序在所述阳极上形成空穴注入层的步骤;通过真空沉积工序在所述空穴注入层上形成空穴输送层的步骤;通过真空沉积工序在所述空穴输送层上形成发光层的步骤;通过真空沉积工序在所述发光层上形成电子输送层的步骤;及在所述电子输送层上形成阴极的步骤,所述空穴注入层由P型氧化物半导体混合到溶剂的溶液成膜形成。
技术效果
根据本发明,用含镓的P型氧化物半导体提供空穴注入层,其优点是能够实现高效率的有机发光二极管。
并且,由于本发明利用通过溶液工序制成的P型氧化物半导体,因此其优点是能够实现低温及低费用制造。
附图说明
图1为显示本发明一个实施例的有机发光二极管的剖面结构图;
图2为显示使用本发明一个实施例的P型氧化物半导体与PEDOT:P SS的薄膜的表面的示意图;
图3为显示使用本发明一个实施例的P型氧化物半导体的情况及使用PEDOT:PSS的情况下X射线衍射(X-Ray Diffraction,XRD)结果的示意图;
图4为显示使用本发明一个实施例的P型氧化物半导体的情况与使用PEDOT:PSS的情况下有机发光二极管的电流-电压-灰度特性的示意图;
图5为显示使用本发明一个实施例的P型氧化物半导体的情况与使用PEDOT:PSS的情况下有机发光二极管的光谱特性的示意图;
图6为显示使用本发明一个实施例的P型氧化物半导体的情况与使用PEDOT:PSS的情况下有机发光二极管的外部量子效率特性的示意图;
图7为显示使用本发明一个实施例的P型氧化物半导体的情况与使用PEDOT:PSS的情况下有机发光二极管的寿命特性的示意图;
图8为显示CuS-GaxSn1-xO薄膜中Ga的浓度为0~50%时XRD结果的示意图;
图9为显示CuS-GaxSn1-xO薄膜中Ga的浓度为0%、30%、50%时A FM图像的示意图;
图10为CuS-SnO薄膜的(a)TEM图像与(b)通过能量色散X射线(Energy DispersiveX-ray,EDX)光谱法得到的原子映射(atomic mapp ing)图像;
图11为CuS-Ga0.5Sn0.5O薄膜的(a)TEM图像与(b)通过能量色散X射线(EnergyDispersive X-ray,EDX)光谱法得到的原子映射(atomi c mapping)图像;
图12为显示SnO2与CuS-GaxSn1-xO的紫外光电子能谱(Ultraviolet PhotoSpectroscopy,UPS)光谱与功函数(work function)、费米能级(F ermi level)与价带(valence band)的差异及电离电位(ionization potent ial)值的示意图;
图13为显示p型前驱体溶液的拉曼(Raman)光谱结果的示意图;
具体实施方式
首先对本发明说明书上的术语进行定义。
溶液工序(solution process)包括旋转涂布、喷涂、浸渍涂布、喷墨印刷、卷对卷印刷、丝网印刷等用液态溶剂成膜的所有现有工序。
真空沉积工序表示在负压状态下进行沉积的工序,包括化学气相沉积(ChemicalVapor Deposition;CVD)法、物理气相沉积(Physical Vapo r Deposition;PVD)法中的一种即溅镀(sputtering)等所有现有工序。
以下参见附图具体说明本发明。另外,需要声明的是附图内容是为便于说明本发明而示出的,本发明的范围不限于附图所示的范围。
图1为本发明一个实施例的有机发光二极管的剖面结构图。
如图1所示,本发明一个实施例的有机发光二极管可包括阳极1、阴极2、空穴注入层3、空穴输送层4、发光层5及电子输送层6。
阳极1及阴极2可采用目前已知的真空沉积工序(CVD;Chemical VaporDeposition)或印刷金属碎箔(flake)乃至颗粒(particle)与粘合剂(binder)等混合的浆料金属油墨的方式,所述阳极或阴极的形成方法不受特殊限制。
形成于基板上的阴极(cathode)是向元件提供电子的电极,可使用离子化的金属物质、在预定的液体内处于胶质(colloid)状态的金属油墨物质、透明金属氧化物等。
基板可以采用玻璃(glass)基板、具有包括聚对苯二甲酸乙二醇酯(polyethylene terephthalate,PET)、聚萘二甲酸乙二醇酯(polyethylenenap hthelate,PEN)、聚丙烯(polypropylene,PP)、聚酰胺(polyamide,PI)、三醋酸纤维素(triacetylcellulose,TAC)、聚醚砜(polyethersulfone,P ES)等的塑料中任意一个的塑料基板、包括铝箔(aluminum foil)、不锈钢箔(stainlesssteel foil)中任意一个的柔性(flexible)基板等。
阴极2可以通过真空沉积工序在高真空状态下沉积形成,或通过用溶液或浆料工序利用现有阴极形成用金属物质形成。阴极形成物质不受特殊限制,可以任意使用现有的阴极形成物质,现有的阴极形成物质例如可以是容易氧化的金属物质铝(A1)、钙(Ca)、钡(Ba)、镁(Mg)、锂(Li)、铯(Cs)等。
另外,能够形成阴极的透明金属氧化物的物质例如可以是铟锡氧化物(IndiumTin Oxide,ITO)、掺氟氧化锡(Fluorine-doped Tin Oxide,F TO)、掺锑二氧化锡(Antimony Tin Oxide,ATO)、掺铝氧化锌(Alu minum doped Zinc Oxide,AZO)等,但不限于此。并且,透明金属氧化物电极则可以适用溶胶-凝胶(sol-gel)、喷雾热解(spraypyrolysis)、溅射(sputtering)、原子层沉积(Atomic Layer Deposition,ALD)、电子束沉积(e-beam evaporation)等工序形成。
电子输送层6是为了将阴极2发生的电子移动到发光层5以实现元件高效率而增加的层,形成于阴极2与发光层5之间。
电子输送层6可以通过真空沉积工序利用有机物质在高真空状态形成。
发光层5包括有机物质,通过有机物质的光电子放出效果发光。
空穴输送层4是帮助从空穴注入层3注入的空穴向发光层5移动的层,形成于发光层5与空穴注入层3之间。
空穴输送层4可通过真空沉积工序利用有机物质在高真空状态形成。
空穴注入层3是帮助阳极1注入的空穴移动到空穴输送层4的层,形成于空穴输送层4与阳极1之间。
根据本发明优选的一个实施例,用P型氧化物半导体替代一般PEDO T:PSS形成空穴注入层3。
图1显示空穴注入层3与空穴输送层4处于彼此分离形态,说明由本实施例的P型氧化物半导体形成空穴注入层3,但不局限于此,将空穴的注入及移动形成为一个层的情况及空穴注入·输送层由P型氧化物半导体形成的情况也均可以包含于本发明的范畴。
优选地,p型氧化物半导体可含镓(Ga),p型氧化物半导体内镓含量可以是10至70原子(atomic)百分比范围。
根据本发明的一个实施例,p型氧化物半导体可通过溶液工序形成,此处,可以向乙二醇(ethylene glycol)混合5至50体积百分比的氰化甲烷(acetonitrile)得到溶剂。
根据本发明的另一实施例,除氰化甲烷之外还可以用去离子水(DI water)、乙醇(alcohol)、环己烷(cyclohexane)、甲苯(toluene)及有机溶剂中至少一个。
根据本发明优选的一个实施例的p型氧化物半导体可以由CuS及选自SnO、ITO、IZTO、IGZO及IZO的一种以上物质结合且进一步与Ga结合形成。
所述CuS为硫化铜(Copper monosulfide),SnO为氧化锡(Tin(II)oxide),ITO为铟锡氧化物(Indium Tin Oxide),IZTO为铟锌锡氧化物(Indium Zinc Tin Oxide),IGZO为铟镓锌氧化物(Indium Zinc Gal lium Oxide),IZO为铟锌氧化物(Indium Zinc TinOxide),这是本领域一般技术人员(以下称为‘本领域技术人员’)的公知常识。
本发明一个实施例的p型氧化物半导体可以用化学式1、化学式2及化学式3中的一种以上表示。
[化学式1]
CuS1-xGax-SnO
[化学式2]
CuSGaxSn1-xO
[化学式3]
CuSGaxSnO
所述化学式1、化学式2或化学式3中0<x<1。
本发明的P型氧化物半导体可通过依次执行以下步骤形成:
制备含Cu、S、M及Ga的前驱体溶液的步骤(此处,M为选自SnO、ITO、IZTO、IGZO及IZO的一种以上化合物);
将所述前驱体溶液涂布到基板上的步骤;以及
热处理所述涂层的步骤。
优选的是所述前驱体溶液含[CuTu3]Cl。
优选的是所述前驱体溶液含硫脲(Thiourea)。
所述基板上的涂布步骤可以采用真空工序、旋转涂布、槽隙印刷(sl otprinting)或喷墨印刷工序,但从工序简单性及费用角度来讲,优选采用旋转涂布或喷墨印刷工序。
阳极1是向元件提供空穴的电极,可用金属浆料或在预定的液体内处于胶质状态的金属油墨物质通过丝网印刷等溶液工序形成。此处,金属浆料可以是银浆(Ag paste)、铝浆(Alpaste)、金浆(Au paste)、铜浆(Cu paste)等物质中任意一个或合金形态。另外,金属油墨物质可以是银(Ag)油墨、铝(Al)油墨、金(Au)油墨、钙(Ca)油墨、镁(Mg)油墨、锂(Li)油墨、铯(Cs)油墨中至少任意一个。包含于金属油墨物质的金属物质在溶液内部处于离子化状态。
以上具体说明了本发明的有机发光二极管的结构。的结构。根据本发明优选的另一实施例,用P型氧化物半导体形成空穴注入层的情况下,这种空穴注入层不仅可以适用于包括发光层的有机发光二极管,还可以适用于其他有机电子元件。
本发明一个实施例的有机发光二极管制造方法包括:
通过真空沉积工序在基板上形成阳极的步骤;
通过溶液工序在所述阳极上形成空穴输送层的步骤;
通过真空沉积工序在所述空穴注入层上形成空穴输送层的步骤;
通过真空沉积工序在所述空穴输送层上形成发光层的步骤;
通过真空沉积工序在所述发光层上形成电子输送层的步骤;以及
在所述电子输送层上形成阴极的步骤,
所述空穴注入层由P型氧化物半导体混合到溶剂的溶液成膜形成。
以下通过实施例对本发明做进一步说明。以下实施例只是为了具体说明本发明,目的并非限定本发明的技术方案。
实施例
如下所述,用p型氧化物半导体提替代PEDOT:PSS形成空穴注入层。
此处,优选的是p型氧化物半导体内镓含量为10至70原子(atomic)百分比。
另外,溶剂是在一般大气状态下剧烈混合乙二醇与氰化甲烷形成的,此处按0.2M/16的浓度混合p型氧化物半导体生成混合溶液。
在氮环境内向阳极上印刷所述溶液。
图2显示使用本发明一个实施例的P型氧化物半导体与PEDOT:PS S的薄膜的表面。
图2的(a)、(b)、(c)与(d)是对使用P型氧化物半导体的薄膜分别进行100℃、200℃、300℃及UV热处理的薄膜,(e)为PEDOT:PSS薄膜。
图3为显示使用本发明一个实施例的P型氧化物半导体的情况及使用PEDOT:PSS的情况下X射线衍射(X-Ray Diffraction,XRD)结果的示意图。
图4及表1显示使用本发明一个实施例的P型氧化物半导体的情况与使用PEDOT:PSS的情况下有机发光二极管的电流-电压-灰度特性。
图4中(a)与(b)显示电流-电压特性,(c)显示灰度-电压特性,(d)显示电流效率(Current efficiency)特性,(e)显示功率效率(Po wer efficiency)特性。
表1
[表1]
参见图4及表1,空穴输送层仅用PEDOT:PSS的情况下电流效率为51.30cd/A,功率效率为50.32lm/W。
与此相比,使用P型氧化物半导体的情况下最高为69.20cd/A与68.20lm/W,由此可知电流效率与功率效率上升。
并且,可知执行热处理的情况下电流效率与功率效率上升。
可知热处理温度上升的情况下驱动电压VD随之上升,灰度(Lumina nce)减小,当考虑这些点的情况下,热处理温度为150℃至250℃时可制造用于有机发光二极管的最佳空穴注入层,更为优选地,200℃时可提供最佳的空穴注入层。
另外,可知除P型氧化物半导体的高温热处理外,在常温照射紫外线(UV)的情况下也有性能改进。
图5为显示使用本发明一个实施例的P型氧化物半导体的情况与使用PEDOT:PSS的情况下有机发光二极管的光谱特性的示意图。
图6及表2为显示使用本发明一个实施例的P型氧化物半导体的情况与使用PEDOT:PSS的情况下有机发光二极管的外部量子效率特性的示意图。
表2
[表2]
EQE(%)
PEDOT:PSS 18.83
CuS-GaSnO-100℃ 20.79
CuS-GaSnO-200℃ 24.17
CuS-GaSnO-300℃ 26.77
CuS-GaSnO-UV固化 26.39
参见图6及表2可知外部量子效率EQE在印刷P型氧化物半导体形成空穴注入层时比使用PEDOT:PSS时上升。
图7及表3为显示使用本发明一个实施例的P型氧化物半导体的情况与使用PEDOT:PSS的情况下有机发光二极管的寿命特性的示意图。
表3
[表3]
L70寿命(h)
PEDOT:PSS 48.14
CuS-GaSnO-100℃ 30.14
CuS-GaSnO-200℃ 51.95
CuS-GaSnO-300℃ 152.77
CuS-GaSnO-UV固化 30.84
参见图7及表3可知有机发光二极管的寿命在印刷P型氧化物半导体形成空穴注入层的情况下比使用PEDOT:PSS时上升。
以下具体说明本发明一个实施例的P型氧化物半导体的制造过程。
制备前驱体溶液
在氮环境下将CuCl2、NH2CSNH2(硫脲(Thiourea))、Ga(NO3)3·xH2O(硝酸镓水合物(Gallium nitrate hydrate))、SnCl2溶解在乙腈(acetonit rile)及乙二醇(ethyleneglycol)溶剂制备前驱体溶液。
形成活性层
旋转涂布制备的所述前驱体溶液后,在240℃的热板(hot plate)上热处理约1分钟,或对60℃的基板上进行喷墨印刷形成活性层。
热处理步骤
通过所述旋转涂布或喷墨印刷形成的活性层在氮环境、300℃温度进行退火(anealing)约1小时。
分析半导体氧化物
图8显示CuS-GaxSn1-xO薄膜中Ga的浓度为0~50%时XRD结果。
CuS-GaxSn1-xO为多晶结构(2θ=28°,32°),Ga的浓度为30%以上的情况下从结晶状态变成非晶质状态。
图9显示CuS-GaxSn1-xO薄膜中Ga的浓度为0%、30%、50%时AFM图像。
Ga的浓度为0%时形成针状的薄膜,均方根粗糙度(root-mean-square(R MS)roughness)的值为23~90nm,该情况下薄膜品质不佳。
而随着Ga的浓度上升,均方根粗糙度的值减小,薄膜品质上升。30%时是0.46~2.5nm,50%时是0.67~3.4nm。
图10为CuS-SnO薄膜的(a)TEM图像与(b)通过能量色散X射线(Energy DispersiveX-ray,EDX)光谱法得到的原子映射(atomic mapping)图像。CuS-SnO薄膜分别有Cu、S、Sn及O,是非均匀薄膜状态的结晶结构。这与图8的XRD结果中Ga为0%时存在结晶峰值相一致。
图11为CuS-Ga0.5Sn0.5O薄膜的(a)TEM图像与(b)通过能量色散X射线(EnergyDispersive X-ray,EDX)光谱法得到的原子映射(atomi c mapping)图像。CuS-Ga0.5Sn0.5O薄膜分别具有Cu、S、Sn及O,是均匀的非晶质结构。
图12及表4为整理SnO2与CuS-GaxSn1-xO的紫外光电子能谱(Ultra violet PhotoSpectroscopy,UPS)光谱与功函数(work function)、费米能级(Fermi level)与价带(valence band)的差异及电离电位(ionizatio n potential)值的表。
表4
[表4]
材料 功函数(eV) EF-EVBM(eV) Ip(eV)
SnO<sub>2</sub> 3.96 3.56 7.52
CuS-SnO 4.64 0.73 5.37
CuS-Ga<sub>0.1</sub>Sn<sub>0.9</sub>O 4.63 0.94 5.57
CuS-Ga<sub>0.2</sub>Sn<sub>0.8</sub>O 4.61 0.93 5.54
CuS-Ga<sub>0.3</sub>Sn<sub>0.7</sub>O 4.66 0.93 5.59
CuS-Ga<sub>0.4</sub>Sn<sub>0.6</sub>O 4.7 0.99 5.69
CuS-Ga<sub>0.5</sub>Sn<sub>0.5</sub>O 4.7 1.02 5.72
CuS-GaxSn1-xO薄膜中结晶化的薄膜(Ga<0.3)的情况下,功函数(w orkfunction)值为4.63、4.61eV,非晶质薄膜(Ga≥0.3)的情况下值高达≥4.66eV。
图13显示p型前驱体溶液的拉曼(Raman)光谱结果。(a)表示600-800cm-1区域的p型半导体溶液的Raman拉曼结果,在710cm-1形成了[Cu(Tu)3]n聚合物,添加Ga或Sn的情况下波数(Wavenumber)移动到720cm-1,表示溶液内存在Ga或Sn。
(b)是250-450cm-1区域的拉曼光谱结果。290cm-1时表示具有Sn,340cm-1表示具有Sn与Cu。向溶液添加Tu或Ca时波数(Wavenumber)移动到349cm-1,这表示溶液内存在Tu。
以上说明的本发明不限于上述实施例及附图,本领域技术人员应明确理解在不脱离本发明技术思想的范围内可以进行多种置换、附加及变更。

Claims (13)

1.一种有机发光二极管,包括阳极、空穴注入层、空穴输送层、发光层、电子输送层及阴极,其特征在于:
所述空穴注入层为含向CuS及SnO掺入Ga的P型氧化物半导体,
所述P型氧化物半导体用选自下述化学式1、化学式2及化学式3的一种以上表示,
[化学式1]
CuS1-xGax-SnO
[化学式2]
CuSGaxSn1-xO
[化学式3]
CuSGaxSnO,
所述化学式1、化学式2或化学式3中0<x<1。
2.根据权利要求1所述的有机发光二极管,其特征在于:
所述Ga的范围为整个组成的10至70原子百分比。
3.根据权利要求1所述的有机发光二极管,其特征在于:
所述空穴注入层经过了在预设温度进行热处理,或者经过了UV处理。
4.根据权利要求3所述的有机发光二极管,其特征在于:
所述空穴注入层的热处理温度的范围为150至250℃。
5.一种有机发光二极管,包括阳极、空穴注入·输送层、发光层、电子输送层及阴极,其特征在于:
所述空穴注入·输送层是含向CuS及SnO掺入Ga的P型氧化物半导体,
所述P型氧化物半导体用选自下述化学式1、化学式2及化学式3的一种以上表示,
[化学式1]
CuS1-xGax-SnO
[化学式2]
CuSGaxSn1-xO
[化学式3]
CuSGaxSnO,
所述化学式1、化学式2或化学式3中0<x<1。
6.一种有机发光二极管制造方法,其特征在于,包括:
通过真空沉积工序在基板上形成阳极的步骤;
通过溶液工序在所述阳极上形成空穴注入层的步骤;
通过真空沉积工序在所述空穴注入层上形成空穴输送层的步骤;
通过真空沉积工序在所述空穴输送层上形成发光层的步骤;
通过真空沉积工序在所述发光层上形成电子输送层的步骤;及
在所述电子输送层上形成阴极的步骤,
所述空穴注入层由P型氧化物半导体混合到溶剂的溶液成膜形成,
所述P型氧化物半导体包括向CuS及SnO掺入的Ga,
所述P型氧化物半导体用选自下述化学式1、化学式2及化学式3的一种以上表示,
[化学式1]
CuS1-xGax-SnO
[化学式2]
CuSGaxSn1-xO
[化学式3]
CuSGaxSnO,
所述化学式1、化学式2或化学式3中0<x<1。
7.根据权利要求6所述的有机发光二极管制造方法,其特征在于:
所述Ga的范围为整个组成的10至70原子百分比。
8.根据权利要求6所述的有机发光二极管制造方法,其特征在于:
向乙二醇混合5至50体积百分比的氰化甲烷、去离子水、乙醇、环己烷及甲苯中至少一个得到所述溶剂。
9.根据权利要求6所述的有机发光二极管制造方法,其特征在于,所述P型氧化物半导体通过依次执行以下步骤形成:
a)制备含Cu、S、M及Ga的前驱体溶液的步骤,其中,M为选自SnO、ITO、IZTO、IGZO及IZO的一种以上化合物;
b)将所述前驱体溶液涂布到基板上的步骤;以及
c)热处理涂层的步骤。
10.根据权利要求9所述的有机发光二极管制造方法,其特征在于:
所述前驱体溶液含[CuTu3]Cl。
11.根据权利要求10所述的有机发光二极管制造方法,其特征在于:
所述前驱体溶液含硫脲。
12.根据权利要求6所述的有机发光二极管制造方法,其特征在于:
所述空穴注入层经过了在预设温度进行热处理,或者经过了UV处理。
13.根据权利要求12所述的有机发光二极管制造方法,其特征在于:
所述空穴注入层的热处理温度的范围为150至250℃。
CN201580048537.8A 2014-09-11 2015-09-11 利用含镓的p型氧化物半导体的有机发光二极管及其制造方法 Active CN106796995B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2014-0120365 2014-09-11
KR1020140120365A KR101705406B1 (ko) 2014-09-11 2014-09-11 갈륨을 포함하는 p형 산화물 반도체를 이용한 유기 발광 다이오드 및 이의 제조 방법
PCT/KR2015/009586 WO2016039585A1 (ko) 2014-09-11 2015-09-11 갈륨을 포함하는 p형 산화물 반도체를 이용한 유기 발광 다이오드 및 이의 제조 방법

Publications (2)

Publication Number Publication Date
CN106796995A CN106796995A (zh) 2017-05-31
CN106796995B true CN106796995B (zh) 2019-07-16

Family

ID=55459284

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580048537.8A Active CN106796995B (zh) 2014-09-11 2015-09-11 利用含镓的p型氧化物半导体的有机发光二极管及其制造方法

Country Status (4)

Country Link
US (1) US20170263879A1 (zh)
KR (1) KR101705406B1 (zh)
CN (1) CN106796995B (zh)
WO (1) WO2016039585A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015142038A1 (ko) * 2014-03-17 2015-09-24 경희대학교 산학협력단 갈륨을 포함하는 p형 비정질 산화물 반도체, 이의 제조방법, 이를 포함하는 태양전지 및 이의 제조 방법
CN106531895B (zh) * 2016-12-12 2019-09-10 Tcl集团股份有限公司 量子点发光二极管及其制备方法与发光模组、显示装置
JP7193953B2 (ja) * 2018-08-24 2022-12-21 住友化学株式会社 有機elデバイスの製造方法及び有機elデバイス
KR102085670B1 (ko) 2018-09-17 2020-03-06 경희대학교 산학협력단 양자점 발광 다이오드 및 이의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120010060A (ko) * 2010-07-23 2012-02-02 엘지이노텍 주식회사 유기전계 발광 표시장치
WO2013183726A1 (ja) * 2012-06-06 2013-12-12 株式会社神戸製鋼所 薄膜トランジスタ
CN103597601A (zh) * 2011-03-29 2014-02-19 加利福尼亚大学董事会 用于电光器件的活性材料和电光器件
CN103715234A (zh) * 2012-09-28 2014-04-09 财团法人工业技术研究院 p型金属氧化物半导体材料
CN103907196A (zh) * 2011-10-27 2014-07-02 阿克伦大学 充当有机光电装置中的空穴传输层的p型过渡金属氧化物类膜

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5776623A (en) * 1996-07-29 1998-07-07 Eastman Kodak Company Transparent electron-injecting electrode for use in an electroluminescent device
JP2000223273A (ja) * 1999-01-27 2000-08-11 Tdk Corp 有機el素子
US6366017B1 (en) * 1999-07-14 2002-04-02 Agilent Technologies, Inc/ Organic light emitting diodes with distributed bragg reflector
JP3895938B2 (ja) * 2001-03-22 2007-03-22 三洋電機株式会社 有機エレクトロルミネッセンス素子およびその製造方法
JP3804858B2 (ja) * 2001-08-31 2006-08-02 ソニー株式会社 有機電界発光素子およびその製造方法
US6737177B2 (en) * 2001-11-08 2004-05-18 Xerox Corporation Red organic light emitting devices
US6661704B2 (en) 2001-12-10 2003-12-09 Hewlett-Packard Development Company, L.P. Diode decoupled sensing method and apparatus
CN1672096A (zh) * 2002-07-22 2005-09-21 出光兴产株式会社 有机场致发光元件
KR101002537B1 (ko) * 2002-08-02 2010-12-17 이데미쓰 고산 가부시키가이샤 스퍼터링 타겟, 소결체, 이들을 사용하여 제조한 도전막,유기 el 소자, 및 이것에 사용하는 기판
US7268485B2 (en) * 2003-10-07 2007-09-11 Eastman Kodak Company White-emitting microcavity OLED device
US20090160325A1 (en) * 2003-12-16 2009-06-25 Panasonic Corporation Organic electroluminescent device and method for manufacturing the same
CN101247950B (zh) * 2005-08-25 2013-01-23 旭硝子株式会社 带膜的基体及膜形成用玻璃
WO2007032175A1 (ja) * 2005-09-12 2007-03-22 Idemitsu Kosan Co., Ltd. 導電性積層体及び有機el素子
JP5016831B2 (ja) * 2006-03-17 2012-09-05 キヤノン株式会社 酸化物半導体薄膜トランジスタを用いた発光素子及びこれを用いた画像表示装置
ATE456820T1 (de) * 2006-06-02 2010-02-15 Konica Minolta Holdings Inc Anzeigeelement
JP4998470B2 (ja) * 2006-09-08 2012-08-15 コニカミノルタホールディングス株式会社 表示素子
US8426722B2 (en) * 2006-10-24 2013-04-23 Zetta Research and Development LLC—AQT Series Semiconductor grain and oxide layer for photovoltaic cells
JP5003685B2 (ja) * 2006-11-08 2012-08-15 コニカミノルタホールディングス株式会社 表示素子
WO2008075794A1 (ja) 2006-12-20 2008-06-26 Showa Denko K.K. 窒化ガリウム系化合物半導体発光素子およびその製造方法
JP2009060012A (ja) * 2007-09-03 2009-03-19 Canon Inc 有機電界発光素子及びその製造方法、並びに表示装置
TWI367684B (en) * 2007-11-02 2012-07-01 Chimei Innolux Corp Organic light emitting display device and electronic device
JP2011510450A (ja) * 2008-01-18 2011-03-31 エルジー・ケム・リミテッド 有機発光素子およびその製造方法
JP2009267002A (ja) * 2008-04-24 2009-11-12 Panasonic Corp 発光素子および発光素子の製造方法
JP5476061B2 (ja) * 2008-07-30 2014-04-23 パナソニック株式会社 有機エレクトロルミネッセンス素子及びその製造方法
EP2159846A1 (en) * 2008-08-29 2010-03-03 ODERSUN Aktiengesellschaft Thin film solar cell and photovoltaic string assembly
CN102273320B (zh) * 2008-11-13 2014-12-03 株式会社Lg化学 低电压驱动的有机发光器件及其制造方法
JP5750767B2 (ja) * 2009-10-09 2015-07-22 国立大学法人東北大学 薄膜とその形成方法、及びその薄膜を備えた半導体発光素子
KR101213493B1 (ko) * 2010-04-13 2012-12-20 삼성디스플레이 주식회사 유기 발광 소자 및 그 제조방법
CN103222032A (zh) * 2010-10-05 2013-07-24 联邦科学和工业研究组织 烧结的器件
KR102038170B1 (ko) * 2012-03-19 2019-10-29 넥스닷 평탄한 이방성의 콜로이드성 반도체 나노결정들을 포함하는 발광 디바이스 및 이러한 디바이스의 제조 방법
WO2013154354A1 (ko) * 2012-04-10 2013-10-17 포항공과대학교 산학협력단 일체형 전도성 기판 및 이를 채용한 전자 소자
KR101491244B1 (ko) * 2012-04-10 2015-02-06 포항공과대학교 산학협력단 일체형 전도성 기판을 채용한 유기 발광 소자
DE102012214021B4 (de) * 2012-08-08 2018-05-09 Osram Oled Gmbh Optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelementes
KR20140122655A (ko) * 2013-04-10 2014-10-20 포항공과대학교 산학협력단 역구조 유기 발광 다이오드 및 이의 제조방법
EP2889596B1 (en) * 2013-12-24 2020-07-22 Honeywell Romania S.R.L. Dynamic strain sensor and method
WO2015142038A1 (ko) * 2014-03-17 2015-09-24 경희대학교 산학협력단 갈륨을 포함하는 p형 비정질 산화물 반도체, 이의 제조방법, 이를 포함하는 태양전지 및 이의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120010060A (ko) * 2010-07-23 2012-02-02 엘지이노텍 주식회사 유기전계 발광 표시장치
CN103597601A (zh) * 2011-03-29 2014-02-19 加利福尼亚大学董事会 用于电光器件的活性材料和电光器件
CN103907196A (zh) * 2011-10-27 2014-07-02 阿克伦大学 充当有机光电装置中的空穴传输层的p型过渡金属氧化物类膜
WO2013183726A1 (ja) * 2012-06-06 2013-12-12 株式会社神戸製鋼所 薄膜トランジスタ
CN103715234A (zh) * 2012-09-28 2014-04-09 财团法人工业技术研究院 p型金属氧化物半导体材料

Also Published As

Publication number Publication date
KR101705406B1 (ko) 2017-02-10
CN106796995A (zh) 2017-05-31
KR20160030767A (ko) 2016-03-21
WO2016039585A1 (ko) 2016-03-17
US20170263879A1 (en) 2017-09-14

Similar Documents

Publication Publication Date Title
Zhang et al. Perovskite solar cells with ZnO electron‐transporting materials
JP5798041B2 (ja) プリント電子部品のための機能性材料
KR102283435B1 (ko) 무정형 물질 및 이의 용도
US9859515B2 (en) Methods for producing thin film charge selective transport layers
CN106796995B (zh) 利用含镓的p型氧化物半导体的有机发光二极管及其制造方法
KR101840077B1 (ko) 금속 산화물 박막 및 나노물질-유도되는 금속 복합체 박막의 저온 제조 방법
US20150087110A1 (en) Low-Temperature Fabrication of Spray-Coated Metal Oxide Thin Film Transistors
Pujar et al. Trends in low‐temperature combustion derived thin films for solution‐processed electronics
CN106410051A (zh) 一种金属元素掺杂ZnO纳米材料在发光二极管中的应用
EP4422378A2 (en) Nickel oxide sol-gel ink
JP6783998B2 (ja) 有機−無機複合太陽電池用積層体の製造方法および有機−無機複合太陽電池の製造方法
CN106104834B (zh) 半导体及其方法、薄膜晶体管、薄膜、太阳电池及其方法
EP3067950A1 (en) Coating material for forming semiconductors, semiconductor thin film, thin film solar cell and method for manufacturing thin film solar cell
US9570242B2 (en) Flexible Ti—In—Zn—O transparent electrode for dye-sensitized solar cell, and metal-inserted three-layer transparent electrode with high conductivity using same and manufacturing method therefor
US20130130020A1 (en) Electrode paste composition, electrode for electronic device using the same, and method of manufacturing the same
KR102044601B1 (ko) 갈륨을 포함하는 p형 산화물 반도체를 이용한 유기 발광 다이오드 및 이의 제조 방법
de Morais et al. Solution-processable copper-doped molybdenum oxide films as hole injection interfacial layer in polymer light-emitting diodes
Nguyen et al. Preparation and Characterization of Reduced Graphene-P3HT Composite Thin Films for Use as Transparent Conducting Electrodes
CN109860401A (zh) 一种以硫氰化亚铜作为空穴传输层的钙钛矿薄膜太阳能电池及其制备方法
CN110943171A (zh) 一种量子点发光二极管及其制备方法
CN115696949A (zh) 一种光电器件及其制备方法
KR101559246B1 (ko) 갈륨을 포함하는 p형 산화물 반도체를 이용한 태양전지 및 이의 제조 방법
KR20150079331A (ko) 산화물 반도체 제조용 용액 조성물 및 이를 이용한 박막 트랜지스터
CN114685811A (zh) 一种pedot材料、量子点发光二极管及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant