CN106782972B - 一种高矫顽力烧结钕铁硼磁体及其制备方法 - Google Patents

一种高矫顽力烧结钕铁硼磁体及其制备方法 Download PDF

Info

Publication number
CN106782972B
CN106782972B CN201611157662.5A CN201611157662A CN106782972B CN 106782972 B CN106782972 B CN 106782972B CN 201611157662 A CN201611157662 A CN 201611157662A CN 106782972 B CN106782972 B CN 106782972B
Authority
CN
China
Prior art keywords
alloys
silicon dioxide
preparation
sample
broken
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611157662.5A
Other languages
English (en)
Other versions
CN106782972A (zh
Inventor
贝振军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Yuanchen New Materials Co., Ltd.
Original Assignee
Ningbo Daxie Development Zone Xin Silver Magnetic Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Daxie Development Zone Xin Silver Magnetic Industry Co Ltd filed Critical Ningbo Daxie Development Zone Xin Silver Magnetic Industry Co Ltd
Priority to CN201611157662.5A priority Critical patent/CN106782972B/zh
Publication of CN106782972A publication Critical patent/CN106782972A/zh
Application granted granted Critical
Publication of CN106782972B publication Critical patent/CN106782972B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供的一种高矫顽力烧结钕铁硼磁体及其制备方法,其原料由钕铁硼合金、镁、铝、硅烷偶联剂以及纳米二氧化硅组成,其中,镁和铝的含量占钕铁硼合金的1%,硅烷偶联剂与纳米二氧化硅的质量之比为1∶5~20,从而通过采用动态晶化制造工艺,可以使试样快速升温到相变点进行短时保温,同时快速冷却,在保证试样受热均匀的前提下,使得晶粒更加细小,提高磁体的矫顽力。

Description

一种高矫顽力烧结钕铁硼磁体及其制备方法
技术领域
本发明涉及永磁材料领域,具体地说,是一种具有高矫顽力的烧结钕铁硼磁体及其制备方法。
背景技术
钕铁硼作为第三代永磁材料由于具有优异的磁性能和低廉的价格,在微波技术、音像技术、电机工程、仪表技术、计算机技术、磁分离技术、汽车工业等领域得到了广泛应用。随着烧结钕铁硼在日本、德国、欧盟等专利技术的解冻,我国各大烧结厂家的协同努力,烧结钕铁硼产品的品位也大幅提高。同时随着钕铁硼作为高科技应用领域的进一步推广,对其产品的综合性能要求也不断提高,尤其对其强度要求越来越高。
钕铁硼永磁体是钕铁硼磁性材料的一种,也叫作为稀土永磁材料发展的最新结果,由于其优异的磁性能而被称为″磁王″,随着工业的迅猛发展,对某些材料的强度要求加大,传统的钕铁硼制作工艺已无法满足高强度、高腐蚀性等环境下达到所需要的效果。实验证明,钕铁硼永磁体的磁性强烈依赖于材料本身的显微结构即晶粒尺寸的大小,另外,添加适当的纳米合金也会在一定程度上提高磁体的矫顽力。
发明内容
本发明的主要目的在于提供一种高矫顽力烧结钕铁硼磁体及其制备方法,其克服传统钕铁硼磁体制造工艺的缺点,制备的钕铁硼磁体不仅拥有较高的矫顽力,同时比传统工艺制造的钕铁硼磁体抗腐蚀性更高。
为达到以上目的,本发明采用的技术方案为:一种高矫顽力烧结钕铁硼磁体的原料由钕铁硼合金、镁、铝、硅烷偶联剂以及纳米二氧化硅组成,其中,镁和铝的含量占钕铁硼合金的1%,硅烷偶联剂与纳米二氧化硅的质量之比为1∶5~20。
根据本发明的一实施例,硅烷偶联剂为双-[γ-(三乙氧基硅)丙基]四硫化物。
根据本发明的一实施例,纳米二氧化硅的粒径为30~50nm。
根据本发明的一实施例,钕铁硼合金为Nd1-0 5(FeCoZr)83 4B6 1
根据本发明的一实施例,硅烷偶联剂与纳米二氧化硅的质量之比为1∶10。
一种高矫顽力烧结钕铁硼磁体的制备方法,其包括步骤:
S100制备改性纳米二氧化硅,将硅烷偶联剂与纳米二氧化硅以预设比例在乙醇溶液中混合60min,加热温度为60℃,得到改性的纳米二氧化硅溶液;
S200采用真空感应炉熔炼钕铁硼合金,同时分别熔炼镁、铝金属,然后将铸锭破碎,将破碎的钕铁硼合金浸泡在改性纳米二氧化硅溶液中,24h后烘干,然后在氩气保护下采用熔体溢流法,制备快淬薄带试样;
S300在氩气保护下将破碎镁和铝加入到钕铁硼合金试样中,均匀混合后经氢破、气流磨制成磁粉;以及
S400将磁粉试样在1600kA/m的外磁场中取向后在真空动态晶化热处理炉中进行晶化,升温速率为20℃/min,转速10r/s,到达晶化温度,停止加热,预设时间保温,保温过后使用氩气进行降温,降温速率25℃/min,再分别进行一级、二级热处理,得到高矫顽力烧结钕铁硼。
根据本发明的一实施例,步骤S400中的真空动态晶化热处理炉可进行加热和冷却处理,并且在加热和冷却过程中可旋转,在相变点时可短时保温。
根据本发明的一实施例,所述步骤S200中的钕铁硼合金与纳米二氧化硅的质量比为185∶1。
根据本发明的一实施例,所述步骤S300中磁粉的平均粒度为3~5μm。
根据本发明的一实施例,所述步骤S400中的晶化温度为980~1050℃,保温时间为5~10min。
根据本发明的一实施例,所述步骤S400中的磁粉在晶化后分别在800~900℃以及400~600℃进行一级、二级热处理。
本发明同现有技术相比,主要具有以下优点和有益效果:
1、采用动态晶化制造工艺,可以使试样快速升温到相变点进行短时保温,同时快速冷却,在保证试样受热均匀的前提下,使得晶粒更加细小,从而提高磁体的矫顽力;
2、通过偶联剂改性的二氧化硅不仅在材料破碎过程中加大了摩擦力,同时硅烷偶联剂拥有两种官能团,可以在无机磁粉表面形成包裹层,阻止磁粉成型过程中被氧化,进一步提高磁体矫顽力;
3、添加Al和Mg后,由于新相的出现,改善了富钕相与主相之间的湿润性,提高了磁体矫顽力。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。
实施例1
一种高矫顽力烧结钕铁硼磁体的制备方法,其包括步骤:
(1)硅烷偶联剂Si-69与纳米二氧化硅以1∶5的比例在乙醇溶液中混合60min,加热温度为60℃,得到改性的纳米二氧化硅;
(2)采用10kg的真空感应炉熔炼钕铁硼合金,同时分别熔炼Mg,Al金属(占钕铁硼合金的1%),然后将铸锭破碎,将破碎的钕铁硼合金浸泡在改性纳米二氧化硅溶液中24h后烘干。后在氩气保护下采用熔体溢流法,制备快淬薄带试样;
(3)在氩气保护下将破碎Mg和Al加入到钕铁硼合金试样中,均匀混合后经氢破、气流磨制成平均粒度为3~5μm的磁粉;
(4)将磁粉试样在1600kA/m的外磁场中取向后真空动态晶化热处理炉中进行晶化,晶化温度为980-1050℃,保温时间5-10min。然后分别在800-900℃以及400-600℃进行一级、二级热处理,得到高矫顽力烧结钕铁硼。
采用AMT-4磁化特性自动测量仪测定所得磁体的性能为Br=8.5kGs,Hcj=21kGOe,(BH)max=28MGOe。
实施例2
一种高矫顽力烧结钕铁硼磁体的制备方法,其包括步骤:
(1)硅烷偶联剂Si-69与纳米二氧化硅以1∶10的比例在乙醇溶液中混合60min,加热温度为60℃,得到改性的纳米二氧化硅;
(2)采用10kg的真空感应炉熔炼钕铁硼合金,同时分别熔炼Mg,Al金属(占钕铁硼合金的1%),然后将铸锭破碎,将破碎的钕铁硼合金浸泡在改性纳米二氧化硅溶液中24h后烘干。后在氩气保护下采用熔体溢流法,制备快淬薄带试样;
(3)在氩气保护下将破碎Mg和Al加入到钕铁硼合金试样中,均匀混合后经氢破、气流磨制成平均粒度为3~5μm的磁粉;
(4)将磁粉试样在1600kA/m的外磁场中取向后真空动态晶化热处理炉中进行晶化,晶化温度为980-1050℃,保温时间5-10min。然后分别在800-900℃以及400-600℃进行一级、二级热处理,得到高矫顽力烧结钕铁硼。
采用AMT-4磁化特性自动测量仪测定所得磁体的性能为Br=10.1kGs,Hcj=26kGOe,(BH)max=33.3MGOe。
实施例3
一种高矫顽力烧结钕铁硼磁体的制备方法,其包括步骤:
(1)硅烷偶联剂Si-69与纳米二氧化硅以1∶20的比例在乙醇溶液中混合60min,加热温度为60℃,得到改性的纳米二氧化硅;
(2)采用10kg的真空感应炉熔炼钕铁硼合金,同时分别熔炼Mg,Al金属(占钕铁硼合金的0.1%),然后将铸锭破碎,将破碎的钕铁硼合金浸泡在改性纳米二氧化硅溶液中24h后烘干。后在氩气保护下采用熔体溢流法,制备快淬薄带试样;
(3)在氩气保护下将破碎Mg和Al加入到钕铁硼合金试样中,均匀混合后经氢破、气流磨制成平均粒度为3~5μm的磁粉;
(4)将磁粉试样在1600kA/m的外磁场中取向后真空炉中热处理炉中进行晶化,晶化温度为980-1050℃,保温时间5-10min。然后分别在800-900℃以及400-600℃进行一级、二级热处理,得到高矫顽力烧结钕铁硼。
采用AMT-4磁化特性自动测量仪测定所得磁体的性能为B r=8.9kGs,Hcj=22kGOe,(BH)max=29MGOe。
对比例1
一种复合钕铁硼合金的制备包括步骤:
(1)采用10kg的真空感应炉熔炼钕铁硼合金,同时分别熔炼Mg,Al金属(占钕铁硼合金的0.1%),然后将铸锭破碎,将破碎的钕铁硼合金在氩气保护下采用熔体溢流法,制备快淬薄带试样;
(2)在氩气保护下将破碎Mg和Al加入到钕铁硼合金试样中,均匀混合后经氢破、气流磨制成平均粒度为3~5μm的磁粉;
(3)将磁粉试样在1600kA/m的外磁场中取向后真空炉中热处理炉中进行晶化,晶化温度为980-1050℃,保温时间5-10min,然后分别在800-900℃以及400-600℃进行一级、二级热处理,得到高矫顽力烧结钕铁硼。
采用AMT-4磁化特性自动测量仪测定所得磁体的性能为B r=7.2kGs,Hcj=20kGOe,(BH)max=24MGOe。
对比例2
一种复合钕铁硼合金的制备包括步骤:
(1)硅烷偶联剂Si-69与纳米二氧化硅以1∶10的比例在乙醇溶液中混合60min,加热温度为60℃,得到改性的纳米二氧化硅;
(2)采用10kg的真空感应炉熔炼钕铁硼合金,然后将铸锭破碎,将破碎的钕铁硼合金浸泡在改性纳米二氧化硅溶液中24h后烘干。后在氩气保护下采用熔体溢流法,制备快淬薄带试样;
(3)在氩气保护下将破碎Mg和Al加入到钕铁硼合金试样中,均匀混合后经氢破、气流磨制成平均粒度为3~5μm的磁粉;
(4)将磁粉试样在1600kA/m的外磁场中取向后真空炉中热处理炉中进行晶化,晶化温度为980-1050℃,保温时间5-10min,然后分别在800-900℃以及400-600℃进行一级、二级热处理,得到高矫顽力烧结钕铁硼。
采用AMT-4磁化特性自动测量仪测定所得磁体的性能为B r=8.4kGs,Hcj=21kGOe,(BH)max=27MGOe。
对比例3
一种复合钕铁硼合金的制备包括步骤:
(1)硅烷偶联剂Si-69与纳米二氧化硅以1∶20的比例在乙醇溶液中混合60min,加热温度为60℃,得到改性的纳米二氧化硅;
(2)采用10kg的真空感应炉熔炼钕铁硼合金,然后将铸锭破碎,将破碎的钕铁硼合金浸泡在改性纳米二氧化硅溶液中24h后烘干。后在氩气保护下采用熔体溢流法,制备快淬薄带试样;
(3)在氩气保护下将破碎Mg和Al加入到钕铁硼合金试样中,均匀混合后经氢破、气流磨制成平均粒度为3~5μm的磁粉;
(4)将磁粉试样在1600kA/m的外磁场中取向后真空炉中热处理炉中进行晶化,晶化温度为980-1050℃,保温时间5-10min。然后分别在800-900℃以及400-600℃进行一级、二级热处理。得到高矫顽力烧结钕铁硼。
采用AMT-4磁化特性自动测量仪测定所得磁体的性能为B r=8.1kGs,Hcj=19kGOe,(BH)max=25MGOe。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。本发明要求的保护范围由所附的权利要求书及其等同物界定。

Claims (5)

1.一种高矫顽力烧结钕铁硼磁体的制备方法,其特征在于,包括步骤:
S100制备改性纳米二氧化硅,将硅烷偶联剂与纳米二氧化硅以预设比例在乙醇溶液中混合60min,加热温度为60℃,得到改性的纳米二氧化硅溶液;
S200采用真空感应炉熔炼钕铁硼合金,同时分别熔炼镁、铝金属,然后将铸锭破碎,将破碎的钕铁硼合金浸泡在改性纳米二氧化硅溶液中,24h后烘干,然后在氩气保护下采用熔体溢流法,制备快淬薄带试样;
S300在氩气保护下将破碎镁和铝加入到钕铁硼合金试样中,均匀混合后经氢破、气流磨制成磁粉;以及
S400将磁粉试样在1600kA/m的外磁场中取向后在真空动态晶化热处理炉中进行晶化,升温速率为20℃/min,转速10r/s,到达晶化温度,停止加热,预设时间保温,保温过后使用氩气进行降温,降温速率25℃/min,再分别进行一级、二级热处理,得到高矫顽力烧结钕铁硼,其中,镁和铝的含量占钕铁硼合金的1%,硅烷偶联剂与纳米二氧化硅的质量之比为1∶5~20。
2.根据权利要求1所述的制备方法,其特征在于,步骤S400中的真空动态晶化热处理炉进行加热和冷却处理,并且在加热和冷却过程中旋转,在相变点时短时保温。
3.根据权利要求2所述的制备方法,其特征在于,所述步骤S200中的钕铁硼合金与纳米二氧化硅的质量比为185∶1。
4.根据权利要求3所述的制备方法,其特征在于,所述步骤S300中磁粉的平均粒度为3~5μm。
5.根据权利要求4所述的制备方法,其特征在于,所述步骤S400中的晶化温度为980~1050℃,保温时间为5~10min,磁粉在晶化后分别在800~900℃以及400~600℃进行一级、二级热处理。
CN201611157662.5A 2016-12-09 2016-12-09 一种高矫顽力烧结钕铁硼磁体及其制备方法 Active CN106782972B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611157662.5A CN106782972B (zh) 2016-12-09 2016-12-09 一种高矫顽力烧结钕铁硼磁体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611157662.5A CN106782972B (zh) 2016-12-09 2016-12-09 一种高矫顽力烧结钕铁硼磁体及其制备方法

Publications (2)

Publication Number Publication Date
CN106782972A CN106782972A (zh) 2017-05-31
CN106782972B true CN106782972B (zh) 2018-08-17

Family

ID=58889229

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611157662.5A Active CN106782972B (zh) 2016-12-09 2016-12-09 一种高矫顽力烧结钕铁硼磁体及其制备方法

Country Status (1)

Country Link
CN (1) CN106782972B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112489915B (zh) * 2020-11-25 2024-03-15 常州市宏昱磁业有限公司 一种耐腐蚀高矫顽力型钕铁硼永磁材料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5087302A (en) * 1989-05-15 1992-02-11 Industrial Technology Research Institute Process for producing rare earth magnet
CN1870187A (zh) * 2005-05-23 2006-11-29 包头市科技开发研究院 稀土铝——镁合金永磁材料
CN103106991B (zh) * 2013-01-30 2015-12-23 浙江大学 基于晶界重构的高矫顽力高稳定性钕铁硼磁体及制备方法
CN104867639A (zh) * 2014-11-19 2015-08-26 沈阳工业大学 一种烧结钕铁硼永磁材料的制备方法

Also Published As

Publication number Publication date
CN106782972A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN105861958B (zh) 一种低成本的高导磁铁基非晶纳米晶软磁合金及其制备方法
WO2005106049A1 (fr) Procede de revenu pour aimant permanent ndfeb fritte
TWI755152B (zh) 釹鐵硼磁體材料、原料組合物及製備方法和應用
WO2021244312A1 (zh) 钕铁硼磁体材料、原料组合物及其制备方法和应用
WO2012013086A1 (zh) 一种高性能烧结钕铁硼稀土永磁材料及制造方法
CN104851545B (zh) 一种具有晶界扩散层的永磁材料制备方法
JP7101448B2 (ja) 焼結磁性体の製造方法
WO2021238783A1 (zh) 一种钕铁硼永磁材料、其原料组合物、其制备方法和应用
WO2021218701A1 (zh) 一种钕铁硼磁体材料、原料组合物及制备方法、应用
CN111540557A (zh) 一种钕铁硼磁体材料、原料组合物及制备方法、应用
CN106782972B (zh) 一种高矫顽力烧结钕铁硼磁体及其制备方法
CN108597715B (zh) 一种多组元铁基非晶软磁合金
WO2021218700A1 (zh) 钕铁硼磁体材料、原料组合物及其制备方法和应用
CN105788794A (zh) 一种富钇永磁材料的制备方法
CN117637282A (zh) 一种耐腐蚀的铁基纳米晶软磁合金及其制备方法
CN107785141A (zh) 一种通过放电等离子烧结技术提高非稀土MnBi永磁合金高温稳定性的方法
WO2021244314A1 (zh) 钕铁硼磁体材料、原料组合物及其制备方法和应用
CN104766717A (zh) 一种提高烧结钕铁硼永磁体磁性能的方法
CN103794321B (zh) 一种涂料用镨铁硼永磁材料及制备方法
WO2021238784A1 (zh) 钕铁硼永磁材料、其原料组合物、其制备方法
CN108766700A (zh) 一种高工作温度低磁性变化稀土钴永磁材料及制备方法
CN112962024B (zh) 一种类Finemet型Fe基纳米晶软磁合金及其制备方法
Chang et al. Magnetic properties, phase evolution and microstructure of directly quenched bulk Pr–Fe–B–Nb magnets
Feng et al. Improving the structure, magnetic properties and thermal stability of rapidly quenched TbCu7-type SmCo6. 4Si0. 3Zr0. 3 alloy by carbon addition
US11791076B2 (en) Supersaturated solid solution soft magnetic material and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 315812 No. 83 Nanhu Road, Xiexi Industrial Zone, Daxie Development Zone, Ningbo City, Zhejiang Province

Patentee after: Ningbo Yuanchen New Materials Co., Ltd.

Address before: 315812 No. 83 Nanhu Road, Xiexi Industrial Zone, Daxie Development Zone, Ningbo City, Zhejiang Province

Patentee before: Ningbo Daxie Development Zone Xin silver Magnetic Industry Co Ltd