CN106756897A - Ag掺杂氧化铁纳米管阵列结构薄膜及其制备方法 - Google Patents

Ag掺杂氧化铁纳米管阵列结构薄膜及其制备方法 Download PDF

Info

Publication number
CN106756897A
CN106756897A CN201611003941.6A CN201611003941A CN106756897A CN 106756897 A CN106756897 A CN 106756897A CN 201611003941 A CN201611003941 A CN 201611003941A CN 106756897 A CN106756897 A CN 106756897A
Authority
CN
China
Prior art keywords
array structure
tube array
ferric oxide
oxide nano
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611003941.6A
Other languages
English (en)
Inventor
邓洪达
曹献龙
林景崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Science and Technology
Original Assignee
Chongqing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Science and Technology filed Critical Chongqing University of Science and Technology
Priority to CN201611003941.6A priority Critical patent/CN106756897A/zh
Publication of CN106756897A publication Critical patent/CN106756897A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种Ag掺杂氧化铁纳米管阵列结构薄膜及其制备方法,将氧化铁纳米管阵列结构薄膜浸渍于含Ag溶液中进行超声处理处理即可获得本发明所述产品。本发明通过超声辅助处理向氧化铁纳米管阵列结构薄膜中掺杂Ag,获得了Ag掺杂氧化铁纳米管阵列结构薄膜,该薄膜与未掺杂Ag的氧化铁纳米管阵列结构薄膜相比,载流子浓度和光电流密度大幅度提高,光电化学性能更优。另外,本发明方法操作简单,产品易得,利于大规模地推广。

Description

Ag掺杂氧化铁纳米管阵列结构薄膜及其制备方法
技术领域
本发明涉及氧化铁纳米管阵列结构薄膜,具体涉及一种Ag掺杂氧化铁纳米管阵列结构薄膜及其制备方法。
背景技术
在众多氧化物半导体中,α-Fe2O3属于热力学最稳定的晶型,与宽禁带半导体氧化物相比,其能够吸收太阳光波长高达554nm,可捕获到40%太阳光能量。α-Fe2O3理论最大光能转化为化学能效率(Photoconversion Efficiency of Light Energy to ChemicalEnergy,ε)为12.9%,超过美国能源部对实际应用半导体的ε至少为10%的要求,再加上其具有成本低,无毒、化学稳定性高(pH>3)等优点,受到越来越多的研究者青睐。但α-Fe2O3半导体薄膜具有自身电子迁移能力差(0.01cm2/V.s4to 0.1cm2/V.s4),电子和空位复合率高,且空穴扩散长度短(2-4nm)等缺陷,在一定程度上限制了其应用。针对上述缺陷,现有技术中开发出纳米管阵列结构的α-Fe2O3薄膜,改善了α-Fe2O3半导体薄膜的上述缺陷,然而,仍旧存在光电化学性能不够高的缺陷。
发明内容
针对现有技术中的缺陷,本发明提供了一种Ag掺杂氧化铁纳米管阵列结构薄膜,通过进行Ag掺杂改善了纳米管阵列结构的氧化铁薄膜的光电化学性能;另外,本发明还同时提供了上述氧化铁薄膜的制备方法。
本发明采取的技术方案如下:
1.一种Ag掺杂氧化铁纳米管阵列结构薄膜,将氧化铁纳米管阵列结构薄膜浸渍于含Ag溶液中进行超声处理,氮气吹干后置于80-120℃条件下烘干,然后置于450-500℃氩气氛围中热处理3.5-5h即可获得。
优选的,将氧化铁纳米管阵列结构薄膜浸渍于0.06mol/L的AgNO3溶液中进行超声处理,超声功率20KHz,超声时间30min;超声完毕后氮气吹干,然后置于80℃马弗炉中烘干12h,最后置于500℃氩气氛围中热处理4h即可获得。
优选的,所述AgNO3溶液是将AgNO3溶于体积分数95%的乙醇中配制成。
优选的,所述氧化铁纳米管阵列结构薄膜采用阳极氧化法在碳钢上制备。
优选的,述阳极氧化法的具体条件包括:工作电极为碳钢,对电极为Ti-Pt,两电极之间的距离为4cm;电解液为氟化铵、水和乙二醇的混合溶液,其中,氟化铵浓度为0.1mol/L,水的体积分数为0.3%,其余为乙二醇;阳极氧化结束后,取出工作电极,分别在去离子水和无水乙醇中浸泡5s,氮气吹干。
优选的,所述碳钢的化学成分为C 0.05wt.%,Si 0.01wt.%,Mn 0.25wt.%,P0.015wt.%,Al 0.054wt.%,N 0.0049wt.%,其余为Fe;
碳钢的处理包括如下步骤:将碳钢加工为1cm×1cm×0.4cm的试样,并采用环氧树脂封装,试样暴露面积为1cm2;采用水砂纸逐级打磨,并选用0.3μm粒径的Al2O3抛光,水洗,无水乙醇、水、无水乙醇中各超声处理10min,氮气吹干。
2.Ag掺杂氧化铁纳米管阵列结构薄膜的制备方法,包括如下步骤:将氧化铁纳米管阵列结构薄膜浸渍于含Ag溶液中进行超声处理,氮气吹干后置于80-120℃条件下烘干,然后置于450-500℃氩气氛围中热处理3.5-5h即可获得。
需要说明的是,本发明中所述的氧化铁均为α-Fe2O3
本发明的有益效果在于:本发明通过超声辅助处理向氧化铁纳米管阵列结构薄膜中掺杂Ag,获得了Ag掺杂氧化铁纳米管阵列结构薄膜,该薄膜与未掺杂Ag的氧化铁纳米管阵列结构薄膜相比,载流子浓度和光电流密度大幅度提高,光电化学性能更优。另外,本发明方法操作简单,产品易得,利于大规模地推广到光电解水产氢、有机物染料污水处理。
附图说明
图1为掺杂与未掺杂Ag的氧化铁纳米管阵列结构薄膜光照下在0.1M NaOH中Mott-Schottky曲线。通过分析发现,Ag掺杂氧化铁纳米管阵列结构薄膜的平带电位(-0.402VAg/AgCl)负移约50毫伏,载流子浓度(3.06×1021)提高16倍。
图2为掺杂与未掺杂Ag的氧化铁纳米管阵列结构薄膜光照下在0.1M NaOH中的曲线。通过分析发现,在Ag掺杂氧化铁纳米管阵列结构薄膜的光电流密度比未掺杂Ag氧化铁纳米管明显更高,如在0VAg/AgCl处Ag掺杂氧化铁纳米管阵列结构薄膜的光电流密度(0.314mA.cm-2)是未掺杂的2倍多。
具体实施方式
现结合附图对本发明的优选实施例进行详细描述。
一种Ag掺杂氧化铁纳米管阵列结构薄膜,该薄膜制备方法包括如下步骤:将氧化铁纳米管阵列结构薄膜浸渍于含Ag溶液中进行超声处理,氮气吹干后置于80-120℃烘箱中烘干,然后置于450-500℃氩气氛围中热处理3.5-5h即可;
优选地,可采取如下方法:将氧化铁纳米管阵列结构薄膜浸渍于0.06mol/L的AgNO3溶液中进行超声处理,超声功率20KHz,超声时间30min;超声完毕后氮气吹干,然后置于80℃马弗炉中烘干12h,最后置于500℃氩气氛围中热处理4h。其中,AgNO3溶液可通过将AgNO3溶于体积分数95%的乙醇中制成。
优选地,氧化铁纳米管阵列结构薄膜可采用阳极氧化法在碳钢上制备,阳极氧化法的条件可以按如下设置:工作电极为碳钢,对电极为Ti-Pt,两电极之间的距离为4cm;电解液为氟化铵、水和乙二醇的混合溶液,其中,氟化铵浓度为0.1mol/L,水的体积分数为0.3%。
阳极氧化结束后,含Ag溶液浸渍前,可先将工作电极(外表面为氧化铁纳米管阵列结构薄膜)在去离子水和无水乙醇中各浸泡5s,氮气吹干。
工作电极中使用的碳钢的化学成分可以是C 0.05wt.%,Si 0.01wt.%,Mn0.25wt.%,P 0.015wt.%,Al 0.054wt.%,N 0.0049wt.%,其余为Fe。碳钢在使用前需经过处理,处理过程可包括如下步骤:将碳钢加工为1cm×1cm×0.4cm的试样,并采用环氧树脂封装,试样暴露面积为1cm2;采用水砂纸逐级打磨至2000号水砂纸,并选用0.3μm粒径Al2O3抛光,水洗,无水乙醇、水、无水乙醇中各超声处理10min,氮气吹干。
采用纳米管阵列结构薄膜作为工作电极,铂作为对电极,Ag/AgCl为参比电极的三电极系统构成光电化学电池检测薄膜在1M NaOH溶液中的光电特性。光电化学电池采用石英窗作为入射窗口,采用140W氙灯。电化学工作站(EG&G273A)分析薄膜的光利用率和光电子传输和复合情况。采用Mott–Schottky技术分析薄膜在1M NaOH溶液中光照下载流子浓度,其中频率为3000Hz,电位扫描范围为-1.0到0.6V,扫描速度为50mV/s。采用动电位扫描技术监测薄膜在光照和暗态下阳极极化曲线,电位扫描范围为-0.5-0.4V,扫描速度为5mV.s-1。将本发明所述方法制备的Ag掺杂氧化铁纳米管阵列结构薄膜与未掺杂Ag的氧化铁纳米管阵列结构薄膜的光电化学性能进行对比,结果如图1和图2所示,与未掺杂相比,在1MAgNO3溶液中Ag掺杂氧化铁纳米管阵列结构薄膜的平带电位(-0.402VAg/AgCl)负移约50毫伏,载流子浓度(3.06×1021)提高16倍,光电流密度(在0VAg/AgCl处0.297mA.cm-2)明显增加了2倍多。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (7)

1.一种Ag掺杂氧化铁纳米管阵列结构薄膜,其特征在于,将氧化铁纳米管阵列结构薄膜浸渍于含Ag溶液中进行超声处理,氮气吹干后置于80-120℃条件下烘干,然后置于450-500℃氩气氛围中热处理3.5-5h即可获得。
2.如权利要求1所述的一种Ag掺杂氧化铁纳米管阵列结构薄膜,其特征在于,将氧化铁纳米管阵列结构薄膜浸渍于0.06mol/L的AgNO3溶液中进行超声处理,超声功率20KHz,超声时间20-30min;超声完毕后氮气吹干,然后置于80℃马弗炉中烘干12h,最后置于500℃氩气氛围中热处理4h即可获得。
3.如权利要求2所述的一种Ag掺杂氧化铁纳米管阵列结构薄膜,其特征在于,所述AgNO3溶液是将AgNO3溶于体积分数95%的乙醇中配制成。
4.如权利要求1~3任一项所述的一种Ag掺杂氧化铁纳米管阵列结构薄膜,其特征在于,所述氧化铁纳米管阵列结构薄膜采用阳极氧化法在碳钢上制备。
5.如权利要求4所述的一种Ag掺杂氧化铁纳米管阵列结构薄膜,其特征在于,所述阳极氧化法的具体条件包括:工作电极为碳钢,对电极为Ti-Pt,两电极之间的距离为4cm;电解液为氟化铵、水和乙二醇的混合溶液,其中,氟化铵浓度为0.1mol/L,水的体积分数为0.3%,其余为乙二醇;阳极氧化结束后,取出工作电极,分别在去离子水和无水乙醇中浸泡5s,氮气吹干。
6.如权利要求4所述的一种Ag掺杂氧化铁纳米管阵列结构薄膜,其特征在于,所述碳钢的化学成分为C 0.05wt.%,Si 0.01wt.%,Mn 0.25wt.%,P0.015wt.%,Al 0.054wt.%,N0.0049wt.%,其余为Fe;
碳钢的处理包括如下步骤:将碳钢加工为1cm×1cm×0.4cm的试样,并采用环氧树脂封装,试样暴露面积为1cm2;采用水砂纸逐级打磨,并选用0.3μm粒径的Al2O3抛光,水洗,无水乙醇、水、无水乙醇中各超声处理10min,氮气吹干。
7.权利要求1~6任一项所述Ag掺杂氧化铁纳米管阵列结构薄膜的制备方法,其特征在于,包括如下步骤:将氧化铁纳米管阵列结构薄膜浸渍于含Ag溶液中进行超声处理,氮气吹干后置于80-120℃条件下烘干,然后置于450-500℃氩气氛围中热处理3.5-5h即可获得。
CN201611003941.6A 2016-11-15 2016-11-15 Ag掺杂氧化铁纳米管阵列结构薄膜及其制备方法 Pending CN106756897A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611003941.6A CN106756897A (zh) 2016-11-15 2016-11-15 Ag掺杂氧化铁纳米管阵列结构薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611003941.6A CN106756897A (zh) 2016-11-15 2016-11-15 Ag掺杂氧化铁纳米管阵列结构薄膜及其制备方法

Publications (1)

Publication Number Publication Date
CN106756897A true CN106756897A (zh) 2017-05-31

Family

ID=58968160

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611003941.6A Pending CN106756897A (zh) 2016-11-15 2016-11-15 Ag掺杂氧化铁纳米管阵列结构薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN106756897A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113718285A (zh) * 2021-08-18 2021-11-30 武汉工程大学 一种铁掺杂过渡金属基氧化物电极材料及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101150028A (zh) * 2007-08-21 2008-03-26 中山大学 一种大面积电子场致发射纳米结构阵列及其制备方法
CN101252988A (zh) * 2005-08-31 2008-08-27 浦项工科大学 含有氧化锌纳米线的近场光催化剂
CN101891146A (zh) * 2010-07-01 2010-11-24 淮阴工学院 一种磁性掺杂二氧化钛纳米管的制备方法
CN102002746A (zh) * 2010-11-03 2011-04-06 厦门大学 氧化铁纳米颗粒修饰的二氧化钛纳米管阵列的制备方法
WO2016105075A2 (ko) * 2014-12-24 2016-06-30 한양대학교 산학협력단 산화철 나노튜브의 제조방법 및 이에 의해 제조된 산화철 나노튜브, 자성철 분말의 제조방법 및 이를 이용한 인산염의 제거 및 회수 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101252988A (zh) * 2005-08-31 2008-08-27 浦项工科大学 含有氧化锌纳米线的近场光催化剂
CN101150028A (zh) * 2007-08-21 2008-03-26 中山大学 一种大面积电子场致发射纳米结构阵列及其制备方法
CN101891146A (zh) * 2010-07-01 2010-11-24 淮阴工学院 一种磁性掺杂二氧化钛纳米管的制备方法
CN102002746A (zh) * 2010-11-03 2011-04-06 厦门大学 氧化铁纳米颗粒修饰的二氧化钛纳米管阵列的制备方法
WO2016105075A2 (ko) * 2014-12-24 2016-06-30 한양대학교 산학협력단 산화철 나노튜브의 제조방법 및 이에 의해 제조된 산화철 나노튜브, 자성철 분말의 제조방법 및 이를 이용한 인산염의 제거 및 회수 장치

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
廖海达等: "银掺杂TiO2纳米管阵列的制备及可见光光电催化性能研究", 《广西民族大学学报(自然科学版)》 *
涂盛辉等: "α-Fe2O3的掺杂改性和降解性能", 《南昌大学学报(工科版)》 *
邓洪达等: "碳钢阳极氧化制备氧化铁纳米管阵列薄膜及其形成机理", 《功能材料》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113718285A (zh) * 2021-08-18 2021-11-30 武汉工程大学 一种铁掺杂过渡金属基氧化物电极材料及其制备方法与应用

Similar Documents

Publication Publication Date Title
CN105925954B (zh) 一种半导体氮化碳薄膜的制备方法
Wu et al. A dye-sensitized solar cell based on platinum nanotube counter electrode with efficiency of 9.05%
CN102655235B (zh) 一种微生物燃料电池空气阴极及其制备方法
CN105597784B (zh) MoS2掺杂的氧化铁光催化薄膜、制备方法及其在处理含酚废水中的应用
CN107130256B (zh) 硼掺杂氮化碳修饰二氧化钛复合光电极及其制备方法、应用
CN108103525A (zh) 氮掺杂碳点修饰三氧化钨复合光电极及其制备方法、和在光电催化分解水中的应用
Chen et al. Self‐Biasing Photoelectrochemical Cell for Spontaneous Overall Water Splitting under Visible‐Light Illumination
CN105140528B (zh) 一种自掺杂微生物燃料电池阳极材料及其制备方法
CN106525942B (zh) 一种以时间为读取信号的光致电传感器的构建方法
CN103943721A (zh) 一种铜锌锡硫薄膜及其制备方法和用途
CN105819512A (zh) 一种过渡金属硫化物的快速制备方法
CN109585177A (zh) 一种核壳结构的镍钴磷整体式电极材料的制备方法
CN108400346A (zh) 一种氧化亚铜包覆成型碳材料的制备方法
CN105568313A (zh) 3d分枝状半导体纳米异质结光电极材料及其制备方法
CN103390507A (zh) 一种石墨烯/铂纳米粒子复合纤维电极材料及其制备方法
Mastroianni et al. Reverse bias degradation in dye solar cells
CN111628188B (zh) 一种硼掺杂气凝胶构建的全钒液流电池用电极材料及其制备方法和用途
CN106953112B (zh) 一种三维电极材料制备方法及应用
CN106756897A (zh) Ag掺杂氧化铁纳米管阵列结构薄膜及其制备方法
CN111482150B (zh) 一种可见光响应的全铜基串联光电催化装置及其制备方法
CN108179455A (zh) 一种Cu2O纳米颗粒/TiO2纳米管阵列复合异质结薄膜的制备方法
CN107268020A (zh) 一种Ta3N5薄膜的制备方法及Ta3N5薄膜的应用
CN107799797A (zh) 一种微生物燃料电池阳极及其制备方法
CN105826081A (zh) 一种二氧化钛基纳米棒阵列对电极及其制备方法和应用
CN102280675A (zh) 一种用于太阳能制氢的自偏压光电化学电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170531

RJ01 Rejection of invention patent application after publication