CN106774152A - 一种数控机床位置相关几何误差项的建模方法 - Google Patents

一种数控机床位置相关几何误差项的建模方法 Download PDF

Info

Publication number
CN106774152A
CN106774152A CN201611119619.XA CN201611119619A CN106774152A CN 106774152 A CN106774152 A CN 106774152A CN 201611119619 A CN201611119619 A CN 201611119619A CN 106774152 A CN106774152 A CN 106774152A
Authority
CN
China
Prior art keywords
sigma
machine tool
geometric error
control machine
polynomial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611119619.XA
Other languages
English (en)
Other versions
CN106774152B (zh
Inventor
付国强
高宏力
宋兴国
曹中清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Publication of CN106774152A publication Critical patent/CN106774152A/zh
Application granted granted Critical
Publication of CN106774152B publication Critical patent/CN106774152B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32352Modular modeling, decompose large system in smaller systems to simulate

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

本发明公开了一种数控机床位置相关几何误差项的建模方法,属于数控机床加工技术领域。包括:根据数控机床位置相关几何误差项性质,确定位置相关几何误差项n次多项式形式;根据数控机床位置相关几何误差项离散数据,采用最小二乘法拟合原理得到n次多项式系数计算矩阵M,计算n次多项式系数;结合数控机床位置相关几何误差项离散数据计算从1次到m次的一系列多项式,最高次数m设定为几何误差项离散数据数目的一半;根据回归分析F检验方法计算1次到m次的一系列多项式的F值;比较找出最大F值,选择最大F值对应的多项式为数控机床位置相关几何误差项的优化多项式模型。主要用于实现机床综合误差建模的自动化和程序化。

Description

一种数控机床位置相关几何误差项的建模方法
技术领域
本发明涉及数控机床加工控制技术领域,尤其涉及数控机床位置相关几何误差项优化多项式建模技术。
背景技术
高精度加工是数控机床发展的必然趋势,几何误差是数控机床在零件加工过程中的主要误差源之一,几何误差重复性高、系统性好、易测量的特点使得几何误差补偿成为提高机床精度的重要措施之一。几何误差建模是进行误差补偿的基础,其中建立几何误差项的数学模型是误差建模和补偿的重要环节,直接关系到误差补偿精度。
根据数控机床几何误差项性质定义可将其分为两类:位置不相关几何误差和位置相关几何误差。位置相关几何误差反映了运动轴的运动精度,误差值会随着运动轴进给量的变化而变化。数控机床位置相关几何误差是通过间接测量方法或者直接测量方法来测量运动轴轴线上或者机床工作空间中均匀分布的测量点处的几何误差值并进行辨识得到的,所以几何误差项数据是离散的。
一般来说,位置相关几何误差项数值呈现非线性变化且无规律。多项式是常用的几何误差项表示形式,多项式次数不仅关系到模型精度,同时对后续计算效率有很大影响,需要进行进一步确定。Lee等人根据旋转轴基本几何误差项的性质,采用C1类连续函数进行建模,然后通过误差测量辨识得到模型中的参数(参见Lee K I,Lee D M,Yang S H(2012)Parametric modeling and estimation of geometric errors for a rotary axisusing double ball-bar.The International Journal of Advanced ManufacturingTechnology,62(5-8):741-750)。但是该方法的拟合精度有待商榷,且多项式的次数等需要进一步研究。Fan等人采用正交多项式对基本几何误差项进行建模,将多项式拟合转化为多线性回归问题(参见Fan K,Yang J,Yang L(2013)Orthogonal polynomials-basedthermally induced spindle and geometric error modeling and compensation.TheInternational Journal of Advanced Manufacturing Technology 65(9-12):1791-1800)。但是需要查正交多项式F表和方差分析表来确定系数。这样几何误差数据数目的不确定性增加了查表的复杂性,无法实现几何误差元素建模的程序化。
发明内容
本发明的目的是提供一种数控机床位置相关几何误差项的建模方法,它能有效地解决建立几何误差项的数学表达式的问题。
本发明的目的是通过以下技术方案来实现的:一种数控机床位置相关几何误差项的建模方法,包括如下步骤:
步骤1、根据数控机床位置相关几何误差项的性质,确定位置相关几何误差项n次多项式形式为;
其中est表示机床运动轴t在s方向上的位置相关几何误差项;t表示运动轴t运动量,t=x、y、z、α、β、γ;s=x、y、z;e=δ、ε,δ表示线性误差,ε表示角度误差;n表示多项式次数;fn表示n次多项式;bj表示多项式j次项系数。
步骤2、根据某项数控机床位置相关几何误差项离散数据,采用最小二乘法拟合原理得到n次多项式系数计算矩阵M,n次多项式系数计算公式表示为:
B=M-1·Y
其中M表示n次多项式系数计算矩阵,B表示n次多项式系数矩阵,Y表示位置相关几何误差项离散数据矩阵。
步骤3、根据步骤2,结合数控机床位置相关几何误差项的某项离散数据计算得到从1次到m次的一系列多项式;其中m表示一系列多项式中最高次数;
步骤4、根据回归分析F检验方法,结合数控机床位置相关几何误差项离散数据,计算步骤3中得到的1次到m次的一系列多项式的F值;
步骤5、比较1次到m次的一系列多项式的F值,找出最大F值,选择最大F值对应的多项式为该数控机床位置相关几何误差项的优化多项式模型。
作为优选,所述步骤1中数控机床位置相关几何误差项的性质为误差数值随着运动轴位
置变化而变化,在运动轴零位置处位置相关几何误差项数值为零,从而确定位置相关几
何误差项多项式形式中常数项为零。
作为优选,所述步骤2中采用最小二乘法拟合原理计算n次多项式系数的具体方法为:
步骤2.1、最小二乘法采用偏差平方和最小的原则,偏差平方和表示为:
其中Δ2表示偏差平方和;fi表示机床位置相关几何误差项第i个离散数据,ti表示第i个离散数据对应的自变量;fn(ti)表示ti对应的拟合多项式计算值,表示第i个离散数据的偏差平方;p表示数控机床位置相关几何误差项离散数据数目;
步骤2.2、根据偏差平方和表达式依次对bj求偏导数得到等式:
步骤2.3、对等式进行简化后得到n次多项式系数与数控机床位置相关几何误差项离散数据之间关系,表示为:
步骤2.4、将n次多项式系数与数控机床位置相关几何误差项离散数据之间关系转换为矩阵形式:
步骤2.5、建立n次多项式系数计算矩阵及位置相关几何误差项离散数据矩阵,得到n次多项式系数计算公式:
B=M-1·Y
其中
作为优选,所述步骤3中结合某项数控机床位置相关几何误差项离散数据计算得到从1次到m次的一系列多项式时,最高次数m的值小于等于8。设定为几何误差项离散数据数目的一半,如果离散数据数目的一半大于8,m值设定为8,即多项式次数不高于8。拟合多项式的表示形式为:
式中,m的值小于等于8。
作为优选,所述步骤4中根据回归分析F检验方法计算1次到m次的一系列多项式的F值的方法为:
其中Fn表示n次多项式的F值,表示机床位置相关几何误差项离散数据的平均值;
作为优选,所述数控机床包括三轴数控机床、五轴数控机床等多轴数控机床。
作为优选,本发明适合于五轴数控机床的30项位置相关几何误差项。
作为优选,本发明适合于三轴数控机床的18项位置相关几何误差项。
作为优选,所述数控机床位置相关几何误差项数据由激光干涉仪测量得到。
作为优选,所述数控机床位置相关几何误差项数据由球杆仪测量得到。
作为优选,所述数控机床位置相关几何误差项数据由激光跟踪仪测量得到。
本发明与现有技术相比,具体的有益效果是:
本发明得到的优化多项式精度高,符合位置相关几何误差性质,且鲁棒性强,适应于不同位置相关几何误差项,可实现建模的自动化和程序化,提高建模的通用性,可实现误差建模的自动化和程序化。
附图说明
图1为本发明数控机床位置相关几何误差项优化多项式建模方法流程图;
图2为某五轴数控机床的结构示意图;
图3为本发明在五轴数控机床X轴x方向线性误差δxx的离散数据;
图4为本发明在五轴数控机床X轴x方向线性误差δxx一系列多项式F值分布图;
图5为本发明在五轴数控机床X轴x方向线性误差δxx的优化多项式模型;
图6a为本发明的数控机床Z轴的位置相关线性几何误差离散数据与优化多项式模型;
图6b为本发明的数控机床Z轴的位置相关角度几何误差离散数据与优化多项式模型;
具体实施方式
下面结合附图和具体实施例对本发明做进一步说明。
附图1所示为本发明数控机床位置相关几何误差项的建模方法流程图。附图2所示为某五轴数控机床的结构示意图,附图3所示为X轴x方向线性误差δxx的离散数据,以附图2中机床X运动轴x方向的线性几何误差δxx为例来阐述本发明数控机床位置相关几何误差项建模方法。
步骤1、根据数控机床位置相关几何误差项性质,确定数控机床位置相关几何误差项n次多项式形式。数控机床位置相关几何误差项误差数值随着运动轴位置变化而变化,在运动轴零位置处位置相关几何误差项数值为零,从而确定位置相关几何误差项多项式形式中常数项为零,X轴x方向线性误差δxx的n次多项式形式为;
其中x表示运动轴X运动量,bj表示多项式j次项系数。
步骤2、根据附图3所示的X轴x方向线性误差δxx的离散数据,采用最小二乘法拟合原理得到n次多项式系数计算矩阵M,得到n次多项式系数计算公式,具体方法为:
步骤2.1、最小二乘法采用偏差平方和最小的原则,偏差平方和表示为:
其中Δ2表示偏差平方和;fi表示机床位置相关几何误差项第i个离散数据,ti表示第i个离散数据对应的自变量;fn(ti)表示ti对应的拟合多项式计算值,表示第i个离散数据的偏差平方;p表示机床位置相关几何误差项离散数据数目;
步骤2.2、根据偏差平方和表达式依次对bj求偏导数得到等式:
步骤2.3、对等式进行简化后得到n次多项式系数与机床位置相关几何误差项离散数据之间关系,表示为:
步骤2.4、将n次多项式系数与机床位置相关几何误差项离散数据之间关系转换为矩阵形式:
步骤2.5、建立n次多项式系数计算矩阵及位置相关几何误差项离散数据矩阵,得到n次多项式系数计算公式:
B=M-1·Y
其中,
步骤3、结合附图3所示的五轴数控机床X轴x方向线性误差δxx的离散数据计算从1次到m次的一系列多项式,其中m表示一系列多项式中最高次数,设定为几何误差项的离散数据数目的一半,如果离散数据数目的一半大于8,m值设定为8,即多项式次数不高于8。
五轴数控机床X轴x方向线性误差δxx的离散数据的数目为15,那么m值设定为7。拟合多项式的表示形式为:
根据步骤2方法计算得到的从1次到7次的一系列多项式为:
步骤4、根据回归分析F检验方法,结合数控机床位置相关几何误差项的离散数据,计算步骤3中得到的1次到7次的一系列多项式的F值。n次多项式F值计算方法为:
计算得到的1次到7次的一系列多项式的F值见附图4所示,一系列多项式F值为:
F1=106.596;F2=255.484;F3=299.965;F4=229.893;
F5=179.077;F6=234.466;F7=178.106
步骤5、比较1次到7次的一系列多项式的F值,找出最大F值,选择最大F值对应的多项式为该数控机床位置相关几何误差项的优化多项式模型。如附图4所示,3次多项式F值最大,所以选择3次多项式为五轴数控机床X轴x方向线性误差δxx的优化多项式模型,为:
δxx=-1.955×10-7x3+5.977×10-5x2+3.440×10-2x
附图5为五轴数控机床X轴x方向线性误差δxx的优化多项式模型。采用同样的方法得到机床Z轴的所有位置相关几何误差的离散数据与优化多项式模型,附图6a为机床Z轴的位置相关线性几何误差项的离散数据与优化多项式模型,附图6b为机床Z轴的位置相关角度几何误差项的离散数据与优化多项式模型。由附图5和6可知,采用本发明的方法,得到的优化多项式模型拟合效果好,精度高,鲁棒性强。

Claims (8)

1.一种数控机床位置相关几何误差项的建模方法,包括如下步骤:
步骤1、根据数控机床位置相关几何误差项的性质,确定位置相关几何误差项n次多项式形式为;
e s t = f n = Σ j = 1 n b j t j
其中,est表示机床运动轴t在s方向上的位置相关几何误差项;t表示运动轴t运动量,t=x、y、z、α、β、γ;s=x、y、z;e=δ、ε,δ表示线性误差,ε表示角度误差;n表示多项式次数;fn表示n次多项式;bj表示多项式j次项系数;
步骤2、根据数控机床位置相关几何误差项离散数据,采用最小二乘法拟合原理得到n次多项式系数计算矩阵M,n次多项式系数计算公式表示为:
B=M-1·Y
其中,M表示n次多项式系数计算矩阵,B表示n次多项式系数矩阵,Y表示位置相关几何误差项离散数据矩阵;
步骤3、根据步骤2,结合数控机床位置相关几何误差项离散数据计算得到从1次到m次的一系列多项式,其中m表示一系列多项式中最高次数;
步骤4、根据回归分析F检验方法,结合数控机床位置相关几何误差项离散数据,计算步骤3中得到的1次到m次的一系列多项式的F值;
步骤5、比较1次到m次的一系列多项式的F值,找出最大F值,选择最大F值对应的多项式为该数控机床位置相关几何误差项的优化多项式模型。
2.根据权利要求1所述的一种数控机床位置相关几何误差项的建模方法,其特征在于:所述步骤1中数控机床位置相关几何误差项的性质,在运动轴零位置处的位置相关几何误差项数值为零,从而确定位置相关几何误差项多项式形式中常数项为零。
3.根据权利要求1所述的一种数控机床位置相关几何误差项的建模方法,其特征在于:所述步骤2中采用最小二乘法拟合原理计算n次多项式系数的具体方法为:
步骤2.1、最小二乘法采用偏差平方和最小的原则,偏差平方和表示为:
Δ 2 = Σ i = 1 p Δ i 2 = Σ i = 1 p ( f i - f n ( t i ) ) 2 = Σ i = 1 p ( f i - Σ i = 1 n b j t j ) 2
其中,Δ2表示偏差平方和;fi表示数控机床位置相关几何误差项第i个离散数据,ti表示第i个离散数据对应的自变量;fn(ti)表示ti对应的拟合多项式计算值,表示第i个离散数据的偏差平方;p表示数控机床位置相关几何误差项离散数据数目;
步骤2.2、根据偏差平方和表达式依次对bj求偏导数得到等式:
Σ i = 1 p ( ( f i - Σ i = 1 n b j t i j ) t i ) = 0 Σ i = 1 p ( ( f i - Σ i = 1 n b j t i j ) t i 2 ) = 0 M Σ i = 1 p ( ( f i - Σ i = 1 n b j t i j ) t i n ) = 0 ;
步骤2.3、对等式进行简化后得到n次多项式系数与数控机床位置相关几何误差项离散数据之间关系,表示为:
Σ i = 1 p ( Σ j = 1 n b j t i j + 1 ) = Σ i = 1 p ( b 1 t i 2 + b 2 t i 3 L + b n t i n + 1 ) = Σ i = 1 p f i t i Σ i = 1 p ( Σ j = 1 n b j t i j + 2 ) = Σ i = 1 p ( b 1 t i 3 + b 2 t i 4 L + b n t i n + 2 ) = Σ i = 1 p f i t i 2 M Σ i = 1 p ( Σ j = 1 n b j t i j + n ) = Σ i = 1 p ( b 1 t i 1 + n + b 2 t i 2 + n L + b n t i n + n ) = Σ i = 1 p f i t i n ;
步骤2.4、将n次多项式系数与数控机床位置相关几何误差项离散数据之间关系转换为矩阵形式:
Σ i = 1 p t i 2 Σ i = 1 p t i 3 L Σ i = 1 p t i n + 1 Σ i = 1 p t i 3 Σ i = 1 p t i 4 L Σ i = 1 p t i n + 2 M M O M Σ i = 1 p t i 1 + n Σ i = 1 p t i 2 + n L Σ i = 1 p t i n + n b 1 b 2 M b n = Σ i = 1 p f i t i Σ i = 1 p f i t i 2 M Σ i = 1 p f i t i n ;
步骤2.5、建立n次多项式系数计算矩阵及数控机床位置相关几何误差项离散数据矩阵,得到n次多项式系数计算公式:
B=M-1·Y
其中,
M = Σ i = 1 p t i 2 Σ i = 1 p t i 3 L Σ i = 1 p t i n + 1 Σ i = 1 p t i 3 Σ i = 1 p t i 4 L Σ i = 1 p t i n + 2 M M O M Σ i = 1 p t i 1 + n Σ i = 1 p t i 2 + n L Σ i = 1 p t i n + n ; B = b 1 b 2 M b n ; Y = Σ i = 1 p f i t i Σ i = 1 p f i t i 2 M Σ i = 1 p f i t i n .
4.根据权利要求1所述的一种数控机床位置相关几何误差项的建模方法,其特征在于:所述步骤3中结合数控机床位置相关几何误差项离散数据计算得到从1次到m次的一系列多项式时,拟合多项式的表示形式为:
f n = Σ j = 1 n b j t j n = 1 , 2 , L , m ; m = m a x ( 8 , p / 2 )
式中,m的值小于等于8。
5.根据权利要求1所述的一种数控机床位置相关几何误差项的建模方法,其特征在于:所述步骤4中根据回归分析F检验方法计算1次到m次的一系列多项式的F值的方法为:
U n = Σ i = 1 p ( f n ( t i ) - f ‾ ) 2 Q n = Σ i = 1 p ( f i - f n ( t i ) ) 2 F n = U n / n Q n / ( p - n - 1 )
其中,Fn表示n次多项式的F值,表示机床位置相关几何误差项离散数据的平均值。
6.根据权利要求1所述的一种数控机床位置相关几何误差项的建模方法,其特征在于:所述数控机床包括三轴以上的数控机床。
7.根据权利要求1所述的一种数控机床位置相关几何误差项的建模方法,其特征在于:该建模方法适合于五轴数控机床的30项位置相关几何误差项。
8.根据权利要求1所述的一种数控机床位置相关几何误差项的建模方法,其特征在于:该建模方法适合于三轴数控机床的18项位置相关几何误差项。
CN201611119619.XA 2016-10-08 2016-12-08 一种数控机床位置相关几何误差项的建模方法 Active CN106774152B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2016108769800 2016-10-08
CN201610876980 2016-10-08

Publications (2)

Publication Number Publication Date
CN106774152A true CN106774152A (zh) 2017-05-31
CN106774152B CN106774152B (zh) 2019-03-22

Family

ID=58882420

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611119619.XA Active CN106774152B (zh) 2016-10-08 2016-12-08 一种数控机床位置相关几何误差项的建模方法

Country Status (1)

Country Link
CN (1) CN106774152B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109521729A (zh) * 2018-11-14 2019-03-26 内蒙古工业大学 一种三轴数控机床可补偿及不可补偿几何误差分离方法
CN109839892A (zh) * 2019-01-29 2019-06-04 西南交通大学 一种五轴数控机床后置处理转角选解优化方法
CN109933920A (zh) * 2019-03-18 2019-06-25 西南交通大学 一种旋转轴位置偏差的误差矢量建模方法
CN110181335A (zh) * 2019-07-01 2019-08-30 重庆大学 一种基于球杆仪测量的机床平动轴位置相关误差辨识方法
CN110346782A (zh) * 2019-05-31 2019-10-18 华东师范大学 一种长距离地面三维激光雷达回波强度数据的改正方法
CN111459094A (zh) * 2020-03-09 2020-07-28 西南交通大学 机床主轴热误差建模中温度敏感点组合的分区域选取方法
CN112345813A (zh) * 2020-10-23 2021-02-09 深圳市新威尔电子有限公司 动态测量精度的动态补偿方法
CN113156887A (zh) * 2021-04-19 2021-07-23 安徽理工大学 一种基于ga-svr的数控机床几何误差建模方法
CN113711143A (zh) * 2019-04-11 2021-11-26 三菱电机株式会社 数控装置
CN116522059A (zh) * 2023-06-29 2023-08-01 南昌三瑞智能科技有限公司 一种最小二乘拟合方法及电机离散传输数据的处理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102001021A (zh) * 2010-10-22 2011-04-06 西南交通大学 五轴联动数控机床回转摆动轴几何误差参数值的测量方法
CN103345199A (zh) * 2013-06-19 2013-10-09 上海交通大学 基于人机界面二次开发的数控机床误差补偿系统及方法
CN103878641A (zh) * 2014-03-14 2014-06-25 浙江大学 一种五轴数控机床通用的旋转轴几何误差辨识方法
CN104786098A (zh) * 2015-04-10 2015-07-22 浙江大学 一种多轴数控机床转台几何误差六位置辨识方法
CN105404237A (zh) * 2015-11-10 2016-03-16 湖北文理学院 一种基于空间网格补偿方式的数控机床空间误差建模方法
US20160077516A1 (en) * 2014-09-16 2016-03-17 Kabushiki Kaisha Toshiba Data compensation device, data compensation method, and machining apparatus
US20160125108A1 (en) * 2014-11-03 2016-05-05 Tata Technologies Pte Limited Method and system for knowledge based interfacing between computer aided analysis and geometric model

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102001021A (zh) * 2010-10-22 2011-04-06 西南交通大学 五轴联动数控机床回转摆动轴几何误差参数值的测量方法
CN103345199A (zh) * 2013-06-19 2013-10-09 上海交通大学 基于人机界面二次开发的数控机床误差补偿系统及方法
CN103878641A (zh) * 2014-03-14 2014-06-25 浙江大学 一种五轴数控机床通用的旋转轴几何误差辨识方法
US20160077516A1 (en) * 2014-09-16 2016-03-17 Kabushiki Kaisha Toshiba Data compensation device, data compensation method, and machining apparatus
US20160125108A1 (en) * 2014-11-03 2016-05-05 Tata Technologies Pte Limited Method and system for knowledge based interfacing between computer aided analysis and geometric model
CN104786098A (zh) * 2015-04-10 2015-07-22 浙江大学 一种多轴数控机床转台几何误差六位置辨识方法
CN105404237A (zh) * 2015-11-10 2016-03-16 湖北文理学院 一种基于空间网格补偿方式的数控机床空间误差建模方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
田文杰等: "数控机床几何误差源的快速辨识方法", 《天津大学学报》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109521729A (zh) * 2018-11-14 2019-03-26 内蒙古工业大学 一种三轴数控机床可补偿及不可补偿几何误差分离方法
CN109521729B (zh) * 2018-11-14 2020-05-29 内蒙古工业大学 一种三轴数控机床可补偿及不可补偿几何误差分离方法
CN109839892B (zh) * 2019-01-29 2020-12-18 西南交通大学 一种五轴数控机床后置处理转角选解优化方法
CN109839892A (zh) * 2019-01-29 2019-06-04 西南交通大学 一种五轴数控机床后置处理转角选解优化方法
CN109933920A (zh) * 2019-03-18 2019-06-25 西南交通大学 一种旋转轴位置偏差的误差矢量建模方法
CN109933920B (zh) * 2019-03-18 2021-01-12 西南交通大学 一种旋转轴位置偏差的误差矢量建模方法
CN113711143A (zh) * 2019-04-11 2021-11-26 三菱电机株式会社 数控装置
CN110346782A (zh) * 2019-05-31 2019-10-18 华东师范大学 一种长距离地面三维激光雷达回波强度数据的改正方法
CN110181335A (zh) * 2019-07-01 2019-08-30 重庆大学 一种基于球杆仪测量的机床平动轴位置相关误差辨识方法
CN110181335B (zh) * 2019-07-01 2020-11-03 重庆大学 一种基于球杆仪测量的机床平动轴位置相关误差辨识方法
CN111459094B (zh) * 2020-03-09 2021-03-30 西南交通大学 机床主轴热误差建模中温度敏感点组合的分区域选取方法
CN111459094A (zh) * 2020-03-09 2020-07-28 西南交通大学 机床主轴热误差建模中温度敏感点组合的分区域选取方法
CN112345813A (zh) * 2020-10-23 2021-02-09 深圳市新威尔电子有限公司 动态测量精度的动态补偿方法
CN113156887A (zh) * 2021-04-19 2021-07-23 安徽理工大学 一种基于ga-svr的数控机床几何误差建模方法
CN116522059A (zh) * 2023-06-29 2023-08-01 南昌三瑞智能科技有限公司 一种最小二乘拟合方法及电机离散传输数据的处理方法

Also Published As

Publication number Publication date
CN106774152B (zh) 2019-03-22

Similar Documents

Publication Publication Date Title
CN106774152A (zh) 一种数控机床位置相关几何误差项的建模方法
Xiang et al. Modeling and compensation of volumetric errors for five-axis machine tools
Ding et al. Actual inverse kinematics for position-independent and position-dependent geometric error compensation of five-axis machine tools
CN109765848B (zh) 五轴机床运动轴几何误差贡献值计算及影响评估方法
Chen et al. A comprehensive error analysis method for the geometric error of multi-axis machine tool
CN112558547B (zh) 一种五轴数控机床平动轴几何误差补偿数据快速优化方法
CN108803487B (zh) 一种零件侧铣表面的点位轮廓误差预测方法
CN102699761B (zh) 基于“s”形检测试件的五轴数控机床的误差辨识方法
CN108873809B (zh) 一种螺旋锥齿轮的高阶齿面误差修正方法
Mou A method of using neural networks and inverse kinematics for machine tools error estimation and correction
Cheng et al. An analysis methodology for stochastic characteristic of volumetric error in multiaxis CNC machine tool
CN113400088A (zh) Ac双转台五轴机床的位置无关几何误差建模和辨识方法
Tan et al. Geometrical error compensation of precision motion systems using radial basis function
CN113910001B (zh) 一种数控机床空间误差辨识方法
CN113325802B (zh) 一种五轴机床几何误差补偿方法
CN110955979A (zh) 一种考虑几何误差偏相关性的机床加工精度可靠性灵敏度分析方法
CN109839920A (zh) 一种五轴机床运动轴灵敏度分析方法
CN102896555A (zh) 用于控制在驱动装置之间具有可自由确定的耦合的机器的方法
CN105116840B (zh) 一种空间曲线一次插补缓变误差补偿方法
CN112720480B (zh) 一种基于分级误差的机器人轨迹修正方法及系统
CN113359609A (zh) 五轴数控机床关键几何误差优化配比补偿方法
Soons Accuracy analysis of multi-axis machines
CN116909209A (zh) 一种考虑动态热误差的数控机床误差建模和预测方法
Merghache et al. Numerical evaluation of geometrical errors of three-axes CNC machine tool due to cutting forces—case: milling
Cho et al. Machining error compensation using radial basis function network based on CAD/CAM/CAI integration concept

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant