CN1067654C - 大比表面双组元过渡金属氮化物及其合成方法 - Google Patents

大比表面双组元过渡金属氮化物及其合成方法 Download PDF

Info

Publication number
CN1067654C
CN1067654C CN96119575A CN96119575A CN1067654C CN 1067654 C CN1067654 C CN 1067654C CN 96119575 A CN96119575 A CN 96119575A CN 96119575 A CN96119575 A CN 96119575A CN 1067654 C CN1067654 C CN 1067654C
Authority
CN
China
Prior art keywords
transition metal
specific surface
nitride
component
metal nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN96119575A
Other languages
English (en)
Other versions
CN1157798A (zh
Inventor
辛勤
张耀君
齐兴义
王新平
闫卫宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN96119575A priority Critical patent/CN1067654C/zh
Publication of CN1157798A publication Critical patent/CN1157798A/zh
Application granted granted Critical
Publication of CN1067654C publication Critical patent/CN1067654C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

一种大比表面双组元过渡金属氮化物是由组成式AB2N或ABN/Z表示。其中,A为ⅢB族,ⅣB族,ⅤB族,ⅦB族或第Ⅷ族过渡金属元素,B为第ⅥB族过渡金属Cr,Mo或W元素,Z为载体。该金属氮化物是由含A过渡金属元素的硝酸盐或硫酸盐水溶液与Cr、Mo或W酸或者Cr、Mo或W酸铵水溶液混合,通过共沉淀法或浸渍法制成负载型或非负载型双组元金属盐或复合氧化物,再将双组元金属盐或复合氧化物通MH3进行程序升温,至最终氮化温度600~750℃下进行反应而制得。该金属氮化物对石油加氢脱氮、脱硫反应具有良好的催化活性。

Description

大比表面双组元过渡金属氮化物及其合成方法
本发明涉及金属氮化物及合成方法。具体地说是提供一种制备大比表面积含有Cr2N,Mo2N或W2N的双组元过渡金属的氮化物。
大比表面金属氮化物是指比表面积在100m2/g以上的金属氮化物。对大比表面单组元过渡金属氮化物的制备及其用于多相催化领域的研究始于1985年。其合成方法是采用过渡金属氧化物与氨的程序升温而制备,氧化物与氨气生成氮化物是一个“局部规整性反应”。该制备反应通常要求氨气空速高达数十万[J.solid state chem.59,(1985)332],十分缓慢的升温速率[J.Catal,145,(1995)335及J.catal.146,(1994)218)218],并只能制备相当有限的0.1~1g产物。因此,该技术还无法在工业中使用。对于大比表面双组元过渡金属氮化物及其制备,目前尚未见有报导。
本发明的目的是提供一种大比表面的双组元过渡金属的氮化物及其合成方法。本发明的另一目的是将所制备的氮化物作为催化剂用于石油加氢脱氮、脱硫反应,在石油加氢精制中应用。
本发明的大比表面氮化物双过渡金属可制成非负载型或负载型氮化物,其组成可用下式表示:
AB2N或AB2N/Z
其中,A为ⅢB族,ⅣB族,ⅤB族,ⅦB族或第Ⅷ族过渡金属元素。B为第ⅥB族过渡金属Cr,Mo或W元素,Z为载体。具体地说,A为第ⅢB族的Sc或Y,或者为稀土La、Ce、Pr、Nd、Pm、Sm或Eu元素;第ⅣB族的Ti或Zr元素;第ⅤB族的Ⅴ或Nb元素,第ⅦB族的Mn元素,第Ⅷ族的Fe、Co、Ni、Ru、Rb、Pd、Os、Ir或Pt元素,Z为Al2O3,SiO2,硅胶、活性炭、膨润土或分子筛。
合成本发明大比表面双组元过渡金属氮化物的方法,仍采用过渡金属氧化物与氨气的程序升温进行氮化反应过程,其特征是首先采用共沉淀法制备出双组元过渡金属盐或复合氧化物,或用浸渍法将过渡金属元素担载在载体上,再通入氨气程序升温氮化。具体的合成过程为:
一.非负载型金属氮化物的制备
1.共沉淀法制备双组元过渡金属盐或复合氧化物
将过渡金属A硝酸盐或硫酸盐水溶液,在搅拌下加入到含铬、钼或钨酸,或者铬、铝或钨酸铵水溶液中,蒸发混合溶液至于,再进行焙烧,得到双组元金属盐或复合氧化物。两种过渡金属盐溶液的混合量,按金属元素的摩尔比A∶B为0.1~3的比例配制成水溶液再进行混合。焙烧在400~600℃下进行1~10小时。
2.氮化物的制备
将所制备的双组元金属盐或复合氧化物放入反应管中,通入NH3程序升温氮化。程序升温的速度可达10℃/分,最终氮化温度为600~750℃。为使氮化反应进行完全,氮化反应应不少于1小时。但过长的氮化时间,对制备氮化物并无明显影响,并延长了制备时间,因此一般氮化反应进行1~10小时。氮化反应进行后在NH3气氛下降至室温,通N2+O2混合气钝化,即可制得本发明的双组元过渡金属氮化物。上述通NH3氮化反应中,高空速的NH3气对形成大比表面氮化物有利。在本发明的制备过程中,只要保持NH3的空速达到400hr-1,即可得到较好的氮化物产品,一般NH3的空速控制在500~1700hr-1。另外,程序升温过程可以直接将温度以大约10℃/分速度升到最终氮化反应温度,也可以先快速升至中温区(250~350℃),再以较慢速度1~5℃/分升至最终氮化温度,对形成大比表面氮化物更为有利。
二.负载型金属氮化物的制备
1.浸渍法双组元过滤金属元素/载体的制备
将多种过渡金属A硝酸盐、硫酸盐或氯化物水溶液在搅拌下加入到含铬、钼或钨酸,或者铬,钼或钨酸铵水溶液中制成混合溶液浸渍Al2O3,SiO2,硅胶、活性碳、膨润土或分子筛,浸渍后载双组元过渡金属元素的载体经干燥后进行焙烧,干燥于室温~120℃下进行1~24小时,焙烧于400~600℃下进行1~10小时。两种过渡金属盐溶液的混合量按金属元素的摩尔比为A∶B=0.1~3进行。
2.氮化物的制备
将上述制得的双组元过渡金属盐或氧化物/载体按非负载型金属氮化物的氮化物的制备方法用氨程序升温氮化。
本发明在十分和缓的反应条件下,即可生成大比表面B2N氮化物,其主要原因在于反应过程中,在生成B2N的同时,逐渐生成的另一过渡金属不定型氧化物或氮化物将生成的B2N颗粒包裹起来。这些不定型A金属氧化物或氮化物在氮化物反应中起到了结构助剂或织构助剂的作用,防止了大比表面B2N颗粒的聚集,解决了合成大剂量,高比表面积B2N的技术问题。对于负载型氮化物可得到大比表面高分散度的双组元过渡金属氮化物。利用本发明的方法也可以制备出三组元以上过渡金属氮化物。
本发明的大比表面双组元过渡金属氮化物作为催化剂用于石油加氢脱氮,脱硫反应,表现出十分优良的性能。双组元过渡金属氮化物作为工业加氢精制和选择加氢理想的催化剂具有极大的潜在的应用前景。下面通过实例对本发明的技术给予进一步详细地说明。
实例1 Ti-Mo2N双组元过渡金属氮化物的制备
将Ti(SO4)2水溶液在搅拌下加入到(NH4)2MO2O7的水溶液中,在水浴锅上蒸发至于,120℃下烘2小时,再于马弗炉中500℃焙烧3小时,制得Ti.Mo双组元金属盐。按Ti元素与Mo元素摩尔比为1∶2配制两种盐的水溶液。
将上金属盐放入石英反应管中,通入NH3程序升温氮化,质量流量计控制NH3流速,具体条件为:
氮化物的物理性能结果列于表1。
实侧2~5,双组元过渡金属氮化物的制备
取Zr(NO3)4,Ni(NO3)2,Co(NO3)2,Ce(NO)4水溶液分别与(NH4)2Mo2O7水溶液或H2Mo2O7水溶液,按实例1所述的方法制备相应双组元过渡金属氮化物,最佳氮化温度,NH3空速,加热速率等反应条件及测得的氮化物中A元素的存在形态,重量及比表面积结果均列入表1。
表1大比表面双组元Mo2的合成条件及物理性能
催化剂类型 氮化物(g) 加热速率(C/min) NH3空速(h-1) 最终氮化温度(℃) 氮化物化表面(m2/g)
TiN-Mo2N 5-50 5 1700 680 154
Co-Mo2N 5-50 1 700 650 148
ZrO2-Mo2N 5-50 3 700 700 132
Ce2O3-Mo2N 5-50 1 700 665 130
Ni-Mo2N 5-50 3 1700 700 140
实例6~8负载型双组元过渡金属氮化物的制备
取Co(NO3)2或Ni(NO3)2水溶液分别与H2Mo2O7或H2W2O7水溶液按A∶B为1∶2的摩尔比例进行混合制成浸渍液,将Al2O3作载体加入到浸渍液中进行浸渍,浸渍后于120℃进行干燥2小时,再于550℃下焙烧3小时,最后按实例1的方法用氨进行氮化制备出负载型Co-Mo2N/Al2O3,Ni-W2N/Al2O3。和Ni-Mo2N/Al2O3
实例9双组元过渡金属氮化物的催化性能
利用实例1~5所制备的双组元过渡金属氮化物作催化剂对吡啶加氢脱氮活性进行考察,反应在固定床微反应器上进行,其反应条件及结果由表2列出。
比较例1催化性能比较1
利用单组元γ-Mo2N及工业硫化态Co-Mo/Al2O3催化剂在与实例9相同的条件下进行吡啶加氢脱氮活性试验,其结果列入表2。
表2催化剂的吡啶加氢脱氮活性比较
催化剂 吡啶转化率(%) 吡啶脱氮率(%)
ZrO2-Mo2N 58 57
Ni-Mo2N 47 43
γ-Mo2N 15 11
Co-Mo/Al2O3(硫化态) 12 9
*常压、反应温度300℃、氢气流速20ml/min、氢油比300。
由表2的结果,本发明的双组元氮化物对吡啶转化率的催化活性要明显高于作为对比的单组元氮化物和工业硫化态催化剂。
实例10负载型双组元过渡金属氮化物的催化性能
利用实例6,7所制备的氮化物作催化剂及实例9反应器上进行加氢脱硫脱氮活性评价。以模型底物,汽油和柴油(齐鲁石油化工公司产)为活性评价对象,其实验结果列于表3、4和5中。
表3催化汽油加氢脱硫*
催化剂 Co-Mo2N/Al2O3 Co-W2N/Al2O3 ** Ni-W2N/Al2O3 **
脱硫率(%) 96.5 64.3 75.2
*  催化剂=1.0g;反应压力3.0MPa;反应温度=340.0℃;油料空速=3.0;氢油比=300;3=9.48×103PPm** 前身态活性相为杂多化合物PW18Co4、PW18Ni4表4催化柴油加氢脱硫*
催化剂 Co-W2N/Al2O3 ** Ni-W2N/Al2O3 **
脱硫率(%) 68.4 73.2
脱氮率(%) 63.4 70.9
*  催化剂=2.0g;反应压力30.0atm;反应温度=380.0℃;油料空速=1.8;氢油比=300;S=8.1×103PPm,N=1.8×103PPm** 前身态活性相为杂多化合物PW18Co4、PW18Ni4表5 Co=Mo2N/Al2O3 *吡啶加氢脱氮活性**
反应时间(h) 1 2 3 4 5 6 7
(℃)
300 Conv.( %) 96.2 97.7 98.2 98.3 98.4 98.1 98.5
HND(%) 96.2 97.7 98.2 98.3 98.4 98.1 98.5
* 前身态活性相为---Keggin结构杂多化合物PMo11Co
**反应压力=3.0MPa,催化剂=1.0g;油料空速=6.0;氢油比=300
N=2.32×103PPm
比较例2催化性能比较2
利用实侧8所制备的Ni-Mo2N/Al2O3作催化剂与单组元过渡金属氮化物作催化剂,并按实例9所述反应器进行催化性能比较其结果列于表5和表6。
表5 Ni-Mo/Al2O3经硫化、氮化后吡啶加氢脱氮活性的比较*
催化剂 吡啶转化率(%) 吡啶脱氮率(%)
硫化态Ni-Mo/Al2o3 32.1 21.2
Ni-Mo2N/Al2O3 ** 98.4 98.4
*  反应压力=3.0MPa;反应温度=300℃;氢油比=300;油液空速=6.0h-1;N=2.32×103PPm** 前身态活性相为---Keggin结构杂多化合物PMo11Ni表6 加氢脱氮活性比较*
催化剂 吡啶脱氮率(%) NH3空速(h-1) 升温速率(K/min)
Mo2N 22.1 4000 1
Ni-Mo2N 47.0 1700 3
Mo2N/Al2O3 30.1 1200 5
Ni-Mo2N/Al2C3 ** 98.4 1200 5
*反应压力=3.0MPa;反应温度=300℃;氢油比=300;油液空速=6.0h-1
N=2.32×103PPm
**前身态活性相为---Keggin结构杂多化合物PMo11Ni
由上述表3~6的结果表明,由于活性组元及活性组元与载体的协同作用,使得此类催化剂的加氢脱硫、脱氮活性好于传统使用的硫化态催化剂Co(Ni)Mo(W),此外,氮化物在使用时无需予硫化,避免了硫污染,属环境友好型催化剂。

Claims (4)

1.一种大比表面双组元过渡金属氮化物,其特征在于用下式表示:
AB2N或AB2N/Z
其中:A为ⅢB族,ⅣB族,ⅤB族,ⅦB族或第Ⅷ族过渡金属元素,B为第ⅥB族过渡金属元素Cr,Mo或W,Z为载体Al2O3,SiO2,活性炭,膨润土或分子筛。
2.按照权利要求1所述的大比表面双组元过渡金属氮化物,其特征在于Z为Al2O3
3.一种按权利要求1所述大比表面双组元过渡金属氮化物的制备方法,其特征在于制备过程如下:
将过渡金属A的硝酸盐或硫酸盐水溶液,在搅拌下加入到含金属元素B的酸或酸铵水溶液中,金属元素的摩尔比A∶B=0.1~3;
当无载体时对上述溶液直接焙烧;当有载体时先用上述混合溶液浸渍载体而后焙烧;焙烧在400~600℃下进行1~10小时;
通氨气对上述双组元过渡金属盐或复合氧化物进行程序化升温,氨气的空速400hr-1以上,升温速率不大于10℃/分,氮化温度600~750℃,氮化时间不少于1小时。
4.按照权利要求3所述的制备方法,其特征在于通氨进行程序升温氮化时氨空速为500~1700hr-1,氮化反应时间为1~10小时。
CN96119575A 1996-02-02 1996-11-25 大比表面双组元过渡金属氮化物及其合成方法 Expired - Fee Related CN1067654C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN96119575A CN1067654C (zh) 1996-02-02 1996-11-25 大比表面双组元过渡金属氮化物及其合成方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN96115076 1996-02-02
CN96115076.9 1996-02-02
CN96119575A CN1067654C (zh) 1996-02-02 1996-11-25 大比表面双组元过渡金属氮化物及其合成方法

Publications (2)

Publication Number Publication Date
CN1157798A CN1157798A (zh) 1997-08-27
CN1067654C true CN1067654C (zh) 2001-06-27

Family

ID=25744009

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96119575A Expired - Fee Related CN1067654C (zh) 1996-02-02 1996-11-25 大比表面双组元过渡金属氮化物及其合成方法

Country Status (1)

Country Link
CN (1) CN1067654C (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2007013672A (es) * 2005-05-02 2008-01-28 Univ Utah Res Found Procesos para conversion catalitica de lignina a biocombustibles liquidos.
CN102773114B (zh) * 2012-06-21 2014-02-26 黑龙江大学 石墨纳米薄片上负载氮化物的方法及其用途
CN109019533B (zh) * 2018-07-18 2021-01-05 南京航空航天大学 一种双金属氮化物Co3W3N及其制备方法与应用
CN110492112A (zh) * 2019-07-11 2019-11-22 江苏师范大学 一种氧还原复合催化剂及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3416891A (en) * 1964-11-27 1968-12-17 Centre Nat Rech Scient Solid solutions of the transition metal nitrides and oxinitrides and methods of preparation thereof
US4851206A (en) * 1981-07-15 1989-07-25 The Board Of Trustees Of The Leland Stanford Junior University, Stanford University Methods and compostions involving high specific surface area carbides and nitrides

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3416891A (en) * 1964-11-27 1968-12-17 Centre Nat Rech Scient Solid solutions of the transition metal nitrides and oxinitrides and methods of preparation thereof
US4851206A (en) * 1981-07-15 1989-07-25 The Board Of Trustees Of The Leland Stanford Junior University, Stanford University Methods and compostions involving high specific surface area carbides and nitrides

Also Published As

Publication number Publication date
CN1157798A (zh) 1997-08-27

Similar Documents

Publication Publication Date Title
CN105214679B (zh) 一种抗水抗硫型烟气脱硝粉体催化剂、制备方法及其用途
JP3244693B2 (ja) 炭化水素油の水素化処理用触媒の製造方法
CN101402048B (zh) 高性能加氢裂化催化剂的制备方法
CN110280250B (zh) 一种沸石咪唑骨架材料衍生金属氧化物的制备方法及其应用
US4444905A (en) Hydrotreating catalyst preparation and process
CN1840617A (zh) 一种加氢脱硫脱氮硫化物催化剂及制备方法和应用
CN114870835B (zh) 一种负载型钯基催化剂及其制备方法和应用
US5300214A (en) Method for the hydroprocessing of hydrocarbons
KR20130000891A (ko) 허니컴 촉매의 제조 방법
CN1778872A (zh) 一种含分子筛的加氢脱硫催化剂
CN1067654C (zh) 大比表面双组元过渡金属氮化物及其合成方法
CN1042138C (zh) 加氢精制催化剂的制备方法
CN1778874B (zh) 一种含磷铝分子筛的加氢脱芳催化剂
CN100478423C (zh) 催化裂化汽油选择性加氢脱硫催化剂及其制备方法
CN100556994C (zh) 含磷的柴油加氢精制催化剂及其制备方法
CN106984300A (zh) 一种钒钛氧化物催化剂及其制备方法和用途
JP3382619B2 (ja) 触媒組成物の製造方法及び該触媒組成物を用いる含硫炭化水素の水素化脱硫方法
CN1769384A (zh) 一种重馏分油加氢处理催化剂及其制备方法
KR102558168B1 (ko) 암모니아 산화용 촉매 및 이의 제조 방법
GB2055602A (en) Hydrotreating catalyst preparation and process
CN1039592C (zh) 一种加氢催化剂的制备方法
CN1164360C (zh) 一种对费托合成蜡进行加氢的催化剂及其制备方法
CN112604709A (zh) 一种含硫废气处理用加氢催化剂及其应用
CN1088093C (zh) 一种加氢精制催化剂的制备方法
CN1221313C (zh) 一种石油馏分加氢精制催化剂及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee